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Abstract

Rectified linear units, or ReLUs, have become a preferred activation function for
artificial neural networks. In this paper we consider the problem of learning a
generative model in the presence of nonlinearity (modeled by the ReLU functions).
Given a set of signal vectors yi ∈ Rd, i = 1, 2, . . . , n, we aim to learn the network
parameters, i.e., the d×k matrix A, under the model yi = ReLU(Aci+b), where
b ∈ Rd is a random bias vector, and ci ∈ Rk are arbitrary unknown latent vectors.
We show that it is possible to recover the column space of A within an error of
O(d) (in Frobenius norm) under certain conditions on the distribution of b.

1 Introduction

Rectified Linear Unit (ReLU) is a basic nonlinear function defined to be ReLU : R → R+ ∪ {0}
as ReLU(x) ≡ max(0, x). For any matrix X , ReLU(X) denotes the matrix obtained by applying
the ReLU function on each of the coordinates of the matrix X . ReLUs are building blocks of many
nonlinear data-fitting problems based on deep neural networks (see, e.g., [20] for a good exposition).
In particular, [7] showed that supervised training of very deep neural networks is much faster if the
hidden layers are composed of ReLUs.

Let Y ⊂ Rd be a collection of signal vectors that are of interest to us. Depending on the application at
hand, the signal vectors, i.e., the constituents of Y , may range from images, speech signals, network
access patterns to user-item rating vectors and so on. We assume that the signal vectors satisfy a
generative model, where each signal vector can be approximated by a map g : Rk → Rd from the
latent space to the ambient space, i.e., for each y ∈ Y ,

y ≈ g(c) for some c ∈ Rk. (1)

In this paper we consider the following specific model (single layer ReLU-network), with the weight
(generator) matrix A ∈ Rd×k and bias b ∈ Rd:

y ≈ ReLU(Ac+ b). (2)

The generative model in (2) raises multiple interesting questions that play fundamental role in
understanding the underlying data and designing systems and algorithms for information processing.
Here, we consider the following network parameter learning problem under the specific generative
model of (2).

Learning the network parameters: Given the n observations {yi}i∈[n] ⊂ Rd from the model
(cf. (2)), recover the parameters of the model, i.e., A ∈ Rd×k such that

yi = ReLU(Aci + b) ∀ i ∈ [n], (3)

with latent vectors {ci}i∈[n] ⊂ Rk. We assume that the bias vector b is a random vector comprising
of i.i.d. coordinates with each coordinate distributed according to the probability density function
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p(·). This question is closely related to the dictionary-learning problem [16]. We also note that this
question is different from the usual task of training a model (such as, [11]), in which case the set
{ci}i∈[n] is also known (and possibly chosen accordingly) in addition to {yi}i∈[n].
Related works. There have been a recent surge of interest in learning ReLUs, and the above question
is of basic interest even for a single-layer network (i.e., nonlinearity comprising of a single ReLU
function). It is conceivable that understanding the behavior of a single-layer network would allow one
to use some iterative peeling off technique to develop a theory for the generative models comprising
of multiple layers.

To the best of our knowledge, the network parameter learning problem, even for single-layer networks
has not been studied as such, i.e., theoretical guarantees do not exist. Only in a very recent paper [22]
the unsupervised problem was studied when the latent vectors {ci}i∈[n] are random Gaussian. The
principled approaches to solve this unsupervised problem in practice reduce this to the ‘training’
problem, such as the autoencoders [10] that learn features by extensive end-to-end training of encoder-
decoder pairs; or use the recently popular generative adversarial networks (GAN) [9] that utilize a
discriminator network to tune the generative network. The method that we are going to propose here
can be seen as an alternative to using GANs for this purpose, and can be seen as an isolated ‘decoder’
learning of the autoencoder. Note that the problem bears some similarity with matrix completion
problems, a fact we greatly exploit. In matrix completion, a matrix M is visible only partially, and
the task is to recover the unknown entries by exploiting some prior knowledge about M . In the case
of (3), we are more likely to observe the positive entries of the matrix M , which, unlike a majority of
matrix completion literature, creates the dependence between M and the sampling procedure.

Main result and technique. We define the d×n observation matrix Y = [y1 y2 · · · yn]. Similarly,
we define the k × n coefficient matrix C = [c1 c2 · · · cn]. With this notion, we can concisely
represent the n observation vectors as

Y = ReLU
(
AC + b⊗ 1T

)
= ReLU

(
M + b⊗ 1T

)
, (4)

where M = AC and 1 ∈ Rn denotes the all-ones vector and ⊗ denotes the Kronecker product.
Recall our assumption that b is a random vector comprising of i.i.d. coordinates with each coordinate
distributed according to the probability density function p(·).
Note that this model ensures that the bias corresponding to each coordinate is random, but does not
change over different signal vectors. We employ a natural approach to learn the underlying weight
matrix A from the observation matrix Y . As the network maps a lower dimensional latent vector
c ∈ Rk to obtain a signal vector y = ReLU(Ac + b) in dimension d > k, the matrix M = AC
(cf. (4)) is a low-rank matrix as long as k < min{d, n}. In our quest of recovering the weight matrix
A, we first focus on estimating the matrix M , when given access to Y . This task can be viewed as
estimating a low-rank matrix from its partial (randomized) observations.

One of the main challenges that we face here is that while an entry of the matrix Y is a random
variable (since b is a random bias), whether that is being observed or being cut-off by the ReLU
function (for being negative) depends on the value of the entry itself. In general matrix completion
literature, the entries of the matrix being observed are sampled independent of the underlying matrix
itself (see, e.g., [3, 12, 4] and references therein). For this reason, we cannot use most of these results
off-the-shelf. However, similar predicament is (partially) present in [5], where entries are quantized
while being observed. This motivates us to employ a maximum-likelihood method inspired by [5].

That said, our observation model differs from [5] in a critical way: in our case the bias vector, while
random, does not change over observations. This translates to less freedom during the transformation
of the original matrix to the observed matrix, leading to dependence among the elements in a row.
Furthermore, the analysis becomes notably different since the positive observations are not quantized.
Furthermore, although our formulation is close to [5], because of the aforementioned differences in
the observation models, we get much stronger guarantee on the recovery of the matrix. Indeed, our
results are comparable to analogous results of [21, 13] that also study the quantized matrix completion
problem.

We show that our method guarantees the recovery of the matrixAC from Y with an error in Frobenius
norm at mostO(

√
d) with high probability (see Theorem 1 for the formal statement). Then leveraging

the well known results on matrix perturbation [23], it is possible to also recover the column space of
A with a similar guarantee.
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Extension to multi-layer networks. Our aim is to use a ‘peeling’ technique to extend our results
to multi-layer networks. While rigorous theoretical guarantees for the network parameter learning
problem do not extend to multi-layer networks as of now, we can still use the peel-off decoding for
this case. Note that, even for the ‘training’ problem of such network, which is a less demanding task
than our problem, no rigorous guarantee exists beyond only two-layers. For example, the state-of-the
art theoretical results for training such as in [11], hold only for one layer of nonlinearity (the second
layer is assumed to have a linear activation function in [11]). In fact most recent theoretical guarantees
in this domain are restricted to one or two layer networks e.g., [25, 15, 6, 8, 18, 24]. Given this,
obtaining provable guarantees for multi-layer case of network parameter learning problem seems to
be a challenging future work.

2 Learning parameters in a single-layer ReLU-network

We now focus on the task of estimating M from the observation matrix Y (cf. (4)). For i ∈ [d], we
define NY (i) ⊆ [n] as the set of positive coordinates of the i-th row of the matrix Y , i.e.,

NY (i) = {j ∈ [n] : Yi,j > 0} and NY,i = |NY (i)|.

Note that, for i ∈ [d], the original matrix M needs to satisfy

Mi,j + bi = Yi,j for j ∈ NY (i) (5)

where Mi,j denotes the (i, j)-th entry of M , and

Mi,j + bi < 0 for j ∈ N Y (i) := [n]\NY (i). (6)

For i ∈ [d] and j ∈ [n], let Mi,(j) denote the j-th largest element of the i-th row of M , i.e., for
i ∈ [d], Mi,(1) ≥Mi,(2) ≥ · · · ≥Mi,(n). It is straightforward to verify from (5) that NY (i) denotes
the indices of NY,i largest entries of the i-th row of M . Furthermore, with NY,i ∈ [n], we have
bi = Yi,(1) −Mi,(1) = · · · = Yi,(NY,i) −Mi,(NY,i). Similarly, it follows from (6) that whenever we
have NY,i = 0, then bi belongs to the interval (−∞,−maxj∈[n]Mi,j) = (−∞,−Mi,(1)). Based on
these observation, we define the set of matrices XY,ν,γ ⊂ Rd×n as

XY,ν,γ =
{
X : ‖X‖∞ ≤ γ; Yi,(1) −Xi,(2) = · · · = Yi,(NY,i) −Xi,(NY,i); and

Xi,(NY,i) ≥ max
j∈NY (i)

Xi,j + ν ∀i ∈ [d]
}
. (7)

Recall that, p : R → R denotes the probability density function of each bias RV B. We use the
notation F (x1, x2) = P(−x1 ≤ B ≤ −x2) and X∗i = maxj∈[n]Xi,j . Thus, the (normalized)
log-likelihood of observing Y given that X is the original matrix takes the following form [17].

LY (X) =
∑
i∈[d]

(
1{NY,i=0} · log

F (∞, X∗i )
F (∞, 0)

+

n∑
s=1

1{NY,i=s} · log
p(Yi,(s) −Xi,(s))

p(Yi,(s))

)
. (8)

In order to recover the matrix M from the observation matrix Y , we employ the following program.

maximize
X∈Rd×n

LY (X) subject to X ∈ XY,ν,γ . (9)

Define ωp,γ,ν to be such that F (x, y) ≥ ωp,γ,ν for all x, y ∈ [−γ, γ] with |x − y| > ν. In what
follows, we simply refer this quantity as ωp given that γ and ν are clear from context. Further define
the following flatness and Lipschitz parameters associated with a function f : R→ R:

βα(f) := inf
|x|≤α

|f ′(x)|2

4|f(x)|
, (10)

Lα(f) := max
{

sup
|x|≤α

f(x)∫ x
−∞ f(y)dy

, sup
|x|≤α

f ′(x)

f(x)

}
. (11)

The following result characterizes the performance of the program proposed in (9).
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Theorem 1. Assume that ‖M‖∞ ≤ γ and the observation matrix Y is related to M according to
(4). Let M̂ be the solution of the program specified in (9), and the bias density function p(x) is
differentiable with bounded derivative. Then, the following holds with probability at least 1− 1

d+n .

‖M − M̂‖2F ≤ C0Lγ(p) ·
γd

βγ(p)ωp
, (12)

where, C0 is a constant. The quantities βγ(p) and Lγ(p) depend on the distribution of the bias and
are defined in (10) and (11), respectively.

The full proof of Theorem 1 is omitted due to page limit. In the first step of the proof, we show that
given the observation matrix Y , for any X ∈ XY,ν,γ (cf. (7)), we have

E
[
LY (M)− LY (X)

]
≥ βγ(p)ωp · ‖M −X‖2F . (13)

This fact follows from the regularity assumptions on the probability density p and a sequence of
inequalities similar to ones that relate KL divergence and the Hellinger divergence. In the next step,
we show that,

E
[
LY (M)− LY (M̂)

]
≤ 2 sup

X∈X

∣∣LY (X)− E
[
LY (X)

] ∣∣. (14)

To upper bound the right-hand side we resort to standard techniques to bound the supremum of an
empirical process such as the symmetrization and the contraction principle [14]. The detail can be
found in the full version [17].

Recovering the network parameters. Let us denote the recovered matrix M̂ as M̂ = M + E,
where E is the perturbation matrix that has bounded Frobenius norm (cf. (12)). Now the task of
recovering the parameters of the single-layer ReLU-network is equivalent to solving for A given
M̂ =M +E = AC +E. Note that, even without the perturbation E we could only hope to recover
the column space of A and not the exact matrix A.

Let Uk and Ûk be the top k left singular vectors of M and M̂ , respectively. Let σk, the smallest
non-zero singular value of M , is at least δ > 0. Then, it follows from standard results from
matrix-perturbation theory (cf. [23]) that there exists an orthogonal matrix O ∈ Rk×k such that

‖Uk − ÛkO‖F ≤
23/2(2σ1 + ‖E‖) ·min{

√
k‖E‖, ‖E‖F }

δ2
≤ 23/2(2σ1 + ‖E‖F ) · ‖E‖F

δ2
,

which is a guarantee that the column space of A is recovered by SVD within an error of O(d) in
Frobenius norm by the column space of Ûk. Note that σ1 is the largest singular value of M .

Future directions: Extension to multi-layer networks. To learn a multi-layer ReLU network, we
propose a ‘peeling’ decoder as defined below. For better understanding, let us consider a two-layer
model as follows:

Y = ReLU
(
A2ReLU

(
A1C + b1 ⊗ 1T

)
+ b2

)
= ReLU

(
M2 + b⊗ 1T

)
, (15)

where M2 = A2ReLU
(
A1C + b1 ⊗ 1T

)
. Our ‘peeling’ decoder will approach this layer-by-layer.

First we use the likelihood-based matrix completion technique outlined in (9) to recover M2 as in
the case of a one-layer network. Note that we will not be able to recover M2 exactly, as Theorem 1
guarantees recovery only up to a Frobenius norm error. This creates a hurdle to recover A1C, since
our current method does not handle dense bounded norm noise while learning network parameters.
Also it will not be realistic to assume a probabilistic model for this bounded noise, since in the
peeling off process the noise is coming from decoding of the previous layer. Under certain coherence
conditions on the matrix to be learned, it is possible to handle such situations (see e.g., [2, 19, 1]).
Note that, such coherence condition must be satisfied by the parameters of every layer of the network.
An amenable but practical algorithm that is resilient to dense noise, under reasonable assumption on
the network parameters, is an immediate area of interest.

Even when this first hurdle can be crossed, we still have a task of factorization of M2 to find A2 and
ReLU

(
A1C + b1 ⊗ 1T

)
, and in general we cannot find a unique factorization. Here as well, with

additional reasonable assumptions the factorization can be made unique. Note that this might be
simpler that the factorization step of the one-layer network, since there is already a lot of structure in
the latter matrix (such as nonnegativity due to being output of a ReLU and about ∼ 50% sparsity).

Provided this can be made to work analytically for two layers, there should not be any theoretical
issue left to extend the process to multiple layers.
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