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Abstract

The extended Kalman filter (EKF) is a classical signal processing algorithm which performs
efficient approximate Bayesian inference in non-conjugate models by linearising the local
measurement function, avoiding the need to compute intractable integrals when calculating
the posterior. In some cases the EKF outperforms methods which rely on cubature to
solve such integrals, especially in time-critical real-world problems. The drawback of the
EKF is its local nature, whereas state-of-the-art methods such as variational inference or
expectation propagation (EP) are considered global approximations. We formulate power
EP as a nonlinear Kalman filter, before showing that linearisation results in a globally
iterated algorithm that exactly matches the EKF on the first pass through the data, and
iteratively improves the linearisation on subsequent passes. An additional benefit is the
ability to calculate the limit as the EP power tends to zero, which removes the instability
of the EP-like algorithm. The resulting inference scheme solves non-conjugate temporal
Gaussian process models in linear time, O(n), and in closed form.

1. Introduction

Temporal Gaussian process (GP, Rasmussen and Williams, 2006) models can be solved
in linear computational scaling, O(n), in the number of data n (Hartikainen and Särkkä,
2010). However, non-conjugate (i.e., non-Gaussian likelihood) GP models introduce a
computational problem in that they generally involve approximating intractable integrals
in order to update the posterior distribution when data is observed. The most common
numerical method used in such scenarios is sigma-point integration (Kokkala et al., 2016),
with Gauss–Hermite cubature being a popular way to choose the sigma-point locations
and weights. A drawback of this method is that the number of cubature points scales
exponentially with the dimensionality d. Lower-order sigma-point methods allow accuracy
to be traded off for scalability, for example the unscented transform (which forms the basis
for the unscented Kalman filter, see Särkkä, 2013) requires only 2d+ 1 cubature points.

One significant alternative to cubature methods is linearisation. Although such an
approach has gone out of fashion lately, Garćıa-Fernández et al. (2015) showed that a globally
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Figure 1: When the measurement function h is approximately linear in the region of the
cavity N(m−k ,P

−
k ), (left), linearisation ĥ results in a good approximation to the posterior.

When h is highly nonlinear (right), linearisation results in a crude posterior approximation.

iterated version of the statistically linearised filter (SLF, Särkkä, 2013), which performs
linearisation w.r.t. the posterior rather than the prior, performs in line with expectation
propagation (EP, Minka, 2001) in many modelling scenarios, whilst also providing local
convergence guarantees (Appendix D explains the connection to our proposed method).
Crucially, linearisation guarantees that the integrals required to calculate the posterior have
a closed form solution, which results in significant computational savings if d is large.

Motivated by these observations, and with the aim of illustrating the connections between
classical filtering methods and EP, we formulate power EP (PEP, Minka, 2004) as a Gaussian
filter parametrised by a set of local likelihood approximations. The linearisations used to
calculate these approximations are then refined during multiple passes through the data.
We show that a single iteration of our approach is identical to the extended Kalman filter
(EKF, Jazwinski, 1970), and furthermore that we are able to calculate exactly the limit
as the EP power tends to zero, since there are no longer any intractable integrals that
depend on the power. The result is a global approximate inference algorithm for temporal
GPs that is efficient and stable, easy to implement, scales to problems with large data and
high-dimensional latent states, and consistently outperforms the EKF.

2. Unifying power EP and the extended Kalman filter for temporal GPs

We consider non-conjugate (i.e., non-Gaussian likelihood) Gaussian process models with
one-dimensional inputs t (i.e., time) which have a dual kernel (left) and discrete state space
(right) form (Särkkä et al., 2013),

f(t) ∼ GP
(
0, Kθ(t, t′)

)
, xk = Aθ,kxk−1 + qk,

yk ∼ p(yk | f(tk)) yk = h(xk, rk)
(1)

yk ∈ Ra are observations, f(t) =
(
f (1)(t), . . . , f (d)(t)

)> ∈ Rd are GPs, xk =
(
x
(1)
k , . . . ,x

(d)
k

)> ∈
Rs is the latent state vector containing the GP dynamics. Each x

(i)
k contains the state

dynamics for one latent GP, for example a Matérn-5/2 GP prior is modelled with x
(i)
k =(

f (i)(tk), ḟ
(i)(tk), f̈

(i)(tk)
)>

. The hyerparameters θ of the kernel Kθ determine the state
transition matrix Aθ,k and the process noise qk ∼ N(0,Qθ,k). The measurement model
h(xk, rk) is a (nonlinear) function of xk and the observation noise rk ∼ N(0,Rk).

Our aim is to calculate the posterior over the latent states, p(xk |y1, . . . ,yn) for k < n,
otherwise known as the smoothing solution, which can be obtained via application of a
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Gaussian filter (to obtain the filtering solution p(xk |y1, . . . ,yk)) followed by a Gaussian
smoother. If h(·) is linear then the Kalman filter and Rauch–Tung–Striebel (RTS, Särkkä,
2013) smoother return the optimal solution.

Gaussian filtering and smoothing As with most approximate inference methods, we
approximate the filtering distributions with Gaussians, p(xk |y1:k) ≈ N(xk; mk,Pk). The
prediction step remains the same as in the standard Kalman filter, with the resulting

distribution acting as the EP cavity on the forward (filtering) pass: m
(cav)
k = Aθ,kmk−1,

and P
(cav)
k = Aθ,kPk−1A

>
θ,k + Qθ,k.

To account for the non-Gaussian likelihood in the update step we follow Nickisch et al.
(2018), introducing an intermediary step in which the parameters of the approximate

likelihoods, N(xk; m
(site)
k ,P

(site)
k ) ≈ p(yk | f(tk)), are set via a moment matching procedure

and stored before continuing with the Kalman updates. This PEP formulation, with power
α, makes use of the fact that the required moments can be calculated via the derivatives of
the log-normaliser, Zk, of the tilted distribution (see Seeger, 2005), giving

Lk = logZk = logE
N(xk;m

(cav)
k ,P

(cav)
k )

[
p(yk | f(tk))

α
]
,

m
(site)
k = m

(cav)
k −

 d2Lk
dm

(cav)
k

2

−1 dLk
dm

(cav)
k

, P
(site)
k = α

(
−P

(cav)
k −

 d2Lk
dm

(cav)
k

2

−1)
(2)

After the mean and covariance of our new likelihood approximation have been calculated,
we can proceed with a modified set of linear Kalman filter updates,

Sk = P
(cav)
k + P

(site)
k , Kk = P

(cav)
k S−1k ,

mk = m
(cav)
k + Kk(m

(site)
k −m

(cav)
k ), Pk = P

(cav)
k −KkSkK

>
k .

(3)

As in Wilkinson et al. (2019), we augment the standard RTS smoother with another
moment matching step where the cavity distribution is calculated by removing (a fraction α
of) the local likelihood from the marginal smoothing distribution p(xk |y1:n) = N(ms

k,P
s
k),

P
(cav)
k =

((
Ps
k

)−1 − α(P
(site)
k

)−1)−1
, m

(cav)
k = P

(cav)
k

((
Ps
k

)−1
ms
k − α

(
P

(site)
k

)−1
m

(site)
k

)
(4)

Moment matching is again performed via Eq. (2) using this new cavity. The likelihood

parameters, m
(site)
k , P

(site)
k , are stored to be used on the next forward (filtering) pass.

Moment matching has a closed form solution after linearisation The computa-
tional saving in our approach comes from noticing that when h(·) is linear, Zk can be calcu-

lated in closed form. Using a first-order Taylor series expansion about the mean m
(cav)
k we

obtain the approximation h(xk, rk) ≈ Jxk(xk−m
(cav)
k )+h(m

(cav)
k ,0)+Jrkrk, which is a linear

function of the state, xk, and Gaussian noise, rk, such that p(yk | f(tk)) ≈ N(yk; g(xk), R̂k),

where R̂k = JrkRkJ
>
rk

and g(xk) = Jxk(xk−m
(cav)
k )+h(m

(cav)
k ,0). Here Jxk = Jx|m(cav)

k ,0
∈

3



1860 1880 1900 1920 1940 1960

1
2

3
4

Time (years)

A
c
c
id

e
n
t

in
te

n
si

ty
,
λ

(t
)

EP (posterior mean)
EP (95% confidence)
EKF
EKF-PEP (5 iterations)

10 20 30 40 50

−
1
5
0

−
7
5

0
7
5

Time (milliseconds)

A
c
c
e
le

ro
m

e
te

r
re

a
d
in

g

Figure 2: Two tasks with non-conjugate GP models. The coal mining accident task (log-
Gaussian Cox process, left) is well approximated via linearisation, and iterating improves
the match to the EP posterior. Linearisation in the motorcycle crash task (heteroscedastic
noise, right) is a crude approximation, but iterating still improves the posterior.

Ra×s and Jrk = Jr|m(cav)
k ,0

∈ Ra×a are the Jacobian of h(·) evaluated at the mean w.r.t. xk

and rk respectively. This new Gaussian form means the moment matching step becomes,

Lk = logE
N(xk;m

(cav)
k ,P

(cav)
k )

[
N
(
yk; g(xk), R̂k

)α ]
= c+ log N

(
yk; h(m

(cav)
k ,0),Σk

)
, (5)

where Σk = 1
αR̂k + JxkP

(cav)
k J>xk . Jxk represents the slope of a linear function, hence

its derivative w.r.t. m
(cav)
k is zero (see Deisenroth and Mohamed, 2012, for discussion).

Therefore,

dLk
dm

(cav)
k

= J>xkΣ
−1
k (yk − h(m

(cav)
k ,0)),

d2Lk
dm

(cav)
k

2 = −J>xkΣ
−1
k Jxk . (6)

Now we update the approximate likelihood in closed form (Appendix B gives the derivation),

P
(site)
k =

(
J>xkR̂

−1
k Jxk

)−1
,

m
(site)
k = m

(cav)
k +

(
P

(site)
k + αP

(cav)
k

)
J>xk

(
R̂k + αJxkP

(cav)
k J>xk

)−1
(yk − h(m

(cav)
k ,0)).

(7)

The result when we use Eq. (7) (with α = 1) to modify the filter updates, Eq. (3), is
exactly the EKF (see Appendix C for the proof). Additionally, since these updates are now
available in closed form, a variational free energy method (α→ 0, see Bui et al., 2017) is
simple to implement and doesn’t require any matrix subtractions and inversions in Eq. (4),
which can be costly and unstable. Taking α→ 0 prior to linearisation is not possible because
the intractable integrals also depend on α. Appendix A describes our full iterative algorithm.

3. Empirical analysis and discussion

In Fig. 2, we compare our approach (EKF-PEP, α = 1) to EP and the EKF on two non-
conjugate GP tasks (see Appendix E for the full formulations). Whilst our method is suited
to large datasets, we focus here on small time series for ease of comparison. In the left-hand
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plot, a log-Gaussian Cox process (approximated with a Poisson model for 200 equal time
interval bins) is used to model the intensity of coal mining accidents. EKF-PEP and the
EKF match the EP posterior well, with EKF-PEP obtaining an even tighter match to both
the mean and marginal variances. The right-hand plot shows a similar comparison for 133
accelerometer readings in a simulated motorcycle crash, using a heteroscedastic noise model.
Linearisation in this model is a crude approximation to the true likelihood, but we observe
that iteratively refining the linearisation vastly improves the posterior is some regions.

This new perspective on linearisation in approximate inference unifies the PEP and
EKF paradigms for temporal data, and provides an improvement to the EKF that requires
no additional implementation effort. Key areas for further exploration are the effect of
adjusting α (i.e., changing the cavity and the linearisation point), and the use of statistical
linearisation as an alternative method for obtaining the local approximations.
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Appendix A. The proposed globally iterated EKF-PEP algorithm

Algorithm 1 Globally iterated extended Kalman filter with power EP-style updates

Input: {tk,yk}nk=1, Ak, Qk, Rk, P∞ data and discretised state space model
h, H, Jx, Jr, α measurement model, Jacobian and EP power

m0 ← 0, P0 ← P∞, e1:n = 0 initial state
while not converged do iterated EP-style loop

for k = 1 to n do forward pass (FILTERING)
mk ← Ak mk−1; Pk ← Ak Pk−1 A>k +Qk predict
if has label yk then

vk = yk − h(mk,0) residual
if first filter iteration then

Jxk ← Jx|mk,0, Jrk ← Jr|mk,0 evaluate Jacobian

P
(site)
k ←

(
J>xk

(
JrkRkJ

>
rk

)−1
Jxk

)−1
match moments

m
(site)
k ←mk +

(
P

(site)
k + αPk

)
J>xk

(
JrkRkJ

>
rk

+ αJxkPkJ
>
xk

)−1
vk

end if
Sk ← Pk + P

(site)
k ; Kk ← PkS

−1
k innovation & gain

mk ←mk + Kk(m
(site)
k −mk); Pk ← Pk −KkSkK

>
k update

Ek = JrkRkJ
>
rk

+ JxkPkJ
>
xk

ek = 1
2 log |2πEk|+ 1

2v>k E−1k vk energy
end if

end for
for k = n− 1 to 1 do backward pass (SMOOTHING)

Gk ← Pk A>k+1 (Ak+1 Pk A>k+1 + Qk+1)
−1 smoothing gain

mk ←mk + Gk (mk+1 −Ak+1 mk) update
Pk ← Pk + Gk (Pk+1 −Ak+1 Pk A>k+1 −Qk+1) G>k
if has label yk then

P
(cav)
k =

(
P−1k − α

(
P

(site)
k

)−1)−1
remove site to get cavity

m
(cav)
k = P

(cav)
k

(
P−1k mk − α

(
P

(site)
k

)−1
m

(site)
k

)
Jxk ← Jx|m(cav)

k ,0
, Jrk ← Jr|m(cav)

k ,0
evaluate Jacobian

vk = yk − h(m
(cav)
k ,0) residual

P
(site)
k ←

(
J>xk

(
JrkRkJ

>
rk

)−1
Jxk

)−1
match moments

m
(site)
k ←m

(cav)
k +

(
P

(site)
k + αP

(cav)
k

)
J>xk

(
JrkRkJ

>
rk

+ αJxkP
(cav)
k J>xk

)−1
vk

end if
end for

end while
Return: E[f(tk)] = Hmk; V[f(tk)] = HPkH

> H extracts 1st-order terms
log p(y |θ) ' −

∑n
k=1 ek log marginal likelihood
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Appendix B. Closed form site updates

Here we derive in full the closed form site updates after linearisation. Plugging the derivatives
from Eq. (6) into the updates in Eq. (2) we get,

m
(site)
k = m

(cav)
k +

(
J>xkΣ

−1
k Jxk

)−1
J>xkΣ

−1
k (yk − h(m

(cav)
k ,0)),

P
(site)
k = α

(
−P

(cav)
k +

(
J>xkΣ

−1
k Jxk

)−1)
.

(8)

By the matrix inversion lemma, and with R̂k = JrkRkJ
>
rk

,

Σ−1k = αR̂−1k − αR̂−1k Jxk

(
P

(cav)
k

−1
+ J>xkαR̂−1k Jxk

)−1
J>xkαR−1k , (9)

so that

J>xkΣ
−1
k Jxk = Wk −Wk

(
P

(cav)
k

−1
+ Wk

)−1
Wk, (10)

where Wk = J>xkαR̂−1k Jxk . Applying the matrix inversion lemma for a second time we
obtain(

J>xkΣ
−1
k Jxk

)−1
= W−1

k −W−1
k Wk

(
WkW

−1
k Wk −

(
P

(cav)
k

−1
+ Wk

))−1
WkW

−1
k

= W−1
k + P

(cav)
k

=
1

α

(
J>xkR̂

−1
k Jxk

)−1
+ P

(cav)
k . (11)

We can also write(
J>xkΣ

−1
k Jxk

)−1
J>xkΣ

−1
k =

(
1

α

(
J>xkR̂

−1
k Jxk

)−1
+ P

(cav)
k

)
J>xk

(
1

α
R̂k + JxkP

(cav)
k J>xk

)−1
=

((
J>xkR̂

−1
k Jxk

)−1
+ αP

(cav)
k

)
J>xk

(
R̂k + αJxkP

(cav)
k J>xk

)−1
.

(12)

Together the above calculations give the approximate site mean and covariance as

P
(site)
k =

(
J>xkR̂

−1
k Jxk

)−1
,

m
(site)
k = m

(cav)
k +

(
P

(site)
k + αP

(cav)
k

)
J>xk

(
R̂k + αJxkP

(cav)
k J>xk

)−1
(yk − h(m

(cav)
k ,0)).

(13)

Appendix C. Analytical linearisation in EP (α = 1) results in an iterated
version of the EKF

Here we prove that a single pass of the proposed EP-style algorithm with linearisation is
exactly equivalent to the EKF. Plugging the closed form site updates, Eq. (7), with α = 1
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(since the filter predictions can be interpreted as the cavity with the full site removed), into
our modified Kalman filter update equations, Eq. (3), we get a new set of Kalman updates
in which the latent noise terms are determined by scaling the observation noise with the
Jacobian of the state:

Sk = P
(cav)
k +

(
J>xkR̂

−1
k Jxk

)−1
,

Kk = P
(cav)
k S−1k ,

mk = m
(cav)
k + KkSkJ

>
xk

(
R̂k + JxkP

(cav)
k J>xk

)−1
(yk − h(m

(cav)
k ,0)),

Pk = P
(cav)
k −KkSkK

>
k .

(14)

This can be rewritten to explicitly show that there are two innovation covariance terms, Sk
and Ŝk, which act on the state mean and covariance separately:

Linearised update step:

Ŝk = P
(cav)
k +

(
J>xkR̂

−1
k Jxk

)−1
,

Sk = JxkP
(cav)
k J>xk + R̂k,

K̂k = P
(cav)
k Ŝ−1k ,

Kk = P
(cav)
k J>xkS

−1
k ,

mk = m
(cav)
k + Kk(yk − h(m

(cav)
k ,0)),

Pk = P
(cav)
k − K̂kŜkK̂

>
k .

(15)

Now we calculate the inverse of Ŝk:

Ŝ−1k =

(
P

(cav)
k +

(
J>xkR̂

−1
k Jxk

)−1)−1
= J>xkR̂

−1
k Jxk − J>xkR̂

−1
k Jxk

(
P

(cav)
k

−1
+ J>xkR̂

−1
k Jxk

)−1
J>xkR̂

−1
k Jxk (16)

and the inverse of Sk:

S−1k =
(
JxkP

(cav)
k J>xk + R̂k

)−1
= R̂−1k − R̂−1k Jxk

(
P

(cav)
k

−1
+ J>xkR̂

−1
k Jxk

)−1
J>xkR̂

−1
k (17)

which shows that

Ŝ−1k = J>xkS
−1
k Jxk , (18)

and hence, recalling that R̂k = JrkRkJ
>
rk

, Eq. (15) simplifies to give exactly the extended
Kalman filter updates:
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EKF update step:

Sk = JxkP
(cav)
k J>xk + JrkRkJ

>
rk
,

Kk = P
(cav)
k J>xkS

−1
k ,

mk = m
(cav)
k + Kk(yk − h(m

(cav)
k ,0)),

Pk = P
(cav)
k −KkSkK

>
k .

(19)

Appendix D. Connection to posterior linearisation

Posterior linearisation (Garćıa-Fernández et al., 2015) is a filtering algorithm that iteratively
refines local posterior approximations based on statistical linear regression (SLR), and can
be seen as a globally iterated extension of the SLR filter (Särkkä, 2013). The idea is that
the measurement function is linearised with respect to the posterior, rather than the prior,
which is particularly beneficial when the measurement noise is small, such that the prior
and posterior can have very different locations and variance. One drawback of using SLR
is that it does not generally result in closed form updates, however it does provide local
convergence guarantees.

We have shown in Section 2 that on the first filtering pass our proposed algorithm is
equivalent to the EKF. However, the power EP formulation of the smoothing pass, Eq. (4),
iteratively refines the approximate likelihood parameters in the context of the posterior (with
a fraction of the local likelihood removed). Letting α→ 0 during the cavity calculation in
Eq. (4) implies that the expectations are now with respect to the full marginal posterior.
This shows that PLF is a version of our algorithm in which α = 0 and analytical linearisation
is replaced with SLR.

This motivates the following observation: posterior linearisation is a variational free
energy method in which the intractable integrals required for posterior calculation are solved
via linearisation of the likelihood mean function. This is intuitive since the formulation of
the PLF is based on minimizing local KL divergences.

The local convergence analysis in Garćıa-Fernández et al. (2015) depends on using SLR as
the linearisation method and initialising the state sufficiently close to a fixed point. However,
it now becomes apparent why both the PLF and our algorithm are generally more stable
than EP: no covariance subtractions and inversions are necessary in calculating the cavity
distribution, which avoids the possibility of negative-definite covariance matrices.

Appendix E. Full model formulations for Section 3

Log-Gaussian Cox process The coal mining dataset contains the dates of 191 coal mine
explosions in Britain between the years 1851–1962, discretised into n = 200 equal time interval
bins. We use a log-Gaussian Cox process to model this count data. Assuming the process has
locally constant intensity in the subregions allows a Poisson likelihood to be used for each bin,

p(yk | f
(1)
k ) ≈ Poisson

(
yk |λk = exp

(
f
(1)
k

))
, where we define f

(i)
k = f (i)(tk). However, the

Poisson is a discrete probability distribution and the EKF applies to continuous observations.
Therefore we use a Gaussian approximation to the Poisson likelihood, noticing that the first
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two moments of the Poisson distribution are equal to the intensity λk = exp
(
f
(1)
k

)
,

f (1)(t) ∼ GP
(
0, κθ1(t, t′)

)
,

yk ∼ p(yk | f
(1)
k ) = N

(
exp

(
f
(1)
k

)
, exp

(
f
(1)
k

) )
,

h(xk, rk) = exp
(
f
(1)
k

)
+ exp

(
f
(1)
k /2

)
rk.

(20)

Heteroscedastic noise model The motorcycle crash experiment consists of 131 simulated
readings from an accelerometer on a motorcycle helmet during impact. A single GP is not a
good model for this data due to the heteroscedasticity of the observation noise, therefore it
is common to model the noise separately. We model the process with one GP for the mean
and another for the time varying observation noise. Letting rk ∼ N(0, 1), we place a GP
prior over f (1) and f (2), both with Matern-3/2 kernels,

f (1)(t) ∼ GP
(
0, κθ1(t, t′)

)
, f (2)(t) ∼ GP

(
0, κθ2(t, t′)

)
,

yk ∼ p(yk | f
(1)
k , f

(2)
k ) = N(f

(1)
k , φ

(
f
(2)
k

)2
),

h(xk, rk) = f
(1)
k + φ

(
f
(2)
k

)
rk,

(21)

where φ(z) = log(1 + exp(z)). In practice a problem arises when linearising this likelihood
model. Since the mean of rk = 0, the Jacobian of the noise term disappears when evaluated
at the mean regardless of the value of f (2). Hence we reformulate the model to improve
identifiability,

h̄(xk, rk) = (yk − f
(1)
k )φ

(
f
(2)
k

)−1 − rk = 0. (22)

Fig. 3 plots a breakdown of the different components of the model, showing that our
linearisation method performs similarly to PEP.
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Figure 3: Results of the motorcycle crash experiment. Left is the EKF-PEP method and
right is the PEP equivalent. The top plots are the posterior for f (1)(t) (the mean process),
the middle plots show the posterior for f (2)(t) (the observation noise process), and the
bottom plots are the full model.

12


	Introduction
	Unifying power EP and the extended Kalman filter for temporal GPs
	Empirical analysis and discussion
	The proposed globally iterated EKF-PEP algorithm
	Closed form site updates
	Analytical linearisation in EP (=1) results in an iterated version of the EKF
	Connection to posterior linearisation
	Full model formulations for sec:results

