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ABSTRACT

Many variants of Graph Convolutional Networks (GCNs) for representation learn-
ing have been proposed recently and have achieved fruitful results in various do-
mains. Among them, spectral-based GCNs are constructed via convolution theo-
rem upon a theoretical foundation from the perspective of Graph Signal Processing
(GSP). However, despite most of them implicitly act as low-pass filters that gen-
erate smooth representations for each node, there is limited development on the
full usage of underlying information from low-frequency components. Here, we
first introduce the octave convolution on graphs in spectral domain. Accordingly,
we present Octave Graph Convolutional Network (OctGCN), a novel architecture
that learns representations for different frequency components regarding weighted
filters and graph wavelets bases. We empirically validate the importance of low-
frequency components in graph signals on semi-supervised node classification and
demonstrate that our model achieves state-of-the-art performance in comparison
with both spectral-based and spatial-based baselines.

1 INTRODUCTION

The family of Graph Convolutional Networks (GCNs) (Zhang et al., 2018), which generalizes the
traditional Convolutional Neural Networks (CNNs) from Euclidean structure data to graphs, has
achieved a remarkable success in various application domains, including but not limited to social
networks (Chen et al., 2018), computer vision (Kampffmeyer et al., 2018), text classification (Yao
et al., 2019) and applied chemistry (Liao et al., 2019).

Existing methods of GCNs design falls into two categories: spatial-based methods and spectral-
based methods (Wu et al., 2019). On the surface, the spatial-based models directly perform infor-
mation aggregation through graph topology. However, this aggregation can be viewed as a simplified
convolution operation on spectral domain with the theoretical foundation in Graph Signal Process-
ing (GSP). GSP extends the concepts in Discrete Signal Processing (DSP) and focuses on analyzing
and processing data points whose relations are modeled as graph (Shuman et al., 2013; Ortega et al.,
2018). In standard signal processing problems, the underlying "real signal" is usually assumed to
have low frequencies (Rabiner & Gold, 1975). Recent works (Wu et al., 2019; Maehara, 2019) re-
veal that the spectral-based GCNs can be viewed as an implicit low-pass-type filter based denoising
mechanism on the spectral domain. However, there is still a lack of the explicit learning architec-
ture of GCNs to extract the beneficial information from low-frequency while making full use of the
high-frequency under certain scenarios.

Considering the signal processing problem in computer vision, a natural image can be decomposed
into a low spatial frequency component containing the smoothly changing structure, e.g., back-
ground, and a high spatial frequency component describing the rapidly changing fine details, e.g.,
outlines. To accommodate with this phenomenon, (Chen et al., 2019) proposed Octave Convolution
(OctConv) to learn the octave feature representations, which factorizes convolutional feature maps
into two groups at different spatial frequencies and process them with different convolutions at their
corresponding frequency. Similarly, the octave mechanism is observed in graph representational
learning more naturally. The eigenvectors associated with small eigenvalues carry smoothly varying
signal, encouraging nodes that are neighbors to share similar values. In contrast, the eigenvectors
associated with large eigenvalues carry sharply varying signal across edges (Donnat et al., 2018).
Accordingly, extending octave convolution from images to graphs sheds light on the explicit learning
of GCNs regarding the representation of different frequencies.
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Figure 1: The overview of octave convolutional learning on graphs in spectral domain.

Different from the scale-space theory (Lindeberg, 2013) utilized in OctConv (Chen et al., 2019)
to define the low- and high-frequency spaces, graph signal processing (GSP) provides us a way to
directly divide the low- and high-frequency components based on the ascending ordered eigenvalues
of Laplacian. Inspired from this, we propose to consider the octave feature in the spectral domain
to construct a new graph convolutional model: Octave Graph Convolutional Network OctGCN. In
OctGCN, with a particular design of filters for different spectrum, we allocate different weights on
low- and high-frequency. Spectral graph wavelets are chosen as feature transformation bases due
to their local and sparse property. Two parameters are further introduced to construct the filters for
reducing the parameter complexity to the same as (Kipf & Welling, 2017), which is critical when
labels of training data are limited. Meanwhile, we employ the attention mechanism to learn the
importance of low and high pass filters. Figure 1 provides the overview of the design of OctGCN
in spectral domain. We validate the effectiveness of our model via experiments on semi-supervised
node classification tasks, where the expressive power of GCNs is crucial to capture the underlying
beneficial information in graph signals. Our results confirm the importance of low-frequency in
graphs and bring interpretability to the innate character of GCNs. In addition, empirical results
show that our proposed method consistently rivals the state-of-art methods from both spectral-based
and spatial-based baselines on real-world datasets.

2 RELATED WORK

Spectral convolutional networks on graphs. Existing methods of defining a convolutional op-
eration on graphs can be broadly divided into two categories: spectral based and spatial based
methods (Zhang et al., 2018). We focus on the spectral graph convolutions in this paper. Spec-
tral CNN (Bruna et al., 2014) first attempts to generalize CNNs to graphs based on the spectrum of
the graph Laplacian and defines the convolutional kernel in the spectral domain. (Boscaini et al.,
2015) further employs windowed Fourier transformation to define a local spectral CNN approach.
ChebyNet (Defferrard et al., 2016) introduces a fast localized convolutional filter on graphs via
Chebyshev polynomial approximation. Vanilla GCN (Kipf & Welling, 2017) further extends the
spectral graph convolutions considering networks of significantly larger scale by several simplifi-
cations. (Khasanova & Frossard, 2017) learns graph-based features on images that are inherently
invariant to isometric transformations. Cayleynets (Levie et al., 2018) alternatively introduce Cayley
polynomials allowing to efficiently compute spectral filters on graphs. Lanczos algorithm is utilized
in LanczosNet (Liao et al., 2019) to construct low-rank approximations of the graph Laplacian for
convolution. SGC (Wu et al., 2019) further reduces the complexity of Vanilla GCN by successively
removing the non-linearities and collapsing weights between consecutive layers. Despite their effec-
tive performance, all these convolution theorem based methods lack the strategy to explicitly treat
low- and high-frequency components with different importance.

Spectral graph wavelets. Theoretically, the lifting scheme is proposed for the construction of
wavelets that can be adapted to irregular graphs in (Sweldens, 1998). (Hammond et al., 2011) defines
wavelet transforms appropriate for graphs and describes a fast algorithm for computation via fast
Chebyshev polynomial approximation. For applications, (Tremblay & Borgnat, 2014) utilizes graph
wavelets for multi-scale community mining and obtains a local view of the graph from each node.
(Donnat et al., 2018) introduces the property of graph wavelets that describes information diffusion
and learns structural node embeddings accordingly. GWNN (Xu et al., 2019a) first attempts to
construct graph neural networks with graph wavelets. These works emphasize the local and sparse
property of graph wavelets for graph signal processing both theoretically and practically.
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Octave feature representation. In computer vision, (Chen et al., 2019) first defines octave feature
representations based on scale-space theory and reduces spatial redundancy of vanilla CNN models.
(Durall et al., 2019) further leverages octave convolutions for designing stabilizing GANs. To our
knowledge, this is the first time that octave feature representations are considered in irregular graph
domain and established with graph convolutional neural networks.

3 PROPOSED APPROACH

3.1 PRELIMINARY

We denote G = {V,E} as an undirected graph, where |V | = n is the set of n nodes, and E is the
set of edges. The adjacency matrix is defined as A with Ai,j = Aj,i describing the edge connecting
node i and node j. The graph Laplacian matrix L is defined as the difference L = D − A, where
Di,i =

∑
j Ai,j is a diagonal degree matrix. The normalized graph Laplacian matrix is referred

as L = In − D−1/2AD−1/2, where In is the identity matrix. The graph Laplacian L can be
decomposed into its eigenvalue components, L = UΛU>, such that for the set of eigenvalues in
ascending order {λi}n−1i=0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, the diagonal eigenvalue matrix is defined as
Λ = diag(λ0, . . . , λn−1) and U = (u1,u2, ...,un) is the eigenvector matrix.

Since L is a real symmetric matrix, it has real, non-negative eigenvalues {λi}n−1i=0 = λ0 ≤ λ1 ≤
· · · ≤ λn−1, known as the frequencies of graph. These eigenvalues have associated a complete set
of orthonormal eigenvectors in U , identified as Laplacian eigenvectors. In Graph Signal Processing
(GSP), we denote frequency components with small/large eigenvalues of Laplacian as low/high
frequencies. Given a signal x and a graph Laplacian L, the Graph Fourier Transform (GFT) of x
with respect to L is defined as the signal x̃ = U>x, and the inverse (i)GFT of x with respect to L
is x = U x̃ (Shuman et al., 2013).

3.2 SPECTRAL GRAPH CONVOLUTION

The spectral convolution on graphs is normally defined as the multiplication of a signal on every
node x with a diagonal filter gθ = diag(θ) parameterized by θ in the Fourier domain:

gθ ? x = UgθU
>x , (1)

The filters are usually understood as a function of the eigenvalues. Inspired by (Maehara, 2019),
we can decompose the spectral convolution process on graphs from the perspective of GSP as four
steps: 1. Compute the graph bases U ; 2. Graph spectral transform on signal x with U>; 3. Filtering
with gθ; 4. Reconstruct the signal features in the spatial domain with U . In this sense, the design
of filter gθ is essential to the performance of spectral convolution. Broadly, the filter design can be
divided into two categories: it is either learned by the neural network (Bruna et al., 2014; Xu et al.,
2019a) or directly fixed as the eigenvalues via approximation (Kipf & Welling, 2017; Wu et al.,
2019). In this paper, we will focus on the first kind.

Spectral CNN (Bruna et al., 2014) generalizes the convolutional net by operating on the spectrum
of weights, given by the ordered eigenvectors of its graph Laplacian. The structure of k-th layer is
constructed as:

Xk+1
[:,j] = h

(
U

p∑
i=1

F ki,jU
>Xk

[:,i]

)
j = 1, · · · , q, (2)

where Xk ∈ Rn×p is the signal with p input channels and Xk+1 ∈ Rn×q is the convolved signal
matrix. Xk

[:,i] and Xk+1
[:,j] are the i-th and j-th column of Xk and Xk+1, respectively. gθ of k-th layer

is defined as F ki,j , which is a diagonal filter matrix to be learned for each input channel in spectral
domain. h is a real valued nonlinear activation function, e.g., ReLU(·) = max (0, 1). Thus, the
parameter complexity of Spectral CNN is O(n × p × q), which generally demands a huge amount
of training data for parameter learning.

3.3 WHY SPECTRAL GRAPH WAVELET?

Graph wavelet neural network (GWNN) (Xu et al., 2019a) expands the spectral convolution from
Fourier transformation to wavelet transformation. Let gs(λ) = e−λs be a heat kernel filter with
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scaling parameter s. In GSP (Hammond et al., 2011; Shuman et al., 2013), the spectral graph
wavelet ψsi is defined as the signal resulting from the modulation in the spectral domain of a signal x
centered around the associated node i. Then, the graph wavelet transform is conducted by employing
a set of wavelets ψs = (ψs1, ψs2, . . . , ψsn) as bases. Formally, the spectral graph wavelets are given
as:

ψs = UgsU
>, (3)

where U is Laplacian eigenvectors of L = D −A or normalized Laplacian L = In −D−
1
2AD−

1
2 ,

gs = diag
(
gs(λ1), gs(λ2), . . . , gs(λn)

)
is a scaling matrix with heat kernel. The inverse of graph

wavelets ψ−1s is obtained by simply replacing the gs(λ) in ψs with gs(−λ) corresponding to the
heat kernel (Donnat et al., 2018). Similarly, smaller indices in graph wavelets correspond to low-
frequency components and vice versa.

Similar to GFT, after replacing the Fourier bases with spectral graph wavelets, the graph wavelet
transformation of a signal x on graph is defined as x̂ = ψ−1s x and the inverse graph wavelet trans-
form is x = ψsx̂. Replacing the graph Fourier transform in spectral convolution (Equation 1) with
graph wavelet transform, the graph wavelet convolution can be obtained as:

gθ ? x = ψsgθψ
>
s x (4)

The benefits that spectral graph wavelet bases have over Fourier bases mainly fall into two aspects:
1. Given the sparse real-world networks, the graph wavelet bases are usually much more sparse
than Fourier bases, e.g., the density of ψs is 2.8% comparing with 99.1% of U (Xu et al., 2019a).
The sparseness of graph wavelets makes them more computationally efficient for use. 2. In spectral
graph wavelets, the signal ψs resulting from heat kernel filter gs is typically localized on the graph
and in the spectral domain (Shuman et al., 2013). By adjusting the scaling parameter s, one can
easily constrain the range of localized neighborhood. Smaller values of s generally associate with
smaller neighborhoods.

Employing the same strategy as in Spectral CNN (Bruna et al., 2014), GWNN designs the same
diagonal filter F ki,j to be learned for each input channel. The structure of k-th layer of GWNN is:

Xk+1
[:,j] = h

(
ψs

p∑
i=1

F ki,jψ
−1
s Xk

[:,i]

)
j = 1, · · · , q, (5)

Note that both Spectral CNN and GWNN employ the same filters for learning full frequency com-
ponents. As mentioned before, the parameter complexity of Spectral CNN is large since each pair of
input and output channel requires learning an individual diagonal filter matrix F ki,j . GWNN further
reduces the parameter complexity by dividing each layer into two components: feature transforma-
tion and graph convolution:

feature transformation : Xk′ = XkW k, (6)

graph convolution : Xk+1 = h
(
ψsF

kψ−1s Xk′
)
. (7)

where W k ∈ Rp×q is the feature transformation parameter matrix similar to Vanilla GCN (Kipf
& Welling, 2017). In such a way, the feature transformation operation is detached from graph
convolution and the parameter complexity is decreased from from O(n× p× q) to O(n+ p× q).

3.4 OCTAVE CONVOLUTIONAL LAYER

In contrast to the scale-space theory-based octave feature representation utilized in computer vi-
sion (Lindeberg, 2013), Graph Signal Processing provides us a more principle way in the spectral
domain. To better capture the different importance of low- and high- frequency components and
combining the benefits of graph wavelets, we can naturally construct each layer in an octave convo-
lution manner by learning two different filters as:

feature transformation : Xk′

L = XkW k
L, X

k′

H = XkW k
H (8)

graph convolution : Xk+1
L = ψsLF

k
Lψ
−1
sLX

k′

L , X
k+1
H = ψsHF

k
Hψ
−1
sHX

k′

H , (9)

where F kL ∈ Rd×d and F kH ∈ R(n−d)×(n−d) are the diagonal filter matrix for graph convolution to be
learned with different weights for low- and high- components, respectively. d is the hyper-parameter
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Table 1: The overview of dataset statistics.
Dataset Nodes Edges Classes Features Label rate
Citeseer 3,327 4,732 6 3,703 0.036
Cora 2,708 5,429 7 1,433 0.052
Pubmed 19,717 44,338 3 500 0.003

to select the proportion d/n of low frequency components. ψsL and ψsL are the corresponding low-
and high- frequency graph wavelet bases. Further, with a pooling operation on the outputs and
non-linear activation function, the structure of the k-th layer in our structure can be defined as

Xk+1 = h
(

Pooling(ψsLF
k
Lψ
−1
sLX

kW k
L, ψsHF

k
Hψ
−1
sHX

kW k
H)
)

(10)

We refer this proposed architecture as Octave Graph Convolutional Network (OctGCN).

Since the parameters in the diagonal convolution filtering kernels could be huge especially for large
graphs, the graph-based semi-supervised learning might prohibit the parameter learning due to the
limited amount of training data. To mitigate this issue, we further reduce the parameter complexity
by constructing the graph convolution kernel F k with two parameters αL and αH , and keeping the
same weight matrix W shared between low- and high- frequency components as

Xk+1 = h
(

Pooling(ψsL

αL . . .
αL

ψ−1sLXkW k, ψsH

αH . . .
αH

ψ−1sHXkW k)
)

(11)
For the learning of weights of low- and high-frequency components αL and αH , we adopt the
attention strategy to constraint them within the scale of (0, 1):

α∗ = softmax(α∗) =
exp (α∗)∑
∗ exp(α∗)

, ∗ = L,H

Hence, we introduce three more hyper-parameters to be tuned: αL and αH control the importance
of low and high frequency components, and parameter d specify the ratio of low frequencies we
expect to represent the graph. In this way, we reduces the parameter complexity from O(n+ p× q)
in GWNN (Xu et al., 2019a) toO(p×q), which is the same as Vanilla GCN (Kipf & Welling, 2017).

3.5 FAST SPECTRAL GRAPH WAVELET APPROXIMATION VIA CHEBYSHEV POLYNOMIALS

Directly computing the transformation according to Equation 3 is intensive for large graphs, since
diagonalizing Laplacian L commonly requires O(n3) operations. Luckily, (Hammond et al., 2011)
provides us a method to fast approximate the spectral graph wavelet via Chebyshev polynomials.
Let s be the fixed scaling parameter in the heat filter kernel gs(λ) = e−λs and M be the degree of
the Chebyshev polynomial approximations for the scaled wavelet (Larger value of M yields more
accurate approximations but higher computational cost in opposite), the graph wavelet is given by

ψs =
1

2
c0,s +

M∑
i=1

ci,sTi(L̃),

ci,s =
2

π

∫ π

0

cos iθe−s(cos θ+1)dθ = 2e−sJi(−s) (12)

where L̃ = 2
λmax

L− In and Ji(−s) is the Bessel function of the first kind. The proof can be referred
to (Hammond et al., 2011). With this Chebyshev polynomial approximation, the computational cost
of spectral graph wavelets is decreased toO(M‖E‖+M×n). Due the real world graphs are usually
sparse, this computational difference can be very significant.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our proposed OctGCN on semi-supervised node classification task. The experimen-
tal setup is closely followed (Yang et al., 2016; Kipf & Welling, 2017). Statistical overview of
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Table 2: Experimental results (in percent) on semi-supervised node classification.

Model Citeseer Cora Pubmed
LP (Zhu et al., 2003) 45.3 68.0 63.0
ICA (Lu & Getoor, 2003) 69.1 75.1 73.9
ManiReg (Belkin et al., 2006) 60.1 59.5 70.7
SemiEmb (Weston et al., 2012) 59.6 59.0 71.1
DeepWalk (Perozzi et al., 2014) 43.2 67.2 65.3
Planetoid (Yang et al., 2016) 64.7 75.7 77.2
Spectral CNN (Bruna et al., 2014) 58.9 73.3 73.9
ChebyNet (Defferrard et al., 2016) 69.8 81.2 74.4
Vanilla GCN (Kipf & Welling, 2017) 70.3 81.5 79.0
GWNN (Xu et al., 2019a) 71.7 82.8 79.1
LNet (Liao et al., 2019) 66.2± 1.9 79.5± 1.8 78.3± 0.3
AdaLNet (Liao et al., 2019) 68.7± 1.0 80.4± 1.1 78.1± 0.4
SGC (Wu et al., 2019) 71.9± 0.1 81.0± 0.0 78.9± 0.0
MoNet (Monti et al., 2017) — 81.7± 0.5 78.8± 0.3
GAT (Veličković et al., 2018) 72.5± 0.7 83.0± 0.7 79.0± 0.3
GIN (Xu et al., 2019b) 66.1± 0.9 77.6± 1.1 77.0± 1.2
DGI (Velickovic et al., 2019) 71.8± 0.7 82.3± 0.6 76.8± 0.6

OctGCN (this paper) 72.1± 0.2 83.5± 0.2 80.5± 0.3

datasets is given in Table 1. Three real-world datasets are chosen as benchmarks: Citeseer, Cora
and Pubmed (Sen et al., 2008). In these citation networks, nodes are documents with corresponding
bag-of-words features and edges are citation links. Label rate denotes the ratio of labeled nodes
fetched in training process. We keep the label rate consistent with the classic public split, which is
20 labeled nodes per class in each dataset for training. Meantime, the test set contains 1000 labeled
samples for prediction accuracy evaluation, and the validation set includes 500 labeled samples for
determining hyper-parameters.

4.2 BASELINES

We first compare against traditional baselines, i.e., label propagation (LP) (Zhu et al., 2003), iterative
classification algorithm (ICA) (Lu & Getoor, 2003), manifold regularization (ManiReg) (Belkin
et al., 2006), semi-supervised embedding (SemiEmb) (Weston et al., 2012), skip-gram based graph
embeddings (DeepWalk) (Perozzi et al., 2014) and Planetoid (Yang et al., 2016).

Then we compare the most recent and state-of-the-art baselines from both spectral and spatial
graph neural networks, since they are shown effective for semi-supervised settings. For spectral
approaches based on convolution theorem, we compare our OctGCN with the Spectral CNN (Bruna
et al., 2014), ChebyNet (Defferrard et al., 2016), Vanilla GCN (Kipf & Welling, 2017), GWNN (Xu
et al., 2019a), LNet/AdaLNet (Liao et al., 2019) and SGC (Wu et al., 2019). For spatial based meth-
ods, we select the MoNet (Monti et al., 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019b)
and DGI (Velickovic et al., 2019) as comparisons.

4.3 EXPERIMENTAL SETUP

For all experiments, a 2-layer network of our model is constructed using TensorFlow (Abadi et al.,
2015) with 64 hidden units. We train our model utilizing the Adam optimizer (Kingma & Ba, 2014)
with an initial learning rate lr = 0.01. We terminate training if validation accuracy does not improve
for 100 consecutive steps, and most runs finish in less than 200 steps as expected. We initialize the
weights matrix following (Glorot & Bengio, 2010), employ 5× 10−4 L2 regularization on weights
and dropout input and hidden layers to prevent overfitting (Srivastava et al., 2014).

For hyper-parameters for constructing wavelets ψs, we adopt the selection of the scaling parameter
s and sparseness threshold t (the elements of ψs are set to 0 when smaller than t) as in (Xu et al.,
2019a), i.e., s = 0.7 t = 1 × 10−5 for Citeseer, s = 1.0 t = 1 × 10−4 for Cora and s = 0.5
t = 1 × 10−7 for Pubmed, since both smaller s and t are shown not sensitive to datasets. For
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Figure 2: The performance of learned OctGCN w.r.t the proportion of low-frequency components.
The best fraction is marked with the red vertical line.

Table 3: Learned weights αL and αH of OctGCN for low and high frequency w.r.t the best fraction
of low frequency components d/n (number followed after the name of datasets).

Dataset Citeseer (15%) Cora (5%) Pubmed (10%)

Octave filter weights αL αH αL αH αL αH

Learned value 0.838 0.162 0.722 0.278 0.860 0.140

Table 4: The mean Silhouette Coefficient of learned samples. Larger is better.

Dataset Citeseer Cora Pubmed

Model Vanilla GCN GWNN OctGCN Vanilla GCN GWNN OctGCN Vanilla GCN GWNN OctGCN

Silhouette score 0.038 0.050 0.083 0.119 0.153 0.220 0.110 0.130 0.171

the only hyper-parameter of OctGCN, the optimal proportion d/n of low-frequency components for
each dataset, is determined through grid search and studied in next Section. The weights of low-
and high-frequency components αL and αH are both initialized with 1 and learned automatically. In
experiments, Max-pooling is chosen to demonstrate the importance the low-frequency components.

4.4 EXPERIMENTAL RESULTS

4.4.1 PERFORMANCE OF OctGCN ON NODE CLASSIFICATION

In Table 2, we demonstrate how our model performs on public splits taken from (Yang et al.,
2016). The results of baselines are strictly consistent with the numbers from literature. With the
limited information given in semi-supervised learning, We achieve a average test accuracy of 72.1%,
83.5%, and 80.5% on Citeseer, Cora and Pubmed, respectively. As OctGCN learned the octave
feature representations for graph in spectral domain, it can demonstrate the meaningful information
extracted from the underlying "true signal" from low-frequency over high-frequency. This is the
main reason that explains why OctGCN outperforms other baseline methods.

4.4.2 ANALYSIS ON INTERPRETABILITY

In Figure 2, how the proportion d/n of low-frequency components affect the performance is studied.
We fine-tune the proportion in a range of {0%, 5%, · · · , 95%}. The best proportion of low-frequency
components are 15%, 5%, and 10% for Citeseer, Cora and Pubmed, respectively. The learned
weights of low- and high-frequency components αL and αH w.r.t the best proportion for each dataset
are demonstrated in Table 3, accordingly. It’s clearly to note that the small proportion of low-
frequency components are essential to the learning octave feature representation. The results are in
line with the importance of low-frequency in GSP and bring interpretability to the nature of GCNs.
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(a) Vanilla GCN on Citeseer (b) GWNN on Citeseer (c) OctGCN on Citeseer

(d) Vanilla GCN on Cora (e) GWNN on Cora (f) OctGCN on Cora

(g) Vanilla GCN on Pubmed (h) GWNN on Pubmed (i) OctGCN on Pubmed

Figure 3: The t-SNE visualization of OctGCN comparing with spectral convolution based baselines.
Each color corresponds to a different class that the embeddings belongs to.

4.4.3 T-SNE VISUALIZATION OF LEARNED EMBEDDINGS

Table 4 presents the mean Silhouette Coefficient (Rousseeuw, 1987) over all learned samples, larger
the silhouette score is, better the clustering performs. We choose two representative baseline meth-
ods, i.e., Vanilla GCN (Kipf & Welling, 2017) and GWNN (Xu et al., 2019a) for comparison. We
can indicate that OctGCN achieves the best quality of embeddings. Figure 3 depicts the t-SNE
visualization (Maaten & Hinton, 2008) of learned embeddings on all three citation datasets. We
can visualize the local and sparse property of spectral graph wavelets that utilized in GWNN and
OctGCN. Further, the intersections of different classes are more separated in the results our Oct-
GCN, since the octave feature embeddings learned from our model tend to capture the importance
information in low-frequency components and effectively alleviate the noise from high-frequency.

5 CONCLUSION

In this paper, we propose OctGCN, a novel spectral-based graph convolutional neural network to
learn the representation of graph with respect to different frequency components. By distinct design
of filters for low- and high-frequency, our model can effectively capture the octave feature repre-
sentations and enhance the interpretability of GCNs. To the best of our knowledge, this is the first
attempt on octave convolution for graphs. An interesting direction for future work is to extend the
definition of octave convolution from spectral domain to spatial domain, in order to pursue more
efficient architectures for learning with graphs.
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6 APPENDIX

6.1 LOW-FREQUENCY COMPONENTS IMPLY BETTER SMOOTHNESS AND
INFORMATION-TO-NOISE RATIO

The different importance of low- and high-frequency components of graphs that contributes to the
learning of modern GNNs is observed recently (Donnat et al., 2018; Maehara, 2019). Concretely,
the low-frequency components in graphs usually indicate smooth varying signals which can reflect
the locality property (the neighbor nodes trend to be similar with each other) in graphs, thus they
capture more information than the high-frequency components and should be more beneficial for the
representational learning as revealed in our experiments. To this end, we investigate two measures
in (Chen et al., 2019): Mean Average Distance (MAD) and Information-to-Noise Ratio (INR) w.r.t
different spectrum basis. Different spectrum basis has a corresponding node in graph, which we
refer as low- and high- frequency node.

MAD reflects the smoothness of node representation. Given a node v and the feature xv on it as
signal, we take its eigenvector uv to multiply xv as the transformed feature x̃v in spectral domain.
Then the MAD of v is calculated by taking the average of cosine distances between the transformed
feature of v and that of its 1-hop neighbors. The lower MAD indicates better smoothness. INR is
defined as the proportion of nodes from the same class as v through the 1-hop neighborhood of v.
INR reflects the information contained in nodes and the higher INR indicates the richer information.
For each dataset, we compute the average MAD and INR of top-50% low-frequency nodes (MADL

and INRL) and rest high-frequency nodes (MADH and INRH ) and report the gap between low-
and high- frequency nodes as in Table 5.
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We can observe that the low-frequency components in real graphs indeed are smoother than that
of high-frequency (lower MAD). Meanwhile, they have higher INR, which indicates they contain
richer information. In the vein, we argue that the low-frequency components may carry more in-
formation than that of the high-frequency components and should be more beneficial for the rep-
resentational learning. Therefore, comparing with all other spectral-based methods that treat both
low- and high-frequency components identically during training, our proposed octave convolutional
structure model could gain more from this octave nature existing in graphs.
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