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Abstract

Variational Autoencoders (VAEs) have proven to be powerful latent variable models. How-
ever, the form of the approximate posterior can limit the expressiveness of the model. Cat-
egorical distributions are flexible and useful building blocks for example in neural memory
layers. We introduce the Hierarchical Discrete Variational Autoencoder (HD-VAE): a hi-
erarchy of variational memory layers. The Concrete/Gumbel-Softmax relaxation allows
maximizing a surrogate of the Evidence Lower Bound by stochastic gradient ascent. We
show that, when using a limited number of latent variables, HD-VAE outperforms the Gaus-
sian baseline on modelling multiple binary image datasets. Training very deep HD-VAE
remains a challenge due to the relaxation bias that is induced by the use of a surrogate
objective. We introduce a formal definition and conduct a preliminary theoretical and
empirical study of the bias.

1. Introduction

Unsupervised learning has proven powerful at leveraging vast amounts of raw unstructured
data (Kingma et al., 2014; Radford et al., 2017; Peters et al., 2018; Devlin et al., 2018).
Through unsupervised learning, latent variable models learn the explicit likelihood over an
unlabeled dataset with an aim to discover hidden factors of variation as well as a generative
process. An example hereof, is the Variational Autoencoder (VAE) (Kingma and Welling,
2013; Rezende et al., 2014) that exploits neural networks to perform amortized approximate
inference over the latent variables. This approximation comes with limitations, both in
terms of the latent prior and the amortized inference network (Burda et al., 2015; Hoffman
and Johnson, 2016). It has been proposed to go beyond Gaussian priors and approximate
posterior using, for instance, autoregressive flows (Chen et al., 2016; Kingma et al., 2016),
a hierarchy of latent variables (Sønderby et al., 2016; Maaløe et al., 2016, 2019), a mixture
of priors (Tomczak and Welling, 2017) or discrete distributions (van den Oord et al., 2017;
Razavi et al., 2019; Rolfe, 2016; Vahdat et al., 2018b,a; Sadeghi et al., 2019).

Current state-of-the-art deep learning models are trained on web-scaled datasets and
increasing the number of parameters has proven to be a way to yield remarkable results
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(Radford et al., 2019). Nonetheless, time complexity and GPU memory are scarce resources,
and the need for both resources increases linearly with the depth of neural network. Li et al.
(2016) and Lample et al. (2019) showed that large memory layers are an effective way to
increase the capacity of a model while reducing the computation time.

Bornschein et al. (2017) showed that discrete variational distributions are analogous
to neural memory (Graves et al., 2016), which can be used to improve generative models
(Li et al., 2016; Lample et al., 2019). Also, memory values are yet another way to embed
data, allowing for applications such as one-shot transfer learning (Rezende et al., 2016) and
semi-supervised learning that scales (Jang et al., 2016).

Depth promises to bring VAEs to the next frontier (Maaløe et al., 2019). However, the
available computing resources may shorten that course. Motivated by the versatility and
the scalability of discrete distributions, we introduce the Hierarchical Discrete Variational
Autoencoder. HD-VAE is a VAE with a hierarchy of factorized categorical latent variables.
In contrast to the existing discrete latent variable methods, our model (a) is hierarchical,
(b) trained using Concrete/Gumbel-Softmax, (c) relies on a conditional prior that is learned
end-to-end and (d) uses a variational distribution that is parameterized as a large stochastic
memory layer. Despite being optimized for a biased surrogate objective we show that
a shallow HD-VAE outperforms the baseline Gaussian-based models on multiple binary
images datasets in terms of test log-likelihood. This motivates us to introduce a definition
of the relaxation bias and to measure how it is affected by the configuration of latent
variables.

2. Hierarchical Discrete VAE

Hierarchical VAE Hierarchical VAEs define a model pθ(x, z) = pθ(x|z)pθ(z) where x is
an observed variable and z = {z1, . . . , zL} is a hierarchy of latent variables so that pθ(z) is
factorized into L layers. The inference model qφ(z|x) usually exploits the inverse dependency
structure. A vanilla hierarchical VAE results in the following model:

pθ(z) = pθ (zL)

L−1∏
i=1

pθ (zi|zi+1) qφ(z|x) = qφ (z1|x)

L∏
i=2

qφ (zi|zi−1) . (1)

The choice of the VAE architecture is independent of the choice of the variational family
and deeper models can easily be defined (see appendix F).

Variational Neural Memory Each stochastic layer consists of N categorical random
variables with K class probabilities π = {π1, . . . , πK} and can be parametrized as a memory
layer. Lample et al. (2019) recently proposed a scalable approach to attention-based memory
layers that can be directly translated to the stochastic setting: Each categorical distribution
is parametrized by factored keys {k1, . . . ,kK},ki ∈ Rd1 and a parametric query model Q(h).
If {v1, ...,vK},vi ∈ Rd2 are the memory values, for c ∈ R and i = 1, . . . ,K, then the output
of the memory layer for one variable is

y =

K∑
i=1

zivi, z ∼ Cat(π), log πi = Q(h)Tki + c . (2)
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Optimization We wish to maximize the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Eqφ(z|x) [fθ,φ(x, z)] ≡ L1(θ, φ) fθ,φ(x, z) = log
pθ(x, z)

qφ(z|x)
. (3)

The subscript of L denotes the number of importance weighted samples.
Guided by the analysis of Sønderby et al. (2017), we chose to use the Concrete/Gumbel-

Softmax relaxation (Jang et al., 2016; Maddison et al., 2016) for differentiable, approximate
sampling of categorical variables. A relaxed categorical sample can be obtained as

z̃i =
exp ((log πi + gi) /τ)∑K
j=1 exp ((log πj + gj) /τ)

for i = 1, . . . ,K , (4)

where {gi} are i.i.d. samples drawn from Gumbel(0,1), and τ ∈ R∗+ is a temperature pa-
rameter. As in the categorical case, the output of the memory layer is a convex combination
of the memory values weighted by the entries of z̃: y =

∑K
i=1 z̃ivi, for i = 1, . . . ,K. The

relaxed samples z̃ follow a Concrete/Gumbel-Softmax distribution qτφ which depends on τ

and converges to the categorical distribution qτ=0
φ = qφ as τ → 0 which is equivalent to

applying the Gumbel-Max trick to soft samples, meaning z = H(z̃), H = one hot ◦ arg max.
When we extend the definition of fθ,φ to the domain of the relaxed samples, as in

appendix D, the surrogate objective that is maximized becomes

Eqτ>0
φ (z̃|x) [fθ,φ(x, z̃)] ≡ Lτ>0

1 (θ, φ) (5)

which is not guaranteed to be a lower bound of log pθ(x). Hence, we are interested in the
relaxation bias that we define as:

δτ (θ, φ) ≡
∣∣Lτ>0

1 (θ, φ)− Lτ=0
1 (θ, φ)

∣∣ (6)

where Lτ=0
1 (θ, φ) = L1(θ, φ) is the original ELBO.

If fθ,φ is a κ-Lipschitz for z, we can derive an upper bound for the relaxation bias
as well as a new log-likelihood bound (relaxed ELBO) by adding a corrective term to
the surrogate objective (derivation in appendix C). For a one layer Ladder Variational
Autoencoder (LVAE), it results in the following bounds:

δτ (θ, φ) ≤ κ Eqτ>0
φ (z̃|x) [‖z̃−H(z̃))‖2] , (7)

log p(x) ≥ Lτ>0
1 (θ, φ)− κ Eqτ>0

φ (z̃|x) [‖z̃−H(z̃))‖2] . (8)

This new bound shows that, if the model is unconstrained, the relaxation bias is free to
grow and that it grows with the number of discrete variables. In section 4.2, we provide
empirical results supporting the monotonically increasing property of the relaxation bias
with regards to the number of stochastic units.
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Table 1: Sample estimates of the KL(qφ,θ(z|x)||pθ(z)) and the ELBO for 1000 importance
weighted hard samples (τ = 0) using the same LVAE architecture and hyperpa-
rameters across all datasets.

L = 1 L = 2 L = 3
Lτ=0
1000 KLτ=0 Lτ=0

1000 KLτ=0 Lτ=0
1000 KLτ=0

discrete normal discrete normal discrete normal discrete normal discrete normal discrete normal

binmnist -87.34 -90.61 26.46 26.75 -80.52 -81.46 24.95 25.62 -79.39 -80.07 25.58 25.94
caltech -103.29 -107.77 35.37 32.70 -88.64 -94.60 36.17 34.57 -85.31 -90.84 35.84 37.36
fashion -105.16 -111.49 30.43 28.81 -95.85 -100.09 28.98 28.29 -94.01 -95.31 29.30 29.72
omniglot -100.38 -107.65 31.55 26.37 -95.55 -98.30 31.82 31.14 -94.19 -96.40 32.49 32.68

3. Related work

Li et al. (2016) used a deterministic memory layer as building blocks for VAEs, Bornschein
et al. (2017) introduced memory as a stochastic layer. Razavi et al. (2019) introduced
a hierarchy of discrete variables trained using vector-quantitization and with an autore-
gressive prior trained offline. Rolfe (2016); Vahdat et al. (2018b); Sadeghi et al. (2019)
used Bernouilli random variables with RBM priors trained using an alternative relaxation
and coupled with continuous latent variables. Alternatively, one may optimize a categor-
ical variable model using unbiased gradient estimators such as Mnih and Rezende (2016);
Tucker et al. (2017); Grathwohl et al. (2017). To the best of our knowledge, HD-VAE is
the only work that attempts to transform memory layers into a general purpose variational
distribution.

4. Experiments

4.1. Modelling Binary Images

We trained HD-VAE for different number of layers of latent variables using the surrogate
objective defined in the equation 5. In this experiment, we observe that HD-VAE consis-
tently outperforms the baseline Gaussian model for multiple datasets and different number
of latent layers (table 1). This shows that using variational memory layers yields a more
flexible model than for the VAE with a Gaussian prior and the same number of latent vari-
ables. Furthermore, optimizing latent variable models is challenging (Sønderby et al., 2016;
Chen et al., 2016). In this experiment, the measured KL is higher for the discrete model,
suggesting a well-tempered optimization behavior. Finally, we observe that increasing the
depth of HD-VAE consistently improves on the log-likelihood, with a limit of three layers
latent layers.

4.2. Relaxation Bias

The relaxation bias (section 2) may increase with the number of discrete latent variables. We
trained HD-VAE for different numbers of stochastic units and different depths on Binarized
MNIST using the surrogate objective defined in the equation 5. We measured the relaxation
bias δτ=0.1 on the test set (figure 1, table 4). The relaxation bias monotonically increases
with the total number of discrete latent variables for different numbers of latent variables.
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This may explain why we found that HD-VAE with a large number of latent variables is
not yet competitive with the Gaussian counterparts.

Figure 1: (left) ELBO Lτ=0
1 and relaxed objective Lτ=0.1

1 and (right) the relaxation bias
δτ=0.1 =

∣∣Lτ=0.1
1 − Lτ=0

1

∣∣ for different HD-VAE models trained with different
total number of latent variables (N), different depths (L) and K = 256 evaluated
on the binarized MNIST test set. The relaxation bias grows monotonically with
N. The hyperparameters search was performed for L = 2.

5. Conclusion

In this preliminary research, we have introduced a design for variational memory layers and
shown that it can be exploited to build hierarchical discrete VAEs, that outperform Gaussian
prior VAEs. However, without explicitly constraining the model, the relaxation bias grows
with the number of latent layers, which prevents us from building deep hierarchical models
that are competitive with state-of-the-art methods. In future work we will attempt to
harness the relaxed-ELBO to improve the performance of the HD-VAE further.

5



Towards Hierarchical Discrete Variational Autoencoders

References

Jörg Bornschein, Andriy Mnih, Daniel Zoran, and Danilo J Rezende. Variational memory
addressing in generative models. September 2017.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
September 2015.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman,
Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. November 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. October 2018.

Adji B Dieng, Yoon Kim, Alexander M Rush, and David M Blei. Avoiding latent variable
collapse with generative skip models. July 2018.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation.
October 2017.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka
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Appendix A. Experimental Setup

Datasets We evaluate the test log-likelihood on the HD-VAE on statically binarized
MNIST (Salakhutdinov and Murray), statically binarized Omniglot (Lake et al., 2013),
statically binarized Fashion MNIST (Xiao et al., 2017) and Caltech 101 Silhouettes (Marlin
et al., 2010).

Gaussian Baseline and Number of Latent Variables The relaxation bias grows with
the number of latent variables (section 2), hence we use a small number of stochastic units
(maximum 32). Since the prior is learned, we simply use a large enough K value for each
layer (architecture detailed in the table 2). The choice of the Gaussian baseline is not trivial
as each discrete latent variable with K classes describes a K−1-simplex in the relaxed case
and a set of K distinct values in the zero limit of τ . Because a categorical variable can
represent at minimum a discretization of a continuous variable defined on the real line,
we chose to use the same number of latent variables N for the continuous and the discrete
models. One should keep in mind that the performances of the Gaussian model may increase
with N while the performances of HD-VAE may reach a plateau due to the relaxation bias.

Architecture We use a Ladder Variational Autoencoder (LVAE) (Sønderby et al., 2016)
with skip connections with one, two and three layers of latent variables. Each intermediate
connection is parametrized by a sequence of 3 gated residual convolutional blocks with skip
connection, 64 filters and weight normalization (Salimans and Kingma, 2016) similarly to
Kingma et al. (2016); Maaløe et al. (2019). We denote L the number of stochastic layers,
N the total number of stochastic units and K the number of class for a given categorical
variable. We use factored keys (Lample et al., 2019), which results in a set of 2

√
K values

for K effective keys. We use values and keys of size d1 = d2 = 8. Using factored keys led
to substantially improved performances. For reference, HD-VAE and the Gaussian LVAE
have respectively 43.1M and 16.6M parameters.

Optimization During training, we mitigate the posterior collapse using the freebits (Kingma
et al., 2016) strategy with λ = 2 for each stochastic layer. A dropout of 0.5 is used to avoid
overfitting. We linearly decrease the temperature τ from 0.8 to 0.3 during the first 2 · 105

steps and from 0.3 to 0.1 during the next 2 · 105 steps. We use the Adamax optimizer
(Kingma and Ba, 2014) with initial learning rate of 2 ·10−3 for all parameters except for the
memory values that are trained using a learning rate of 2 · 10−2 to compensate for sparsity.
We use a batch size of 128. All models are trained until they overfit and we evaluate the
log-likelihood using 1000 importance weighted samples (Burda et al., 2015). Despite its
large number of parameters, HD-VAE seems to be more robust to overfitting, which may
be explained by the sparse update of the memory values.

Runtime Sparse CUDA operations are currently not used, which means there is room
to make HD-VAE more memory efficient. Even during training, one may truncate the
relaxed samples to benefit from the sparse optimizations. The table 3 shows the average
elapsed time training iteration as well as the memory usage for a 6 layers LVAE with 6×16
stochastic units and K = 162 and batch size of 128.
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Table 2: Architectures of the HD-VAE and the baseline used in the binary image modelling
experiment.

L N K

2 16 + 8 162 + 82

3 16 + 8 + 4 162 + 82 + 42

3 16 + 8 + 4 + 4 162 + 82 + 42 + 42

3 16 + 8 + 4 + 4 + 4 162 + 82 + 42 + 42 + 42

Table 3: Runtime performances for a 6 layer HD-VAE.

elapsed time (seconds / iteration) GPU memory usage (MB)

Gaussian 0.25 4723
Discrete 0.25 5245

Appendix B. Tabular Results for the Relaxation Bias Experiment

Table 4: Measured one-importance-weighted ELBO on binarized MNIST for a LVAE model
with different number of layers and different numbers of stochastic units using
relaxed (τ = 0.1) and hard samples (τ = 0). We report N =

∑L
l=1 nl, where nl

relates to the number of latent variables at the layer l and we set K = 256 for all
the variables.

N = 12 N = 24 N = 48 N = 98
L Lτ=0.1

1 Lτ=0
1 δτ=0.1 Lτ=0.1

1 Lτ=0.1
1 δτ=0.1 Lτ=0.1

1 Lτ=0
1 δτ=0 Lτ=0.1

1 Lτ=0
1 δτ=0.1

1 -91.27 -93.35 2.08 -90.74 -93.59 2.85 -91.76 -94.87 3.11 -91.41 -94.65 3.23
2 -86.13 -87.44 1.31 -83.63 -85.22 1.59 -84.25 -85.99 1.75 -84.88 -86.73 1.84
3 -83.76 -85.13 1.37 -80.63 -82.71 2.08 -80.35 -83.09 2.73 -80.63 -83.48 2.85
4 -84.71 -86.03 1.32 -80.36 -82.26 1.90 -79.52 -81.88 2.36 -79.80 -82.34 2.54
5 -84.24 -85.87 1.63 -80.63 -82.72 2.09 -79.33 -81.56 2.22 -78.82 -81.27 2.45
6 -83.95 -85.54 1.59 -80.30 -82.14 1.85 -79.13 -81.27 2.14 -78.70 -81.60 2.90
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Appendix C. Adjusted Evidence Lower Bound for relaxed categorical
variables (relaxed-ELBO)

Let x be an observed variable, and consider a VAE model with one layer of N categorical
latent variables z = {z1, . . . , zN} each with K classes. The generative model is pθ(x, z) and
the inference model is qφ(z|x).

For a temperature parameter τ > 0, the equivalent relaxed concrete variables are de-
noted ẑ = {ẑ1, . . . , ẑN}, ẑi ∈ [0, 1]K . We define H = one hot ◦ arg max and

fθ,φ,x : z ∈ [0, 1]N×K → R such that fθ,φ,x(z) = fθ,φ(x, z) = log
pθ(x, z)

qφ(z|x)
. (9)

Following Tucker et al. (2017), using the Gumbel-Max trick, one can notice that

Eqτ=0
φ (z|x)[fθ,φ,x(z)] = Eqτ>0

φ (z̃|x)[fθ,φ,x(H(z̃))] .

We now assume that fθ,φ,x is κ-Lipschitz for L2. Then, by definition,

∀(a,b) ∈ ([0, 1]N×K)2, |fθ,φ,x(b)− fθ,φ,x(a)| ≤ κ ‖b− a‖2 (10)

The relaxation bias can therefore be bounded as follows:

δτ (θ, φ) ≡
∣∣Lτ>0

1 (θ, φ)− Lτ=0
1 (θ, φ)

∣∣
=
∣∣∣Eqτ>0

φ (z̃|x) [fθ,φ,x(z̃)]− Eqτ=0
φ (z|x) [fθ,φ,x(z)]

∣∣∣
=
∣∣∣Eqτ>0

φ (z̃|x) [fθ,φ,x(z̃)− fθ,φ,x(H(z̃))]
∣∣∣

≤ Eqτ>0
φ (z̃|x) [|fθ,φ,x(z̃)− fθ,φ,x(H(z̃))|] (Jensen’s Inequality)

≤ κ Eqτ>0
φ (z̃|x) [‖z̃−H(z̃))‖2] (κ-Lipschitz). (11)

Furthermore, we can define the adjusted Evidence Lower Bound for relaxed categorical
variables (relaxed-ELBO):

log p(x) ≥ Lτ=0
1 (θ, φ)

≥ Lτ=0
1 (θ, φ)−

∣∣Lτ>0
1 (θ, φ)− Lτ=0

1 (θ, φ)
∣∣

≥ Lτ>0
1 (θ, φ)− κ Eqτ>0

φ (z̃|x) [‖z̃−H(z̃))‖2] . (12)

As shown by the experiment presented in the section 4.2, the quantity Lτ>0
1 (θ, φ) −

Lτ=0
1 (θ, φ) appears to be a positive quantity. Furthermore, as the model attempts to

exploit the relaxation of z to maximize the surrogate objective, one may consider that
Eqτ>0

φ (z̃|x) [|fθ,φ,x(z̃)− fθ,φ,x(H(z̃))|] is a tight bound of δτ (θ, φ), meaning that the relaxed-

ELBO is a tight lower bound of the ELBO.
The relaxed-ELBO is differentiable and may enable automatic control of the tempera-

ture as left and right terms of the relaxed-ELBO seek respectively seek for high and low
temperature.

κ-Lipschitz neural networks can be designed using Weight Normalization (Salimans and
Kingma, 2016) or Spectral Normalization (Miyato et al., 2018). Nevertheless handling
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residual connections and multiple layers of latent variables is not trivial. We note however
that in the case of a one layer VAE, one only needs to constrain the VAE decoder to be
κ-Lispchitz as the surrogate objective is computed as

Eqτ>0
φ (z̃|x) [fθ,φ,x(z̃)] = Eqτ>0

φ (z̃|x) [log pθ(x|z̃) + log pθ(H(z̃))− log qφ(H(z̃)|x)] . (13)

In the appendix E, we show how the relaxed-ELBO can be extended to multiple layers of
latent variables in the LVAE setting.

Appendix D. Defining fθ,φ on the domain of the relaxed Categorical
Variables z̃

fθ,φ is only defined for categorical samples. For relaxed samples z̃, we define fθ,φ as:

fθ,φ(x, z̃) = log pθ(x|z̃)︸ ︷︷ ︸
(a)

+ log pθ(H(z̃))︸ ︷︷ ︸
(b)

− log qφ(H(z̃)|x)︸ ︷︷ ︸
(c)

. (14)

The introduction of the function H is necessary as the terms (b) and (c) are only defined
for categorical samples. This expression remains valid for hard samples z̃.

During training, relaxing the expressions (b) and (c) can potentially yield gradients of
lower variance. In the case of a single categorical variable z described by the set of K class
probabilities π = {π1, ...πK}. One can define:

log p̃(z̃ | π) ≡
K∑
i=1

z̃i log πi . (15)

Alternatively, asides from being a relaxed Categorical distribution, the Concrete/Gumbel-
Softmax also defines a proper continuous distribution. When treated as such, this results in
a proper probabilistic model with continuous latent variables, and the objective is unbiased.
In that case, the density is given by

p(z̃|π) = (K − 1)!τK−1
K∏
i=1

(
πi(z̃i)

−τ−1∑K
j=1 πj(z̃j)

−τ

)
. (16)
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Appendix E. The relaxed-ELBO for Ladder Variational Autoencoders

We consider now an LVAE model:

pθ(z) = pθ (zL)
L−1∏
i=1

pθ (zi|zi+1) qφ(z|x) = qφ (zL|x)
L−1∏
i=1

qφ,θ (zi|zi+1,x)

In the following, we will leave the conditioning on x implicit for convenience. The ELBO
estimated with relaxed samples (relaxed-ELBO) is:

Lτ>0
1 (θ, φ) = Eqτ>0(z̃)

[
log

p(H(z̃L))

q(H(z̃L))
+

L−1∑
i=1

log
p(H(z̃i)|z̃i+1)

q(H(z̃i)|z̃i+1)
+ log p(x|z̃1)

]

The correct ELBO can be rewritten as follows:

Lτ=0
1 (θ, φ) = Eqτ=0(z)

[
log

p(zL)

q(zL)
+
L−1∑
i=1

log
p(zi|zi+1)

q(zi|zi+1)
+ log p(x|z)

]

= Eqτ>0(z̃)

[
log

p(H(z̃L))

q(H(z̃L))
+

L−1∑
i=1

log
p(H(z̃i)|H(z̃i+1))

q(H(z̃i)|H(z̃i+1))
+ log p(x|H(z̃1))

]

Let us define a shorthand notation for the functions involved here:

f0(t) = f0(t; x) = log p(x|t)

fpi (t) = fpi (t; z̃i) = log p(H(z̃i)|t)

f qi (t) = f qi (t; z̃i) = log q(H(z̃i)|t)

for i = 1, . . . , L − 1. We assume that all these functions are Lipschitz functions with
constants κ0, κpi , κ

q
i . The relaxation bias for an LVAE can be bounded as follows:

δτ (θ, φ) =

∣∣∣∣∣Eqτ>0(z̃)

[
L−1∑
i=1

(
fpi (z̃i+1)− fpi (H(z̃i+1)) + f qi (H(z̃i+1))− f qi (z̃i+1)

)
+ f0(z̃1)− f0(H(z̃1))

]∣∣∣∣∣
≤ Eqτ>0(z̃)

[
L−1∑
i=1

(∣∣∣fpi (z̃i+1)− fpi (H(z̃i+1))
∣∣∣+
∣∣∣f qi (z̃i+1)− f qi (H(z̃i+1))

∣∣∣)
+
∣∣∣f0(z̃1)− f0(H(z̃1))

∣∣∣]

≤ κ0 Eqτ>0(z̃)

[
‖z̃1 −H(z̃1)‖2

]
+
L−1∑
i=1

(κpi + κqi ) Eqτ>0(z̃)

[
‖z̃i+1 −H(z̃i+1)‖2

]
Note that the terms for zL cancel out when taking the difference, because both in the
original and relaxed-ELBO we evaluate the log-density ratio of the categorical distributions
at the hard samples.
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Appendix F. Hierarchical Variational Autoencoders

In this section we define the VAE (Rezende et al., 2014; Kingma et al., 2016; Dieng et al.,
2018), the LVAE (Sønderby et al., 2016) and BIVA (Maaløe et al., 2019). All models are
characterized by a generative model pθ(x, z) = pθ(x|z)pθ(z) and can be coupled with any
variational distribution.

Variational Autoencoder (VAE)

pθ(z) = pθ (zL)

L−1∏
i=1

pθ (zi|zi+1) qφ(z|x) = qφ (z1|x)

L∏
i=2

qφ (zi|zi−1) . (17)

Variational Autoencoder with Skip-Connections (Skip-VAE)

pθ(z) = pθ (zL)

L−1∏
i=1

pθ (zi|z>i) qφ(z|x) = qφ (z1|x)

L∏
i=2

qφ (zi|z<i, x) . (18)

Ladder Variational Autoencoder (LVAE)

pθ(z) = pθ (zL)

L−1∏
i=1

pθ (zi|zi+1) qφ(z|x) = qφ (zL|x)

L−1∏
i=1

qφ,θ (zi|zi+1,x) (19)

Ladder Variational Autoencoder with Skip-Connections (Skip-LVAE)

pθ(z) = pθ (zL)

L−1∏
i=1

pθ (zi|z>i) qφ(z|x) = qφ (zL|x)

L−1∏
i=1

qφ,θ (zi|z>i,x) (20)

Bidirectional Variational Autoencoder (BIVA)

pθ(z) = pθ (zL)
L−1∏
i=1

pθ
(
zBU
i |z>i

)
pθ
(
zTD
i |z>i

)
(21)

qφ(z|x) = qφ
(
zL|x, zBU

<L

) L−1∏
i=1

qφ
(
zBU
i |x, zBU

<i

)
qφ,θ

(
zTD
i |x, zBU

<i , z
BU
>i , z

TD
i

)
(22)
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Appendix G. Samples

(a) (b)

(c) (d)

Figure 2: Prior Samples generated using the Gaussian LVAE (a, c) and HD-VAE (b, d)
with L = 3 and τ = 0 for statically Binarized MNIST and binarized Fashion
MNIST.

15



Towards Hierarchical Discrete Variational Autoencoders

(a) (b)

(c) (d)

Figure 3: Prior Samples generated using the Gaussian LVAE (a, c) and HD-VAE (b, d)
with L = 3 and τ = 0 for Omniglot and Caltech 101 Silouhettes.
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