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ABSTRACT

It is usually hard for a learning system to predict correctly on the rare events, and
there is no exception for segmentation algorithms. Therefore, we hope to build
an alarm system to set off alarms when the segmentation result is possibly unsat-
isfactory. One plausible solution is to project the segmentation results into a low
dimensional feature space, and then learn classifiers/regressors in the feature space
to predict the qualities of segmentation results. In this paper, we form the feature
space using shape feature which is a strong prior information shared among dif-
ferent data, so it is capable to predict the qualities of segmentation results given
different segmentation algorithms on different datasets. The shape feature of a
segmentation result is captured using the value of loss function when the segmen-
tation result is tested using a Variational Auto-Encoder(VAE). The VAE is trained
using only the ground truth masks, therefore the bad segmentation results with
bad shapes become the rare events for VAE and will result in large loss value. By
utilizing this fact, the VAE is able to detect all kinds of shapes that are out of the
distribution of normal shapes in ground truth (GT). Finally, we learn the represen-
tation in the one-dimensional feature space to predict the qualities of segmentation
results. We evaluate our alarm system on several recent segmentation algorithms
for the medical segmentation task. The segmentation algorithms perform differ-
ently on different datasets, but our system consistently provides reliable prediction
on the qualities of segmentation results.

1 INTRODUCTION

A segmentation algorithm usually fails on the rare events, and it is hard to fully avoid such issue. The
rare events may occur due to the limited number of training data. To handle it, the most intuitive way
is to increase the number of training data. However, the labelled data is usually hard to collect, e.g.,
to fully annotate a 3D medical CT scan requires professional radiology knowledge and several hours
of work. In addition, the human labelling is unable to cover all possible cases. Previously, various
methods have been proposed to make better use of training data, like sampling strategies paying
more attention to the rare events (Wang et al., 2018). But still it may fail on the rare events which
never occur in the training data. Another direction is to increase the robustness of the segmentation
algorithm to the rare events. Kendall & Gal (2017) proposed the Bayesian neural network which can
model the uncertainty as an additional loss to make the algorithm more robust to noisy data. These
kinds of methods make the algorithm insensitive to certain types of perturbations, but the algorithms
may still fail on other perturbations.

Since it is hard to completely prevent the segmentation algorithm from failure, we consider to detect
the failure instead: build up an alarm system cooperating with the segmentation algorithm, which
will set off alarms when the system finds that the segmentation result is not good enough. This task
is also called as quality assessment. Several works have been proposed in this field. Jungo et al.
(2018) applied Bayesian neural network to capture the uncertainty of the segmentation result and
set off alarm based on that uncertainty. However, this system also suffers from rare events since
the segmentation algorithms often make mistakes confidently on some rare events (Xie et al., 2017).
Kohlberger et al. (2012) provided an effective way by projecting the segmentation results into a
feature space and learn from this low dimension space. They manually design several heuristic fea-
tures, e.g., size, intensity, and assume such features would indicate the quality of the segmentation
results. After projecting the segmentation results into the feature space, they learned a classifier to
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Figure 1: The visualize on an NIH CT dataset for pancreas segmentation. The figures Recon-
Prediction and Recon-GT are reconstruction results from prediction and GT by VAE network re-
spectively. The Dice score between the GT and prediction is 47.06 while the Dice score between the
prediction and Recon-Prediction is 47.25. In our method, we use the later Dice score to predict the
former real Dice score which is usually unknown at inference phase in real applications. This case
shows how these two Dice scores are related to each other. On the other hand, for uncertainty based
methods, different kinds of uncertainty distribute mainly on the boundary of predicted mask, which
makes it a vague information when detecting the failure cases.

predict its quality. Since the feature space is of relative low dimension now, it is able to distinguish
good segmentation results from bad ones directly. In a reasonable feature space, when the segmen-
tation algorithm fails, the failure output will be far from the ground truth. So the main problems is
what these good features are and how to capture them. Many features that Kohlberger et al. (2012)
selected are actually less related with the quality of segmentation results, e.g., size.

In our system, we choose a more representative feature, i.e., the shape feature. The shape feature
is important because the segmenting objects (foreground in the volumetric mask) often have stable
shapes among different cases, especially in 3D. So the shape feature is supposed to provide a strong
prior information for judging the quality of a segmentation result, i.e., bad segmentation results tend
to have bad shapes and vice versa. Furthermore, to model the prior from the segmentation mask
space is much easier than in the image space and the shape prior can be shared among different
datasets while the features like image intensity are affected by many factors. That means the shape
feature can deal with not only rare events but also different data distributions in the image space,
which shows great generalization power and potential in transfer learning. We propose to use the
Variational Auto-Encoder(VAE) (Kingma & Welling, 2013) to capture the shape feature. The VAE
is trained on the ground truth masks, and afterwards we define the value of the loss function as the
shape feature of a segmentation result when it is tested with VAE network. Intuitively speaking,
after the VAE is trained, the bad segmentation results with bad shapes are just rare events to VAE
because it is trained using only the ground truth masks, which are under the distribution of normal
shapes. Thus they will have larger loss value. In this sense we are utilizing the fact that the learning
algorithms will perform badly on the rare events. Formally speaking, the loss function, known as
the variational lower bound, is optimized to approximate the function logP (Y ) during the training
process. So after the training, the value of the loss function given a segmentation result Ŷ is close
to logP (Ŷ ), thus being a good definition for the shape feature.

In this paper, we proposed a VAE-based alarm system for segmentation algorithms. The qualities of
the segmentation results can be well predicted using our system. To validate the effectiveness of our
alarm system, we test it on multiple segmentation algorithms. These segmentation algorithms are
trained on one dataset and tested on several other datasets to simulate when the rare events occur. The
performance for the segmentation algorithms on the other datasets (rather than the training dataset)
drops quickly but our system can still predict the qualities accurately. We compare our system with
other alarm systems on the above tasks and our system outperforms them by a large margin, which
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shows the importance of shape feature in alarm system and the great power of VAE in capturing the
shape feature.

2 RELATED WORK

Kendall & Gal (2017) employed Bayesian neural network (BNN) to model the aleatoric and epis-
temic uncertainty. Afterwards, Kwon et al. (2018) applied the BNN to calculate the aleatoric and
epistemic uncertainty on medical segmentation tasks. Jungo et al. (2018) utilized the BNN and
model another kind of uncertainty based on the entropy of segmentation results. They calculated
a doubt score by summing over weighted pixel-vise uncertainty. However we can see from Figure
1 that when the segmentation algorithm fails to provide correct prediction, the uncertainty still dis-
tributes mainly on the boundary of the wrong segmentation result, which means the algorithm is
strongly confident on where it makes mistakes.

Other method like Valindria et al. (2017) used registration based method for quality assessment. It is
a reliable method because it takes the prior of image by setting up a reference dataset. The problem
of this method is inefficient testing. Every single case needs to do registration with all reference data
to determine the quality but registration on 3D image is usually slow. Also the registration based
method can hardly be transferred between datasets or modalities. Chabrier et al. (2006) and Gao
et al. (2017) use unsupervised method to estimate the segmentation quality using geometrical and
other features. However the application in medical settings is not clear. Also Robinson et al. (2018)
tried a simple method using image-segmentation pair to directly regress the quality.

Kohlberger et al. (2012) introduced a feature space of shape and appearance to characterize a seg-
mentation. The shape features in their system contain volume size, surface area, which are not
necessarily related with the quality of the segmentation results. In our work we choose to learn a
statistical prior of the segmentation mask and then determine the quality by how well a mask fits
the prior. This is related with Out-of-Distribution (OOD) detection. Previous works in this field
(Hendrycks & Gimpel, 2016) (Liang et al., 2017) made use of the softmax output in the last layer
of a classifier to calculate the out-of-distribution level. In our case, however, for a segmentation
method, we can only get a voxel-wise out-of-distribution level using these methods. How to cal-
culate the out-of-distribution level for the whole mask becomes another problem. In addition, the
segmentation algorithm can usually predict most of background voxels correctly with a high confi-
dence, making the out-of-distribution level on those voxels less representative.

Auto-Encoder(AE), as a way of learning representation of data automatically, has been widely used
in many areas such as anomaly detection (Zong et al., 2018), dimension reduction, etc. Variational
autoencoder(VAE) (Kingma & Welling, 2013), compared with AE, can better learn the represen-
tation for the latent space. We employ VAE to learn the shape representation from the volumetric
mask. Unlike method of Wu et al. (2015) which needs to pre-train with RBM, VAE can be trained
following an end-to-end fashion. Qi et al. (2017) learned the shape representation from point cloud
form, while we choose the volumetric form as a more natural way to corporate with segmentation
task. Oktay et al. (2018) utilizes AE to evaluate difference between prediction and ground truth but
not in an unsupervised way.

3 OUR EVALUATION METHOD

We first define our task formally. Denote the datasets we have as (X ,Y), where Y is the label set
of X . We divide (X ,Y) into training set (Xt,Yt) and validation set (Xv,Yv). Suppose we have a
segmentation algorithms F trained on Xt. Usually we validate the performance of F on Xv using
Yv . Now we are doing this task without Yv . Formally, we try to find a function L such that

L(F (X), Y ) = L(F,X;ω) (1)

where L is a function used to calculate the similarity of the segmentation result F (X) respect to
the ground truth Y , i.e., the quality of F (X). How to design L to take valuable information from
F and X , is the main question. Recall that the failure may happen when X is a rare event. But
to detect whether a image X is within the distribution of training data is very hard because of the
complex structure of image space, and actually that is what F is trained to learn. In uncertainty based
method Jungo et al. (2018) and Kwon et al. (2018), the properties of F is encoded by sampling the
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parameters of F and calculating the uncertainty of output. The uncertainty does help predict the
quality but the performance strongly relies on F . It requires F to have Bayesian structure, which
is not in our assumption and for a well-trained F . The uncertainty will mainly distribute on the
boundary of segmentation prediction. So we change the formulation above to

L(F (X), Y ) = L(F (X);ω) (2)
By adding this constrain, we still take the information from F and X , but not in direct way. The
most intuitive idea to do is directly applying a regression algorithm on the segmentation results to
predict the quality. But the main problem is that the regression parameters trained with a certain
segmentation algorithm F highly relate with the distribution of F (X), which varies from different
F .

Following the idea of Kohlberger et al. (2012), we apply a two-step method, where the first one is to
encode the segmentation result F (X) into the feature space, and the second one is to learn from the
feature space to predict the quality of F (X). We propose a novel way of capturing the shape feature
from F (X), denoting as S(F (X); θ). Finally it changes to

L(F (X), Y ) = L(S(F (X); θ);ω) (3)

3.1 SHAPE FEATURE OF VARIATIONAL AUTOENCODER

The shape feature is captured from Variational Autoencoder (VAE) trained with the ground masks
Y ∈ Yt. Here we define the shape of the segmentation masks as the distribution of the masks in
volumetric form. We assume the normal label Y obeys a certain distribution P (Y ). For a predictive
mask ŷ, its quality should be related with P (Y = ŷ). Our goal is to estimate the function P (Y ).
Recall the theory of VAE, we hope to find an estimation function Q(z) minimizing the difference
between Q(z) and P (z|Y ), where z is the variable of the latent space we want encoding Y into, i.e.
optimizing

KL[Q(z)||P (z|Y )] = Ez∼Q[logQ(z)− logP (z|Y )] (4)

KL is Kullback-Leibler divergence. By replacing Q(z) with Q(z|Y ), finally it would be deduced to
the core equation of VAE (DOERSCH, 2016).

logP (Y )−KL[Q(z|Y )||P (z|Y )] = Ez∼Q[logP (Y |z)]−KL[Q(z|Y )||P (z)] (5)

where P (z) is the prior distribution we choose for z, usually Gaussian, and Q(z|Y ), P (Y |z) corre-
spond to encoder and decoder respectively. Once Y is given, logP (Y ) is a constant. So by optimiz-
ing the RHS known as variational lower bound of logP (Y ), we optimize for KL[Q(z)||P (z|Y )].
Here however we are interested in P (Y ). By exchanging the second term in LHS with all terms in
RHS in equation (5), we rewrite the training process as minimizing

EY∼Yt
KL[Q(z|Y )||P (z|Y )]

= EY∼Yt
logP (Y )− Ez∼Q[logP (Y |z)] +KL[Q(z|Y )||P (z)]

= EY∼Yt | logP (Y )− S(Y ; θ)| (6)

We denoteEz∼Q[logP (Y |z)]−KL[Q(z|Y )||P (z)] as S(Y ; θ) for brevity. It shows that the training
process is actually learning a function to best fit logP (Y ) over the distribution of Y . After training
VAE, S(Y ; θ) becomes a natural approximation for logP (Y ). So we just choose S(Y ; θ) as our
shape feature. In this method we use Dice Loss (Milletari et al., 2016) when training VAE, which is
widely used in medical segmentation task. The final form of S is

S(Y ; θ) = Ez∼N (µ(Y ),Σ(Y ))
2|g(z) · Y |
|Y |2 + |g(z)|2

− λ KL[N (µ(Y ),Σ(Y ))||N (0, 1)] (7)

where encoder µ,Σ and decoder g are controlled by θ, and λ is a coefficient to balance the two
terms. The first term is the Dice’s coefficient between Y and g(z), ranging from 0 to 1 and equal to
1 if Y and g(z) are equal. If we look at the shape feature closely, it indicates that after VAE is trained
using data with only normal shape, the predictive mask ŷ tends to be more likely in the distribution
of normal shape if it can achieve less reconstruction error and is closer to prior distribution in the
latent space, since logP (ŷ) ≥ S(ŷ; θ) holds all the time. On the other hand, for cases with high
P (ŷ) but low S(ŷ; θ), it would introduce a large penalty to the object function (6), and is less likely
to occur for a well-trained VAE.
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Figure 2: This figure shows our predictive Dice score (x axis) vs real Dice score (y axis). For each
row, the segmentation algorithm is tested on the left most dataset. The four figures in each row show
how the segmentation results are evaluated by 4 different methods.

3.2 SHAPE FEATURE FOR PREDICTING QUALITY

We assume that the shape feature is good enough to obtain reliable quality assessment. Intuitively
thinking, for a segmentation result F (X), the higher logP (F (X)) is, the better shape F (X) is in
and thus the higher L(F (X), Y ) is. Formally, taking the shape feature in section 3.1, we can predict
the quality by fitting a function L such that

L(F (X), Y ) = L(S(F (X); θ);ω) (8)

Here the parameter θ is learned by training the VAE, using labels in the training data Yt, and is then
fixed during the step two. We choose L to be a simple linear model, so the energy function we want
to optimize is

E(S(F (X); θ); a, b) = ||aS(F (X); θ) + b− L(F (X), Y )||2 (9)
We only use linear regression model because the experiments show strong linear correlation be-
tween the shape features and the qualities of segmentation results. L is the Dice’s coefficient, i.e.
L(F (X), Y ) = 2|F (X)·Y |2

|F (X)|2+|Y |2 .

3.3 TRAINING STRATEGY

In step one, the VAE is trained only using labels in training data. Then in step two θ is fixed. To
learn a, b, the standard way is to optimize the energy function in 3.2 using the segmentation results
on the training data, i.e.

arg min
a,b

∑
(X,Y )∈(Xt,Yt)

||aS(F (X); θ) + b− L(F (X), Y )||2. (10)

Here the segmentation algorithm F we use to learn a, b is called the preparation algorithm. If F is
trained on Xt, the quality of F (X) would be always high, thus providing less information to regress
a, b. To overcome this, we use jackknifing training strategy for F on Xt. We first divide Xt into X 1

t
and X 2

t . Then we train two versions of F on Xt \ X 1
t and Xt \ X 2

t respectively, say F1 and F2. The
optimizing function is then changed to

arg min
a,b

∑
k=1,2

∑
(X,Y )∈(Xk

t ,Yk
t )

||aS(Fk(X); θ) + b− L(Fk(X), Y )||2. (11)

In this way we solve the problem above by simulating the performance of F on the testing set. The
most accurate way is to do leave-one-out training for F , but the time consumption is not acceptable,
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NIH Dataset
MAE STD P.C. S.C.

Direct Regression 6.30 7.93 -18.36 -1.50
Jungo et al. (2018) 3.51 3.98 82.21 61.95
Kwon et al. (2018) 4.07 4.71 82.41 75.93
Our method 2.89 3.60 81.08 82.86

MSD Dataset
MAE STD P.C. S.C.

Direct Regression 14.47 12.50 72.26 70.17
Jungo et al. (2018) 11.86 16.31 71.24 77.71
Kwon et al. (2018) 12.68 18.31 70.42 77.77
Our method 7.00 9.14 86.23 85.02

MLC Dataset
MAE STD P.C. S.C.

Direct Regression 8.22 10.82 78.29 71.39
Jungo et al. (2018) 9.45 20.61 73.32 79.93
Kwon et al. (2018) 9.77 22.30 74.80 81.13
Our method 4.93 7.20 90.92 86.07

Table 1: Comparison between our method and baseline methods. The BNN is trained on NIH
and tested on all three other datasets. Then, the segmentation results are evaluated by 4 methods
automatically without using ground truth. Of the 4 methods, ours achieves the highest accuracy and
the highest correlation between predicted Dice score and real Dice score.

and two-fold split is effective enough according to experiments. When the training is done, we can
test on any segmentation algorithm F and data X to predict the quality Q = aS(F (X); θ) + b.

4 EXPERIMENTAL RESULTS

In this section we test our alarm system on several recent algorithms for automatic pancreas seg-
mentation that are trained on a public medical dataset. Our system obtains reliable predictions for
the qualities of segmentation results. Furthermore the alarm system remains effective when the seg-
mentation algorithms are tested on other datasets. We show better quality assessment capability and
transferability compared with uncertainty-based methods and direct regression method. The quality
assessment results are evaluated using mean of absolute error (MAE), stand deviation of residual
error (STD), pearson correlation (P.C.) and spearman correlation (S.C.) between the real quality
(Dice’s coefficient) and predictive quality.

4.1 DATASET AND SEGMENTATION ALGORITHM

We adopt three public medical datasets and four recent segmentation algorithms in total. All datasets
consist of 3D abdominal CT images in portal venous phase with pancreas region fully annotated.
The CT scans have resolutions of 512× 512× h voxels with varying voxel sizes.

• NIH Pancreas-CT Dataset (NIH). The NIH Clinical Center performed 82 abdominal 3D
CT scans(Roth et al., 2015) from 53 male and 27 female subjects. The subjects are selected
by radiologist from patients without major abdominal pathologies or pancreatic cancer le-
sions.

• Medical Segmentation Decathlon (MSD). The medical decathlon challenge collects 420
(281 Training +139 Testing) abdominal 3D CT scans from Memorial Sloan Kettering Can-
cer Center. The subjects have cancer lesions within pancreas region1.

1http://medicaldecathlon.com/index.html
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3D Coarse2Fine 3D V-Net
MAE STD P.C. S.C. MAE STD P.C. S.C.

NIH 3.46 4.09 89.95 85.41 2.57 3.24 91.35 84.51
MSD 7.48 9.45 89.67 87.54 7.35 9.60 86.52 82.50
MLC 6.24 9.00 92.39 84.29 5.67 7.28 91.65 80.11

DeepLabV3 BNN
MAE STD P.C. S.C. MAE STD P.C. S.C.

NIH 5.35 5.83 63.34 78.80 2.89 3.60 81.08 82.86
MSD 9.18 10.80 85.79 81.87 7.00 9.14 86.23 85.02
MLC 6.23 7.06 94.84 89.63 4.93 7.20 90.92 86.07

Table 2: Different algorithms tested on different datasets are evaluated by our alarm system. Without
tuning parameters, the system can be directly applied to evaluate other segmentation algorithms

• Multi-atlas Labeling Challenge (MLC). The multi-atlas labeling challenge provides 50
(30 Training +20 Testing) abdomen CT scans randomly selected from a combination of an
ongoing colorectal cancer chemotherapy trial and a retrospective ventral hernia study 2.

The testing data for the last two datasets is not used in our experiment since we have no annotations
for these cases. The segmentation algorithms we choose are V-Net (Milletari et al., 2016), 3D
Coarse2Fine (Zhu et al., 2018), Deeplabv3 (Chen et al., 2018), and 3D Coarse2Fine with Bayesian
structure (Kwon et al., 2018). The first two algorithms are based on 3D networks while the Deeplab
is 2D-based. The 3D Coarse2Fine with Bayesian structure is employed to compare with uncertainty
based method and we denote it as Bayesian neural network (BNN) afterwards.

4.2 BASELINE

We compare our method with three baseline methods. Two of them are based on uncertainty and
the last one directly applies regression network on the prediction mask to regress quality in equation
(2).

• Entropy Uncertainty. Jungo et al. (2018) calculated the pixel-vise predictive entropy
using Bayesian inference. Then, the uncertainty is summed up over whole imagxe to get the
doubt score and the doubt score would replace the shape feature in (8) to regress the quality.
They sum is weighed by the distance to predicted boundary, which somehow alleviates the
bias distribution of uncertainty. Their method is done in 2D image and here we just transfer
it to 3D image without essential difficulty.

• Aleatoric and Epistemic Uncertainty. Kwon et al. (2018) divided the uncertainty into
two terms called aleatoric uncertainty and epistemic uncertainty. We implement both terms
and calculate the doubt score in the same way as Jungo et al. (2018) because the original
paper does not provide a way. The two doubt scores are used in predicting the quality.

• Direct Regression. A regression neural network is employed to directly learn the quality
of predictive mask. The training data for this network is the prediction of segmentation
algorithm F on Xt and the real Dice’s coefficient between the predictive mask and label
mask is used as the supervision.

4.3 IMPLEMENTATION DETAIL

For data pre-processing, since the voxel size varies from case to case, which would affect the shape
of pancreas and prediction of segmentation, we first re-sample the voxel size of all CT scans and
annotation mask to 1mm×1mm×1mm. For training VAE, we apply simple alignment on the
annotation mask. We employ a cube bounding box which is large enough to contain the whole
pancreas region, centered at the pancreas centroid, then crop both volume and label mask out and
resize it to a fixed size 128×128×128. We only employ a simple alignment because the human pose
is usually fixed when taking CT scan, e.g. stance, so that the organ will not rotate or deform heavily.

2https://www.synapse.org/!Synapse:syn3193805/wiki/217789
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For a segmentation prediction, we also crop and resize the predictive foreground to 128×128×128
and feed it into VAE to capture the shape feature.

During the training process, we employ rotation along x,y,z axes for −10,0,10 degree respectively
and random translation for smaller than 5 voxel on annotation mask as data augmentation. This
kind of mild disturbance can enhance the data distribution but keep the alignment property of our
annotation mask. We tried different dimension of latent space and finally set it to 128. We found
that with VAE with latent space of different dimension will have different capability in quality
assessment. The hyper parameter λ in object function of VAE is set to 2−5 to balance the small
value of Dice Loss and large KL Divergence. We trained our network by SGD optimizer with
batch size 4. The learning rate for training VAE is fixed to 0.1. We build our framework and other
baseline model using TensorFlow. All the experiments are run on NVIDIA Tesla V100 GPU. The
first training step is done in total 20000 iterations and takes about 5 hours.

4.4 PRIMARY RESULT AND DISCUSSION

We split NIH data into four folds and three of them are used for training segmentation algorithms
and our pipeline; the remaining one, together with all training data from MSD and MLC forms the
validation data to evaluate our evaluation method. First we learn the parameter of VAE using the
training label of NIH dataset. Then we choose BNN as the preparation algorithm. The training
strategy in section 3.3 is applied on it to learn the parameters of regression. For all the baseline
methods, we employ the same training strategy of jackknifing as in our method and choose the BNN
as preparation algorithm for fair comparison. Finally we predict the quality of predictive mask on
the validation data for all the segmentation algorithms. Note that all segmentation algorithms are
trained only on the NIH training set.

Table 1 reports the results of using three baseline models and our method to evaluate the BNN
model tested on three datasets. In general, our method achieves the lowest error and variance on all
datasets. In our experiment, the BNN achieves 82.15, 57.10 and 66.36 average Dice score tested
on NIH, MSD and MLC datasets respectively. The segmentation algorithm trained on NIH will
fail on some cases of other datasets and that is why we need the alarm system. The spearman
coefficient for direct regression method on NIH dataset is close to 0 because the testing results on
NIH are all of high quality and the regression result is not sensitive to slight variation in quality.
Uncertainty based methods can better predict the quality but as shown in Figure 1, the uncertainty
mainly distributes on the boundary of predictive mask but not on the missing parts or false positive
parts. When the BNN is tested on the other two datasets, our method remains stable in predicting the
quality. Table 2 shows the quality assessment results for 4 different segmentation algorithms. For
each segmentation algorithm, When evaluating the segmentation results from DeepLab algorithm
tested on MLC dataset, the accuracy is lower but the correlation between the predictive quality and
real quality is high.

5 CONCLUSION

In the paper we present a VAE based alarm system for segmentation algorithms which predicts the
qualities of the segmentation results without using ground truth. We claim that the shape feature
is useful in predicting the qualities of the segmentation results. To capture the shape feature, we
train a VAE using only ground truth masks. We utilize the fact that rare events will achieve larger
value for loss function, and successfully detect the out-of-distribution shape according to the value
for loss function in the testing time. In the second step we collect the segmentation results of
the segmentation algorithm on the training data and extract the shape feature of them to learn the
parameters of regression. By applying jackknifing training on the segmentation algorithm, we will
get segmentation results of different qualities on the training data, therefore obtain more accurate
regression parameters.

The reliable quality assessment results prove both that the shape feature capturing from VAE is
meaningful and that the shape feature is useful for quality assessment in the segmentation task.
Furthermore, our proposed method outperforms the uncertainty based methods and direct regression
method, and possesses better transferability to other datasets and other segmentation algorithms.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Sebastien Chabrier, Bruno Emile, Christophe Rosenberger, and Helene Laurent. Unsupervised per-
formance evaluation of image segmentation. EURASIP Journal on Applied Signal Processing,
2006:217–217, 2006.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2018.

CARL DOERSCH. Tutorial on variational autoencoders. stat, 1050:13, 2016.

Han Gao, Yunwei Tang, Linhai Jing, Hui Li, and Haifeng Ding. A novel unsupervised segmentation
quality evaluation method for remote sensing images. Sensors, 17(10):2427, 2017.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Alain Jungo, Raphael Meier, Ekin Ermis, Evelyn Herrmann, and Mauricio Reyes. Uncertainty-
driven sanity check: Application to postoperative brain tumor cavity segmentation. CoRR,
abs/1806.03106, 2018.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pp. 5574–5584, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes [j]. 2013.

Timo Kohlberger, Vivek Singh, Chris Alvino, Claus Bahlmann, and Leo Grady. Evaluating segmen-
tation error without ground truth. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 528–536. Springer, 2012.

Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. Uncertainty quan-
tification using bayesian neural networks in classification: Application to ischemic stroke lesion
segmentation. 2018.

Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image detec-
tion in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In 3D Vision (3DV), 2016 Fourth International
Conference on, pp. 565–571. IEEE, 2016.

Ozan Oktay, Enzo Ferrante, Konstantinos Kamnitsas, Mattias Heinrich, Wenjia Bai, Jose Caballero,
Stuart A Cook, Antonio de Marvao, Timothy Dawes, Declan P ORegan, et al. Anatomically con-
strained neural networks (acnns): application to cardiac image enhancement and segmentation.
IEEE transactions on medical imaging, 37(2):384–395, 2018.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017.

Robert Robinson, Ozan Oktay, Wenjia Bai, Vanya Valindria, Mihir Sanghvi, Nay Aung, José Paiva,
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