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Abstract

In this work we construct flexible joint distributions from low-dimensional conditional semi-
implicit distributions. Explicitly defining the structure of the approximation allows to make
the variational lower bound tighter, resulting in more accurate inference.

1. Introduction

Many recent advances in variational inference have been focused on different ways to esti-
mate or bound the KL divergence between two complicated distributions. They made it pos-
sible to perform variational inference with hierarchical distributions (Ranganath et al., 2016;
Titsias and Ruiz, 2018; Sobolev and Vetrov, 2019), semi-implicit distributions (Yin and
Zhou, 2018; Molchanov et al., 2019) and even fully implicit distributions (Mescheder et al.,
2017; Shi et al., 2017; Huszár, 2017). While these methods work well for low-dimensional
cases, they can misbehave when the dimensionality of the problem grows.

In this work, we focus on semi-implicit variational inference, and consider structured
multi-dimensional distributions. We show that taking this structure into account, we can
obtain a much tighter entropy bound and, consequentially, a much tighter evidence lower
bound. We also demonstrate that structured semi-implicit variational inference can suc-
cessfully capture the multi-modal nature of the posterior distribution in deep Gaussian
processes, and show a way to construct and learn an autoregressive semi-implicit model.

2. Semi-Implicit Variational Inference

Variational inference provides a way to approximate the generally intractable posterior
distribution p(z | D) in a probabilistic model with a parametric approximation qφ(z). It
typically requires the variational distribution qφ(z) to be reparameterizable and have a
tractable log-density (Kingma and Welling, 2013).

Semi-implicit variational inference (Yin and Zhou, 2018; Molchanov et al., 2019) ex-
tends this framework to so-called semi-implicit distributions. By mixing a simple explicit
distribution qφ(z | ε) with an implicit distribution q(ε) one obtains a so-called semi-implicit
distribution with a generally intractable marginal density qφ(z).

qφ(z) =

∫
qφ(z | ε)q(ε)dε. (1)
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A typical example of a semi-implicit model uses a Gaussian conditional distribution qφ(z | ε) =
N (z |µφ(ε),diag(σ2φ(ε))), parameterized by neural networks µφ(ε) and σ2φ(ε), whereas q(ε)

can be any fixed distribution that allows for efficient sampling1. Unlike methods such as
HVI, UIVI or IWHVI, SIVI does not need to access the density q(ε).

The main idea behind semi-implicit variational inference, or SIVI, is to use K+1-sample
estimates in order to obtain a lower bound on the entropy of such distribution. Since all
variables follow distribution q(·), we omit it for brevity.

H[qφ(z)] ≥ HSIVI
K [qφ(z)] = −Eε0..KEz | ε0 log

1

K + 1

K∑
k=0

qφ(z | εk). (2)

This entropy bound can be used to construct a proper variational objective by bounding
the KL-term in the evidence lower bound.

3. Structured Semi-Implicit Variational Inference

As with most implicit variational inference algorithms, the performance of semi-implicit
variational inference can quickly degrade as the number of dimensions grows. As SIVI
essentially approximates a multi-dimensional distribution qφ(z) with a mixture of K + 1
Gaussian distributions in order to bound its entropy, it may require an exponentially large
mixture size K to obtain an adequate approximation. In order to solve this problem, we
propose to factorize a high-dimensional joint semi-implicit distribution into a product of low-
dimensional conditional semi-implicit distributions. Here and after we abuse the notation
and assume z1..0 to denote an empty set.

qφ(z) = qφ(z1)
d∏
i=2

qφ(zi | z1..i−1), qφ(zi | z1..i−1) =

∫
qφ(zi | z1..i−1, εi)q(εi)dεi. (3)

In this case the entropy bounds can be written as follows:

HSSIVI
K [qφ(z)] = −

d∑
i=1

Ez1..i−1Eε0..Ki
Ezi | z1..i−1,ε0i

log
1

K + 1

K∑
k=0

qφ(zi | z1..i−1, εki ). (4)

This way we would only need to model low-dimensional semi-implicit distributions while
still recovering a non-trivial joint distribution. We provide two examples of models that
follow such structure in Section 4.

It can be shown that given the same joint distribution qφ(z), taking the structure into
account results in a tighter bound:

Theorem 1 For a structured semi-implicit distribution (3), the following inequalities hold:

H[qφ(z)] ≥ HSSIVI
K [qφ(z)] ≥ HSIVI

K [qφ(z)]. (5)

We provide the proof of the theorem in appendix A. The main idea is to show that the
structured SIVI bound with K+1 samples of the mixing variable ε essentially approximates
the marginal distribution qφ(z) with an exponentially large mixture of (K+1)d distributions,
placed on a d-dimensional grid.

1. In general, q(ε) can be any parametric reparameterizable distribution. For simplicity, we incorporate all
its parameters as well as the reparameterizing transformation into the conditional distribution qφ(z | ε).
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Figure 1: Visualisation of layers in a two-layer DGP. All columns except “SSIVI” are taken
from Havasi et al. (2018). They show the mean and the standard deviation of the variational
posterior under DSVI, two MAP solutions under Mode A and Mode B, and the posterior
function samples under SGHMC and SSIVI.
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4. Experiments

4.1. Deep Gaussian Processes

We apply SSIVI to deep Gaussian processes (Damianou and Lawrence, 2013; Salimbeni and
Deisenroth, 2017). For detailed formulation of the deep GP model follow Appendix B.

Conventional variational inference techniques for DGPs assume a Gaussian posterior
approximation qφ(u1..L) =

∏L
l=1N (ul |µl,Σl) over the inducing values u1..L that factorizes

across the layers. Havasi et al. (2018) show that in practice the true posterior over the
inducing values does not in fact factorize across layers, is non-Gaussian and is multimodal.
We get rid of all these limiting assumptions by using the following structured semi-implicit
posterior approximation:

qφ(u1..L) = qφ(u1)

L∏
l=2

qφ(ul |ul−1), qφ(ul |ul−1) =

∫
qφ(ul | εl, ul−1)q(εl)dεl. (6)

We use a fully-factorized Gaussian conditional distribution qφ(ul | εl, ul−1) with means
µlφ(εl, ul−1) and scales σlφ(εl, ul−1) parameterized by neural networks. Using the structured
SIVI bound (4), we obtain the final variational objective for SSIVI-DGP (see Appendix C
for more details).

To demonstrate that SSIVI allows to recover multimodal posteriors with cross-layer
dependencies, we consider the toy problem, proposed by Havasi et al. (2018). It is a noise-
free (the likelihood variance is set to zero) regression problem consisting of seven training
datapoints. There are two natural modes in the posterior space, denoted Mode A and Mode
B in the plots in Figure 1.

We use SSIVI bound (35) with K = 100 and perform 3000 Adam (Kingma and Ba,
2014) updates with default hyperparameters and the learning rate set to 5 × 10−3. We
use seven inducing inputs on the first layer, fixed at the training point locations, and two
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Figure 2: SIVI and SSIVI KL bounds for an autoregressive semi-implicit model and a
synthetic multi-dimensional distribution. As expected, SSIVI always outperforms SIVI,
and the gap increases with the number of dimensions.

inducing inputs on the second layers, fixed at 1 and −1. Means and variances of the
Gaussian conditional distributions qφ(ul | εl, ul−1) are modeled by fully-connected neural
networks with three hidden layers of 100 neurons each, and mixing variables εl are sampled
from 100-dimensional standard Gaussian distributions.

As shown in Figure 1, DSVI (Salimbeni and Deisenroth, 2017) converges into one of
them depending on the randomness in the initialization and the stochastic optimization
process. On the contrary, both SGHMC and SSIVI allow to capture all modes and the
inter-layer dependencies.

4.2. Auto-Regressive Semi-Implicit Generator

We implement the structured semi-implicit distribution (3) in a general case using a recur-
rent neural network. The generative process looks as follows:

h1 = h(0, 0), ε1 ∼ N (ε1 | 0, 1), z1 ∼ N (z1 |µ(h1, ε1), σ
2(h1, ε1)), (7)

hi = h(zi−1, hi−1), εi ∼ N (εi | 0, 1), zi ∼ N (zi |µ(hi, εi), σ
2(hi, εi)). (8)

In our experiments h(·, ·) is defined by two stacked GRU cells, and µ(·, ·) and σ2(·, ·) are
defined as a fully-connected neural network with three hidden layers that outputs the mean
and the log-scale of the one-dimensional Gaussian distribution. All mixing variables εi are
scalar and follow the standard Gaussian distribution. The width of all layers (both recurrent
and fully-connected) is 100.

We train this model to generate samples from a synthetic multi-dimensional structured
distribution p(z) = Laplace(z1 | 0, 1)

∏d
i=2 Laplace(zi | zi−1, 1). To do this, we minimize the

structured SIVI bound on the KL divergence KL (qφ(z) ‖ p(z)) with K = 100. We use the
SSIVI entropy bound (4) and estimate the cross-entropy using the reparameterization trick.
We perform 10000 steps with Adam with standard hyperparameters.

As one can see from Figure 2, SSIVI provides a much tighter bound, and the gap between
SIVI and SSIVI increases as the number of dimensions grows.
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Appendix A. Structured Semi-Implicit Variaitonal Inference: entropy
bound

Theorem 1 For a structured semi-implicit distribution (3), the following inequalities hold:

H[qφ(z)] ≥ HSSIVI
K [qφ(z)] ≥ HSIVI

K [qφ(z)] (9)

Proof The first inequality, namely the fact that HSSIVI
K [qφ(z)] is indeed a lower bound on

the entropy H[qφ(z)], can be proven in exactly the same fashion as the corresponding proof
for the original SIVI objective by Molchanov et al. (2019).
The following proves the second inequality. Firstly, let’s rewrite the SIVI boundHSIVI

K [qφ(z)].

−HSIVI
K [qφ(z)] = Eε0..KE∏d

j=1 qφ(zj | z1..j−1,ε
0
j)︸ ︷︷ ︸

qφ(z | ε0)

log
1

K + 1

K∑
k=0

d∏
i=1

qφ

(
zi | z1..i−1, εki

)
︸ ︷︷ ︸

qφ(z | εk)︸ ︷︷ ︸
q̃φ(z | ε0..K)

(10)

= Eε0..KEq̃φ(z | ε0..K) log q̃φ(z | ε0..K) (11)

Transition to line (11) holds since εk are independent and identically distributed, making
the expectations Eε0..KEqφ(z | ε0)[·] and Eε0..KEqφ(z | εi)[·] identical for all i = 0..K and equal
to Eε0..KEq̃φ(z | ε0..K)[·].

Now let’s expand the SSIVI bound HSSIVI
K [qφ(z)].

−HSSIVI
K [qφ(z)] =

d∑
i=1

Ez1..i−1Eε0..Ki
Ezi|z1..i−1,ε0i

log
1

K + 1

K∑
k=0

qφ

(
zi | z1..i−1, εki

)
(12)

= Eε0..KEz1|ε01; z2|z1,ε02; ...; zd|z1..d−1,ε
0
d

d∑
i=1

log
1

K + 1

K∑
k=0

qφ

(
zi | z1..i−1, εki

)
(13)

= Eε0..KEz1|ε01; z2|z1,ε02; ...; zd|z1..d−1,ε
0
d

log
1

(K + 1)d

d∏
i=1

K∑
k=0

qφ

(
zi | z1..i−1, εki

)
(14)

We can expand the product of d sums in eq. (14) into a sum of (K + 1)d products of
form

∏d
i=1 qφ (zi | z1..i−1, εωii ), where ω ∈ {0..K}d. We thus obtain a mixture of (K +

1)d distributions that we denote as q̂φ(z | ε0..K). Similarly to eq. (11), we can rewrite the
expectation in eq. (14) as an expectation over q̃φ(z | ε0..K) since q̂φ(z | ε0..K) is also invariant
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to permutation of εk. This way we can rewrite the SSIVI bound as follows:

−HSSIVI
K [qφ(z)] = Eε0..KEz1|ε01; z2|z1,ε02; ...; zd|z1..d−1,ε

0
d

log
1

(K + 1)d

∑
ω∈

{0..K}d

d∏
i=1

qφ (zi | z1..i−1, εωii )

︸ ︷︷ ︸
q̂φ(z | ε0..K)

(15)

= Eε0..KEq̃φ(z | ε0..K) log q̂φ
(
z | ε0..K

)
(16)

We can finally write down the gap between the SIVI and the SSIVI bounds:

HSSIVI
K [qφ(z)]−HSIVI

K [qφ(z)] = Eε0..KEq̃φ(z | ε0..K)

(
− log q̂φ

(
z | ε0..K

)
+ log q̃φ

(
z | ε0..K

))
(17)

= Eε0..KKL
(
q̃φ
(
z | ε0..K

)
‖ q̂φ

(
z | ε0..K

))
≥ 0 (18)

This concludes proof of the theorem.

Appendix B. Sparse Deep Gaussian Processes

This section provides a brief overview of the definition of the DGP model, closely following
DSVI. A conventional single-output Gaussian Process model is defined as follows:

p(y, f |x, θ) = p(f |x, θ)︸ ︷︷ ︸
GP prior

N∏
i=1

p(yi | fi, θ)︸ ︷︷ ︸
Likelihood

(19)

Here p(f |x, θ) is the Gaussian process prior, which is typically a zero-mean Gaussian dis-
tribution with the covariance matrix defined by a covariance function kθ(·, ·) (we denote it
as K·,· for brevity); y ∈ RN , f ∈ RN , x ∈ RN×D. The training of the parameters θ of the
prior and the likelihood is performed using maximum marginal likelihood:

log p(y |x, θ) = log

∫
p(y, f |x, θ)df → max

θ
(20)

In order to reduce the required complexity, the sparse GP model (Titsias, 2009) introduces
auxiliary variables, inducing inputs z ∈ RM×D and values u ∈ RM :

p(y, f, u |x, z, θ) = p(f |u, x, z, θ)p(u | z, θ)
N∏
i=1

p(yi | fi, θ) (21)

In sparse GPs, direct maximization of the marginal likelihood is replaced with maximization
of its lower bound (ELBO):

Eqφ(f,u |x,z,θ) log p(y | f, θ)−KL(qφ(f, u |x, z, θ) ‖ p(f, u |x, z, θ))→ max
z,θ,φ

(22)
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The approximate posterior qφ(f, u |x, z, θ) is specifically designed to reduce the computa-
tional complexity by cancelling out the most computation-heavy term p(f |u, x, z, θ):

qφ(f, u |x, z, θ) = p(f |u, x, z, θ)qφ(u) (23)

qφ(u) = N (u |m,S); φ = {m,S} (24)

qφ(fi |xi, z, θ) =

∫
p(fi |u, xi, z, θ)qφ(u)du = N (fi |µi, σ2i ) (25)

µi = KxizK
−1
zz m (26)

σ2i = Kxixi −KxizK
−1
zz (Kzz − S)K−1zz Kzxi (27)

Eqφ(f,u |x,z,θ) log p(yi | fi, θ) = Eqφ(fi |xi,z,θ) log p(yi | fi, θ) (28)

This reduces the lower bound (22) to the following sparse GP ELBO:

LSGP =
N∑
i=1

Eqφ(fi |xi,z,θ) log p(yi | fi, θ)−KL(qφ(u | z, θ) ‖ p(u | z, θ))→ max
z,θ,φ

, (29)

which allows for doubly stochastic optimization.
A deep Gaussian process Damianou and Lawrence (2013); Salimbeni and Deisenroth

(2017) is constructed as a chain of multi-output sparse Gaussian processes, or GP layers.
The output of each GP is considered as an input to the next GP. The deep GP probabilistic
model is defined similarly to conventional sparse GPs. For each GP layer l, we have an
output variable f l and a set of values ul corresponding to the inducing inputs zl The joint
distribution over these variables is defined as follows (for brevity, we denote f0 := x):

p(y, f1..L, u1..L |x, z1..L, θ) =
L∏
l=1

p(f l | f l−1, ul, zl, θ)p(ul | zl, θ)
N∏
i=1

p(yi | fLi , θ) (30)

Similarly to sparse GPs, assuming a specific posterior approximation qφ(f l, ul | f l−1, zl, θ) =
qφ(ul)p(f l |ul, f l−1, zl, θ), training the DGP involves bounding the data log marginal likeli-
hood log p(y |x, θ) with the following variational lower bound, and then maximizing it w.r.t.
both the variational parameters φ and model parameters θ and z:

LDGP =
N∑
i=1

E∏L
l=1 qφ(f

l
i | f

l−1
i ,zl,θ) log p(yi | fLi , θ)−

L∑
l=1

KL(qφ(ul | zl, θ) ‖ p(ul | zl, θ))→ max
z1..L,θ,φ

(31)

Appendix C. SSIVI for Sparse DGP

We substitute the factorized Gaussian approximation used in DSVI with a structured semi-
implicit distribution:

qφ(u1..L) = qφ(u1)
L∏
l=2

qφ(ul |ul−1), (32)

qφ(ul |ul−1) =

∫
N
(
ul
∣∣∣µlφ(εl, ul−1), diag(σlφ(εl, ul−1))2

)
N (εl | 0, I)dεl (33)
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Conventional variational inference for DGPs allows to integrate out the inducing values u
analytically and obtain the marginal variational posteriors for qφ(f l | f l−1, zl, θ). This is not
possible in SSIVI-DPGs, as now we have to explicitly condition the variational model on the
inducing values from the previous layer. Therefore we have to resort to plain MC estimation
of the expected log-likelihood by sampling from the joint distribution qφ(f, u, ε | z, θ, x).

qφ(fi, u, ε | z, θ, x) =

= qφ(f1i |u1, xi, z, θ)qφ(u1 | ε1)q(ε1)
L∏
l=2

[
qφ(f li |ul, f l−1i , z, θ)qφ(ul |ul−1, εl)q(εl)

] (34)

Now we modify lower bound (31) taking into account dependencies of inducing values
between the layers and obtain the final objective for training SSIVI-DGPs:

LK(φ, θ) =
N∑
i=1

Eqφ(fi,u,ε | z,θ,x) log pθ(yi | fLi )︸ ︷︷ ︸
Expected log-likelihood

−

−
L∑
l=1

Eqφ(ul−1)Eεl0..1Eqφ(ul | εl0,ul−1) log
1

K+1

∑K
k=0 qφ(ul | εlk, ul−1)
p(ul | zl, θ)︸ ︷︷ ︸

KL bound

→ max
φ,θ

(35)
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