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Abstract
We address the problem of marginal inference for an exponential family defined over the set of
permutation matrices. This problem is known to quickly become intractable as the size of the
permutation increases, since its involves the computation of the permanent of a matrix, a #P-hard
problem. We introduce Sinkhorn variational marginal inference as a scalable alternative, a method
whose validity is ultimately justified by the so-called Sinkhorn approximation of the permanent.
We demonstrate the effectiveness of our method in the problem of probabilistic identification of
neurons in the worm C.elegans.

1. Introduction

Let P ∈ Rn×n be a binary matrix representing a permutation of n elements (i.e. each row and
column of P contains a unique 1). We consider the distribution over P defined as

p(P|L) =
1

ZL
exp

(
〈log L,P〉F

)
, (1.1)

where 〈A,B〉F is the Frobenius matrix inner product, log L is a parameter matrix and ZL is the
normalizing constant. Here we address the problem of marginal inference, i.e. computing the
matrix of expectations ρ := E(P). This problem is known to be intractable since it requires access to
ZL, also known as the permanent of L, and whose computation is known to be a #P-hard problem
Valiant (1979)

To overcome this difficulty we introduce Sinkhorn variational marginal inference, which can
be computed efficiently and is straightforward to implement. Specifically, we approximate ρ as
S(L), the Sinkhorn operator applied to L (Sinkhorn, 1964). S(L) is defined as the (infinite) successive
row and column normalization of L (Adams and Zemel, 2011; Linderman et al., 2018), a limit that
is known to result in a doubly stochastic matrix (Altschuler et al., 2017). In section 2 we argue
the Sinkhorn approximation is sensible, and in section 3 we describe the problem of probabilistic
inference of neural identity in C.elegans and demonstrate the Sinkhorn approximation produces
the best results.

2. Sinkhorn permutation variational marginal inference

Our argument bases on the well-known relation between marginal inference and the normalizing
constant (Wainwright and Jordan, 2008), valid for exponential families. Specifically, (1.1) defines
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an exponential family with sufficient statistic P and parameter log L. By virtue of Theorem 3.4 in
Wainwright and Jordan (2008):

log ZL = sup
µ∈M
〈log L, µ〉 − A∗(µ), (2.1)

where M is the marginal polytope (here, the Birkhoff polytope, the set of doubly stochastic
matrices) and A∗(µ) is the dual function log ZL, i.e.

A∗(µ) = sup
L
〈log L, µ〉 − log ZL. (2.2)

Moreover, for a given L, µ(L) achieving the supremum in (2.1) is exactly the matrix of marginals,
µ(L) = ρL and the dual function A∗(µ(L)) coincides with the negative entropy of (1.1). Then,
marginal inference of ρL and computation of the permanent ZL = perm(L) are linked by the
optimization problem in (2.2).

As in any generic variational inference scheme Wainwright and Jordan (2008), we obtain an
approximate ρ by replacing the variational representation of ZL in (2.1), by a different, more
tractable optimization problem. Typically, the quality of the approximated ρ depends on how
tight is the approximation to ZL. Our approximation is based on replacing the intractable dual

function A∗(µ) by a component-wise entropy, and whose solution is exactly S(L). In detail, the
following variational representation holds (Mena et al., 2018; Helmbold and Warmuth, 2009):

S(L) = arg sup
µ∈M
〈log L, µ〉 −

∑
i, j

µi, j logµi, j. (2.3)

By using the component-wise entropy in (2.1) we obtain an approximation of the normalizing
constant, that we call as the Sinkhorn permanent (Linial et al., 2000), permS(L). In the following
proposition we provide bounds for this approximation.

Proposition 1 The following bounds hold

perm(L) ≤ permS(L) ≤ enperm(L). (2.4)

We note the Sinkhorn approximation has recently been proposed independently (Powell and
Smith, 2019). However, there the approximation is proposed rather heuristically, without any
appeal to a theoretical framework.

2.1. Related work

Additionally, the so-called Bethe variational inference method (Wainwright and Jordan, 2008) is
a rather general rationale for obtaining variational approximations in graphical models, where
the dual function A∗(µ) is approximated by the value it would take if the underlying Markov
random field had a tree structure (Yedidia et al., 2001). This approximation has successfully been
applied to permutations (Huang and Jebara, 2007; Chertkov et al., 2010; Vontobel, 2014; Tang
et al., 2015), where the corresponding approximate marginal B(L) is computed through belief
propagation (Huang and Jebara, 2007; Vontobel, 2013), enjoying also better theoretical guarantees
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than the Sinkhorn approximation. Indeed, for the Bethe approximation of the permanent, permB(·)
the following bounds are known (Gurvits and Samorodnitsky, 2014; Anari and Rezaei, 2018)

√

2−nperm(L) ≤ permB(L) ≤ perm(L). (2.5)

However, there are also important computational differences. A single iteration of the Sinkhorn
algorithms corresponds to a row and column normalization, but the message computations in the
belief propagation-like routine for the Bethe approximation are more complex. Explicit formulae
of such Sinkhorn and Bethe iterations are available in Appendix C.

Fig 1(b) shows that in practice the Bethe approximation also produces better permanent ap-
proximations, confirming theoretical predictions. We considered the simple case where n = 8 and
the permanent and marginal can be computed by enumeration, so comparisons with ground truth
are possible. However, and quite interestingly, in many cases (see Figs 1(a) and A.1(a) in the Ap-
pendix) the Sinkhorn approximation produced qualitatively better marginals, putting more mass
on more non-zero entries than the Bethe approximation, regardless of possibly worse permanents.

Additionally, we observed that for moderate n the Sinkhorn approximation scaled better. For
example, if n = 710, each Bethe iteration took on average 0.035 seconds, while each Sinkhorn
iteration took only 0.0027 seconds (see Fig A.2 in the Appendix for details).

Figure 1: Comparison of Bethe and Sinkhorn approximations. 1,000 submatrices of size n = 8 were
randomly sampled from the C.elegans dataset described in section 3. (a) Examples of a (log) true
marginal matrix ρ along with Sinkhorn and Bette approximation. The rightmost plot is a histogram
of the log permanent across the samples. (b) Differences between approximate and true log
permanent (left) and mean absolute errors of log marginals (right) for our two approximations. We
considered additional 1,000 ‘random’ submatrices made by uniformly sampling entries between
the minimum and maximum values of each C.elegans submatrix

Finally, we note that sampling-based methods may be also used for marginal inference. Indeed,
quite sophisticated samplers have been proposed to show polynomial approximability of the
permanent (Jerrum and Sinclair, 1989); however, their practical appeal is limited. In section 3
we show that an elementary MCMC sampler failed to produce sensible marginal inferences at
reasonable time.
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3. Probabilistic inference of neurons in C.elegans

The worm C.elegans is a unique species since their nervous system is stereotypical; i.e., the number
of neurons (roughly, 300) and the connections between those neurons remain unchanged from
animal to animal. Recent advances in neurotechnology have enabled whole brain imaging so that
the long-standing fundamental question about how the activity in the worm brain relates to its
behavior in the world can be now studied and settled. However, before that, a technical problem
has to be solved: given volumetric images of the worm neurons have to be identified; that is,
canonical labels (names) must be assigned to each.

We applied our methodology for such probabilistic neural identification in the context of Neu-
roPAL (Yemini et al., 2019), a multicolor C.elegans transgene where neuron colors were designed
to facilitate neural identification (see Fig 1 for an example). Specifically, given n observed neurons
represented as vectors in R6 (position and color), we aim to estimate the matrix of marginal ρ
such that ρk,i is the probability that observed neuron k is identified with the canonical identity i.
These probabilities are relevant as they provide uncertainty estimates for model predictions, giving
a much more complete picture than point estimates (e.g. a permutation found via maximum
likelihood).

We consider a gaussian model for each canonical neuron, whose parameters (µk,Σk) are inferred
beforehand from previously annotated worms (see Yemini et al. (2019) for details). Letπdenote the
permutation so that π(k) is the canonical index of the k− th observed neuron. Then, the likelihood
of observing data Y = (yk) writes as:

p(Y|P, µ,Σ) =

n∏
k=1

N

(
yk;µπ(k),Σπ(k)

)
. (3.1)

Suppose a flat prior is assumed over P. Then, it is plain to verify that equation (3.1) induces a
posterior over P that has the form of (1.1), with L defined as

log Lk,i = −
1
2

(yk − µi)TΣ−1
i (yk − µi). (3.2)

Figure 2: A worm’s head displaying the deterministic coloring scheme identical across all Neu-
roPAL worms, with neuron names (determined by a human) over each neuron.

3.1. Results

In the context of NeuroPAL we consider a downstream task involving the computation of the
approximate probabilistic neural identifies ρ. Specifically, in this task a human is asked to manually
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label the neurons for which the model estimates are the most uncertain; i.e., the rows of ρ that are
closest to the uniform distribution. As the human progressively annotates neurons this uncertainty
resolves and the corresponding model update lead to an increases in identification accuracy for the
remaining neurons. Ideally the human will only require a few annotations to reach a high accuracy,
and therefore, as a proxy for approximation quality we measure how much faster accuracy increases
in comparison to simple baselines; e.g., where at each time a neuron is randomly chosen.

Results are shown in Fig 3, and further details are described in the Appendix. We considered
several alternatives: i) Sinkhorn approximation, ii) Bethe approximation, iii) MCMC, iv) the
random baseline described above, v) a naive baseline where uncertainty estimates are made by
scaling only the rows of the likelihood matrix, i.e., without imposing any one-to-one assignment
structure, and vi) a ’ground truth’, the protocol where the labels that are chosen are the ones
where the model makes a wrong prediction (this oracle cannot be realized in practice). Results
of Sinkhorn and Bethe approximations are similar but the former slightly better, presumably a
consequence of more accurate estimates of low probability marginals (see Figs 1(a) and A.1(a)).
They both are substantially better than any baseline other than the oracle. Contrarily, we see
MCMC does not provide better results than the naive baseline, suggesting lack of convergence for
chain lengths leading to computational times comparable to the ones of approximated methods.

Figure 3: Results in the neural identification downstream task. Here, n ≈ 180. Left: mean accuracy
(standard deviation) as a number of human labels for the different ways for suggesting uncertain
neurons. Right: average times (seconds) for computing the ρ matrix.

4. Conclusion

We have introduced the Sinkhorn approximation for marginal inference, and our it is a sensi-
ble alternative to sampling, and it may provide faster, simpler and more accurate approximate
marginals than the Bethe approximation, despite typically leading to worse permanent approxima-
tions. We leave for future work a thorough analysis of the relation between quality of permanent
approximation and corresponding marginals.
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Appendix A. Proof of proposition 1

Proof We essentially condense the arguments in Linial et al. (2000). First, we use the fact that the
permanent of a doubly stochastic matrix B of size n satisfies (Linial et al., 2000):

e−n
≤ perm(B) ≤ 1.

Also, it can be verified that S(L) = diag(x)Ldiag(y), where diag(x), diag(y) are some positive vectors
x, y turned into diagonal matrices (Peyré et al., 2019). Then,

perm(S(L)) =

 n∏
i=1

xi


 n∏

i=1

yi

 perm(L).

Additionally, we obtain the (log) Sinkhorn approximation of the permanent of L, permS(L), by
evaluating S(L) in the problem it solves, (2.3). By simple algebra and using the fact that S(L) is a
doubly stochastic matrix we see that

log permS(L) = −

n∑
i=1

log(xi) −
n∑

j=1

log(yi).

By combining the last three displays we obtain

e−n
≤ perm(L)/permS(L) ≤ 1,

from which the result follows.
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Figure A.1: Same as Fig 1, but now true marginals are plotted in (a), and mean absolute errors in
(b).

Appendix B. Experimental details

We used the dataset described in Yemini et al. (2019). This consists on ten NeuroPAL worm heads
with available human labels, and with number of neurons n ranging from 180 to 195. Each of
these worms is summarized through a n × n log-likelihood matrix L computed with the methods
described in (Yemini et al., 2019, Supplemental Information).

For both the Sinkhorn and Bethe approximation we used 200 iterations. These values led
to the computation times described in Fig 1, and preliminary results showed were sufficient to
ensure convergence (that is, none of the results would change dramatically for a larger number of
iterations). For the MCMC sampler we used the method described in Diaconis (2009). We used
100 chains of length 1000, and for each of them considered we took as samples of the multiples of
10 starting from iteration 500 on.

All results were obtained on a desktop computer with an Intel Xeon W-2125 processor.

Appendix C. Code

Here we provide Python implementations of Sinkhorn and Bethe marginal approximations. These
are defined for an arbitrary number of iterations, which in practice may be determined by a
convergence criteria.

Sinkhorn approximation The following is a log-space implementation of Sinkhorn approxi-
mation as described in Mena et al. (2018).

def s inkhorn logspace ( logP , n i t e r s ) :
f o r in range ( n i t e r s ) :

logP = logP − logsumexp ( logP , a x i s =0 , keepdims=True )
logP = logP − logsumexp ( logP , a x i s =1 , keepdims=True )
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return np . exp ( logP )

Bethe approximation The following is an efficient log-space implementation of the message
passing algorithm described in (Vontobel, 2013, Lemma 29), which was subsequently simplified
by Pontobel (2019). The parameter eps is introduced for numerical estability.

def b e l i e f p r o p a g a t i o n l o g 2 (M, n I t e r s= 1 , eps=1e −20) :
N = M. shape [ 0 ]
logV1 = np . log ( ( 1 / N) ∗ np . ones ( (N, N) ) )
logV2 = M − logsumexp (M, a x i s =1 , keepdims=1)
f o r in range ( n i t e r s ) :

logexpV2 = np . log (−np . expm1 ( logV2 )+ eps )
HelpMat = logV2 + logexpV2
HelpMat = HelpMat − np . log (−np . expm1 ( logV2 )+ eps )
logV1 = HelpMat − logsumexp ( HelpMat , 0 , keepdims=True )

HelpMat = logV1 + logexpV2
HelpMat = HelpMat − np . log (−np . expm1 ( logV1 )+ eps )
logV2 = HelpMat − logsumexp ( HelpMat , 1 , keepdims=True )

re turn np . exp ( logV1 )

in logarithmic space. For the Bethe algorithm we present a more efficient formulation than the one
originally presented in To our understading, this is the most efficient implementation.

Appendix D. Supplemental Figure

Figure A.2: Computation time per iteration for Sinkhorn and Bethe approximations, as a function
of size of the matrix. For each value of n = 70, 110, 150, . . . , 710, a number of 1, 000 submatrices of
size n were randomly drawn from the ten available log likelihood C.elegans matrices (see text on
Appendix B, indexes were drawn with replacement). Error bars are omitted because they were
too small to be noticed.
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