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ABSTRACT

We introduce an approach for augmenting model-free deep reinforcement learning
agents with a mechanism for relational reasoning over structured representations,
which improves performance, learning efficiency, generalization, and interpretabil-
ity. Our architecture encodes an image as a set of vectors, and applies an iterative
message-passing procedure to discover and reason about relevant entities and rela-
tions in a scene. In six of seven StarCraft II Learning Environment mini-games, our
agent achieved state-of-the-art performance, and surpassed human grandmaster-
level on four. In a novel navigation and planning task, our agent’s performance
and learning efficiency far exceeded non-relational baselines, it was able to gener-
alize to more complex scenes than it had experienced during training. Moreover,
when we examined its learned internal representations, they reflected important
structure about the problem and the agent’s intentions. The main contribution of
this work is to introduce techniques for representing and reasoning about states in
model-free deep reinforcement learning agents via relational inductive biases. Our
experiments show this approach can offer advantages in efficiency, generalization,
and interpretability, and can scale up to meet some of the most challenging test
environments in modern artificial intelligence.

1 INTRODUCTION

Recent deep reinforcement learning (RL) systems have achieved remarkable performance in very
challenging problem domains (Mnih et al., 2015; Silver et al., 2016), in large part because of their
flexibility in how they learn and exploit the statistical structure underlying observations and reward
signals. But the downsides to such flexibility often include low sample efficiency and poor transfer
beyond the specifics of the training environment (Zhang et al., 2018; Lake et al., 2017; Kansky et al.,
2017). Various structured approaches to RL (e.g. Dzeroski et al. (2001); Driessens & Dzeroski
(2004); Diuk et al. (2008); Garnelo et al. (2016)) have attempted to overcome these limitations by
explicitly incorporating entity-based and symbolic representations, and specialized building blocks
for solving the task at hand. Although these approaches are often highly efficient, they constrain the
representations and admissible learning algorithms, they struggle to learn rich representations, and
they are therefore confined to relatively simple tasks and data conditions.

To strike favorable tradeoffs between flexibility and efficiency, a number of recent approaches have
explored using relational inductive biases in deep learning, to reap the benefits of flexible statistical
learning and more structured approaches. Methods such as “graph networks” (Scarselli et al., 2009;
Li et al., 2015; Battaglia et al., 2018) explicitly represent entities and their relations using using sets
and graphs, and perform relational reasoning using learned message-passing (Gilmer et al., 2017) and
attention (Vaswani et al., 2017; Hoshen, 2017; Velickovic et al., 2017; Wang et al., 2017) schemes.
Because they are implemented using deep neural networks, they can learn transformations from input
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Figure 1: Box-World and StarCraft II tasks demand reasoning about entities and their relations.

observations into task-relevant entities, as well as functions for computing rich interaction among
these entities. This provides a powerful capacity for combinatorial generalization, where their learned
building blocks can be composed to represent and reason about novel scenarios (Battaglia et al., 2016;
Raposo et al., 2017; Dai et al., 2017; Wang et al., 2018; Selsam et al., 2018; Hamrick et al., 2018;
Kipf et al., 2018; Sanchez-Gonzalez et al., 2018).

Drawing on several lines of work, we introduce an approach for incorporating relational inductive
biases for entity- and relation-centric state representations, and iterated relational reasoning, into a
deep RL agent. In contrast with prior work exploring relational inductive biases in deep RL (e.g.,
Wang et al., 2018), our approach does not rely on a priori knowledge of the structure of the problem
and is agnostic to the particular relations that need to be considered. To handle raw visual input data,
our architecture used a convolutional front-end to compute embeddings of sets of entities, similar to
previous work in visual question answering, physical prediction, and video understanding (Santoro
et al., 2017; Watters et al., 2017; Wang et al., 2017). To perform relational reasoning, we used
a self-attention mechanism (Vaswani et al., 2017; Hoshen, 2017; Velickovic et al., 2017) applied
iteratively within each timestep, which can be viewed as learned message-passing (Li et al., 2015;
Gilmer et al., 2017). Our deep RL agent is based on an off-policy advantage actor-critic (A2C)
method which is very effective across a range of standard RL environments (Espeholt et al., 2018).

Our results show that this relational deep RL agent scale to very challenging tasks, achieving state-of-
the-art performance on six out of seven StarCraft II mini-games (Vinyals et al., 2017), surpassing
grandmaster level on four mini-games. Additionally, we introduce a novel navigation and planning
task, called “Box-World”, which stresses the planning and reasoning components of the policy,
factoring out other challenges like complex vision or large action spaces. Our agent reaches higher
ceiling performance, more efficiently, than non-relational baseline, and is able to generalize to solve
problems with more complex solutions than it had been trained on within this task. We also found
that the intermediate representations involved in the relational computations were interpretable, and
suggest that the agent has rich understanding of the underlying structure of the problem.

2 RELATIONAL DEEP RL AGENT ARCHITECTURE

RL ALGORITHM

We started with a deep RL algorithm based on a distributed advantage actor-critic (A2C) method
(Espeholt et al., 2018), which the schematic on the left of Figure 2 summarizes. The agent creates an
embedded state representation, S from its input observation, which is then used to compute as output
a policy, π (the “actor”), and a baseline value, B (the “critic”). The π consists of logits over the set of
possible actions, from which an action to perform is sampled, and the B is an estimate of the state-
value function at the current state. During learning, the B is used to compute the temporal-difference
error, which is used both to optimize π to generate actions with greater returns than B predicts, and
to optimize B to more accurately estimate state values. For further algorithmic details, including
the distributed actor/learner framework and off-policy correction methods, please see Espeholt et al.
(2018).
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Figure 2: Box-World agent architecture and multi-head dot-product attention. E is a matrix that
compiles the entities produced by the visual front-end; gθ is a multilayer perceptron applied in parallel
to each row of the output of an MHDPA step, A, and producing updated entities, Ẽ.

INPUT MODULE

Our agent takes as input an image of a scene, transforms it into an embedded state representation,
S, which is a spatial feature map returned by a convolutional neural network (CNN). The relational
module (Figure 2) operated on a set of entities, so our architecture transformed the m×n× f feature
map into an N × f (where N = m · n) set of “entity vectors”, E, by reshaping S so that each of E’s
row, ei, corresponded to a feature vector, sx,y, at a particular x, y location in the embedded scene.
Crucially, this allowed for non-local computation between entities (Wang et al., 2017), unconstrained
by their coordinates in the spatial feature map. Because removing the spatial map’s coordinate
structure could prevent spatial information from being available for downstream computation, we
concatenated the spatial x, y coordinates of each sx,y onto the corresponding ei to ensure it was
preserved. This feature-to-entity transformation procedure is analogous to how relation networks,
visual interaction networks, and the general class of non-local neural networks (Santoro et al., 2017;
Watters et al., 2017; Wang et al., 2017) process input images.

RELATIONAL MODULE

To perform one step of relational reasoning, our architecture computed pairwise interactions between
each entity and all others (including itself), denoted pi,j , and updated each entity by accumulating
information about all of its interactions, ẽi ← {pi,j}j=1:N . This is analogous to how the general class
of graph neural networks and their relatives perform entity-wise relational updates (Scarselli et al.,
2009; Gilmer et al., 2017). To perform these one-step relational computations, we used self-attention
(Vaswani et al., 2017; Hoshen, 2017; Velickovic et al., 2017; Wang et al., 2017), though various other
implementations (e.g., those reviewed in Battaglia et al. (2018)) should also be viable.

Our specific self-attention implementation was based on Vaswani et al. (2017)’s multi-head dot-
product attention (MHDPA), which we explain in detail to make clear its role as a mechanism of
relational reasoning. MHDPA (see Figure 2’s expanded box) projects the entities, E, into matrices
of query, key, and value vectors, Q, K, and V , respectively (which are normalized via “layer
normalization” (Ba et al., 2016)). The similarities between query qi and all keys, kj=1:N are
computed by a dot-product, which are normalized into attention weights, wi, via a softmax function,
and then used to compute the pairwise interaction terms, pi,j = wi,jvj . The accumulation of the
interactions for each entity is the sum of these pairwise interactions, ai =

∑
j=1:N pi,j . This can

be efficiently computed using matrix multiplications, A = softmax(d−
1
2QKT )V , where d is the

dimensionality of the query and key vectors (i.e. Q and K have shape N × d). Like Vaswani et al.
(2017), we also use multiple, independent attention “heads”, applied in parallel (which our attention
analyses in Results 3.1 suggests the heads may assume distinct relational semantics through training).
The updated entities are computed as a function of the accumulated interactions, ẽi = gθ

(
ah=1:H
i

)
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Figure 3: Box-World task: example observations (left), underlying graph structure that determines
the proper path to the goal and the distractor branches (middle), and training curves (right).

(where h indexes the head) by concatenating all ah=1:H
i together, passing them to a multilayer

perceptron (MLP), summing the output with ei (i.e. a residual connection), and applying a final stage
of layer normalization (Ba et al., 2016). We included this non-linear transformation (gθ) to facilitate
the computation of more complex relationships between the entities. This is analogous to what is
done in Santoro et al. (2017).

This one-step relational update process, which we term a “block”, can be applied iteratively using
shared (recurrent) or unshared (deep) parameters, to compute higher order interactions among entities,
analogous to message-passing on graphs (Li et al., 2015; Gilmer et al., 2017). Here we refer to the
stack of multiple relational blocks as the relational module.

OUTPUT MODULE

The relational module’s final output, Ẽ, is then used to compute π and B as follows. The Ẽ matrix,
with shape N × f , is reduced to an f -dimensional vector by max-pooling over the entity dimension.
This pooled vector is then passed to a small MLP, which returns an (c+ 1)-dimensional vector. This
vector is split into a c-dimensional vector of π’s logits (where c is the number of discrete actions), and
a scalar baseline value estimate, B. The π logits are normalized using a softmax function, and used
as probability parameters for a multinomial distribution, from which an action is randomly sampled.

3 EXPERIMENTS AND RESULTS

3.1 BOX-WORLD

TASK DESCRIPTION

We first introduce a controlled navigation environment, called Box-World1, which we designed to
be perceptually simple, but combinatorially complex, and require abstract relational reasoning and
planning. It consists of a 12× 12 pixel room with keys and boxes scattered randomly. The room also
contains an agent, represented by a single dark gray pixel, which can move in four directions: up,
down, left, right (see Figure 1).

Keys are represented by a single colored pixel. The agent can pick up a loose key (i.e., one not
adjacent to any other colored pixel) by walking the avatar (i.e. the visual depiction of the agent’s
location) over it. Boxes are represented by two adjacent colored pixels – the pixel on the right

1The Box-World environment will be made publicly available online.
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represents the box’s lock and its color indicates which key can be used to open that lock; the pixel on
the left indicates the content of the box which is inaccessible while the box is locked.

To collect the content of a box the agent must first collect the key that opens the box (the one that
matches the lock’s color), and then walk over the lock, which makes the lock disappear. At this point
the content of the box becomes accessible and can be picked up by the agent. Most boxes contain
keys that, if made accessible, can be used to open other boxes. One of the boxes contains a gem,
represented by a single white pixel. The agent’s goal is to acquire the gem by unlocking the box that
contains it and picking it up by walking over it. Keys that an agent has in its possession are depicted
in the input observation as a pixel in the top-left corner.

In each level there is a unique sequence of boxes that need to be opened in order to reach the gem.
Opening one wrong box (a distractor box) consumes the held key and leads to a dead-end, where the
gem cannot be reached and the level becomes unsolvable. There are three user-controlled parameters
that contribute to the difficulty of the level: 1) the number of boxes in the path to the goal (solution
length); 2) the number of distractor branches; 3) the length of the distractor branches. In general,
the task is computationally difficult for a few reasons. First, a key can only be used once, so the
agent must be able to reason about whether a particular box is along a distractor branch or along the
solution path. Second, keys and boxes appear in random locations in the room, demanding a capacity
to reason about keys and boxes based on their abstract relations, rather than based on their spatial
proximity.

RL AGENTS FOR BOX-WORLD

Our agent follows the reinforcement learning setup and architecture described in section (Sec. 2).
For a non-relational baseline, we replaced the agent’s relational module with a variable number of
residual convolution blocks. See the Appendix for further details of the input, relational, and output
modules, including hyperparameters and training procedures.

RESULTS

The training set-up consisted of Box-World levels with solution lengths of at least 1 and up to 4. This
ensured that an untrained agent would have a small probability of reaching the goal by chance, at least
on some levels.2 The number of distractor branches was randomly sampled from 0 to 4. Training
was split into two variants of the task: one with distractor branches of length 1; another one with
distractor branches of length 3 (see Figure 3).

Agents augmented with our relational module achieved close to optimal performance in the two
variants of this task, solving more than 98% of the levels. In the task variant with short distractor
branches, an agent with a single relational block was able to achieve top performance. In the variant
with long distractor branches, a greater number of relational blocks was required, consistent with
the conjecture that more blocks allow higher-order relational computations. In contrast, our baseline
agents, which can only rely on convolutional and fully-connected layers, performed significantly
worse, solving less than 75% of the levels across the two task variants. We observed similar results
when we repeated the experiments using two alternative RL algorithms: asynchronous advantage
actor-critic (A3C, Mnih et al., 2016) and distributed Q-learning with prioritized experience replay
(Horgan et al., 2018). We note that with Q-learning training took significantly longer (see Figure 7 in
Appendix).

We also repeated these experiments, but with backward branching in the underlying graph used to
generate the level. With backward branching the agent does not need to plan far into the future; when
it is in possession of a key, a successful strategy is always to open the matching lock. In contrast, with
forward branching scenes, the agent can use a key on the wrong lock (i.e. on a lock along a distractor
branch). Thus, forward branching demands more complicated forward planning to determine the
correct locks to open, which contrasts with backward branching scenarios where an agent can adopt
a more reactive policy, always opting to open the lock that matches the key in possession. Indeed,
the baseline agents performed much better in backward (versus forward) branching scenes, which

2An agent with a random policy solves by chance 2.3% of levels with solution lengths of 1 and 0.0% of
levels with solution lengths of 4.
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Figure 4: Visualization of attention weights. (a) The underlying graph of one example level; (b)
the result of the analysis for that level, using each of the entities along the solution path (1–5) as
the source of attention. Arrows point to the entities that the source is attending to. An arrow’s
transparency is determined by the corresponding attention weight.

suggests that its weak relational reasoning capacity is to blame for its poor performance in the forward
branching condition (see Figure 8 in Appendix).

VISUALIZATION OF ATTENTION WEIGHTS

We next looked at specific rows of the attention weight matrix, wi, which corresponded to relevant
objects in the scene. Figure 4 shows the result of this analysis when the attending entities (source of
the attention) are objects along the solution path. For one of the attention heads, each key attends
mostly to the locks that can be unlocked with that key. In other words, the attention weights reflect
the options available to the agent once a key is collected. For another attention head, each key attends
mostly to the avatar’s entity vector. This suggests that object-avatar relations are important, which
may help measure of relative position and support navigation.

In the case of RGB pixel inputs, the relationship between keys and locks that can be opened with
that key is confounded with the fact that keys and the corresponding locks have the same RGB
representation. We therefore repeated the analysis, this time using one-hot representation of the input,
where the mapping between keys and the corresponding locks is arbitrary. We found evidence that:
1) keys attend to the locks they can unlock; 2) locks attend to the keys that can be used to unlock
them; 3) all the objects attend to the avatar’s location; 4) the avatar and gem attend to each other and
themselves.

GENERALIZATION CAPABILITY: TESTING ON WITHHELD ENVIRONMENTS

As we observed, the attention weights captured a link between a key and its corresponding lock, using
a shared computation across entities. If the function used to compute the weights (and hence, used
to determine that certain keys and locks are related) has learned to represent some general, abstract
notion of what it means to “unlock” – e.g., unlocks(key, lock) – then this function should
be able to generalize to key-lock combinations that it has never observed during training. Similarly,
a capacity to understand “unlocking” shouldn’t necessarily be affected by the number of locks that
need to be unlocked to reach a solution.

We thus tested the model under two conditions, without further training: 1) on levels that required
opening a longer sequence of boxes than it had ever observed (6, 8 and 10), and 2) on levels that
required using a key-lock combination that was never required for reaching the gem during training,
instead only being placed on distractor paths. As shown in Figure 5, in the first condition, the
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Figure 5: Generalization in Box-World. Zero-shot transfer to levels that required: (a) opening a
longer sequence of boxes; (b) using a key-lock combination that was never required during training.

agent with the relational module solved more than 88% of the levels, across all three solution length
conditions. In contrast, the performance of the agent trained without the relational module collapsed
to 5% when tested on sequences of 6 boxes, and to 0% on sequences of 8 and 10. On levels with
new key-lock combinations, the agent augmented with a relational module solved 97% of the new
levels. The agent without the relational module performed poorly, reaching only 13%. Together,
these results show that the relational module offers a greater capacity for zero-shot transfer to more
complex and previously unseen problems. This is likely a consequence of our approach’s object- and
relation-centric learning, which is less sensitive to the specific conjunctions of objects and relations it
has experienced during training.

3.2 STARCRAFT II MINI-GAMES

TASK DESCRIPTION

StarCraft II is a popular video game that presents a difficult challenge for RL agents. It is a multi-
agent game where each player controls a large number (hundreds) of units that need to interact and
collaborate (see Figure 1). It is partially observable and has a large state and action space, with more
than 100 possible actions. The consequences of any single action – in particular, early decisions
in the game – are typically only observed many frames later, posing difficulties in temporal credit
assignment and exploration.

We trained our agents on the suite of 7 mini-games developed for the StarCraft II Learning Environ-
ment (SC2LE, Vinyals et al., 2017). These mini-games were proposed as a set of specific scenarios
that are representative of the mechanics of the full game and can be used to test agents in a simpler
set up with a better defined reward structure, compared to the full game. The 7 mini-games demand
different strategies and skills. Notably, Collect Mineral Shards (CMS), Defeat Roaches (DR) and
Defeat Zerglings and Banelings (DZB), require controlling multiple units with precision and in a
coordinated manner. To achieve a high score in CMS, the player (or agent) needs to command the two
marines independently, defining navigation paths that do not overlap too much in order to efficiently
cover most of the ground. In DR, the player must focus-fire to succeed, which requires selecting the
same attack target, one at a time, for all the marines. In DZB, the enemy units have different abilities,
so a good strategy may involve splitting the army into groups with different roles.

RL AGENTS FOR STARCRAFT II

For StarCraft II (SC2), we start by first constructing a strong control baseline to test against our
relational agent. The architecture is similar to that of the Box-World agent, with changes to accommo-
date specific features of the SC2 environment. We increased the model capacity by using 2 residual
convolutional blocks in the input module, each consisting of 3 convolutional layers. We added a
2D-ConvLSTM immediately downstream of the residual blocks, so the subsequent computations
were sensitive to the recent history of observations, rather than only the current observation, thus
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accounting for partial observability. Including this memory mechanism was important because the
actions a StarCraft agent issues to units are carried out over multiple timesteps (e.g., MOVE UNIT 3
TO COORDINATE (1, 5)), and the agent needs a way of not “forgetting” what actions it has issued
previously. Otherwise it might keep reissuing the same action to a unit, rather than choosing another
action for another unit. Finally, the relational module depicted in section (Sec. 2) was replaced by a
stack of residual convolutional blocks in the control agent.

For the agent’s output, alongside action a and value V , the network produces two sets of action-related
arguments: non-spatial arguments (Args) and spatial arguments (Argsx,y). These arguments are used
as modifiers of particular actions (see (Vinyals et al., 2017)). Args are produced from the output
of the aggregation function, whereas Argsx,y result from upsampling the output of the relational
module. See the Appendix for further details.

Figure 6: Final performance across StarCraft II mini-games. The relational-agent achieved above
grandmaster scores in 4 out of 7 levels. The main difference between our new control agent and the
relational agent is most relevant in the Defeat Zerglings and Banelings task. Here, the underlying
strategy requires agents to split their army and kite enemy units in order to alleviate the incoming
impact (as Banelings incur area damage); a strategy requiring reasoning and fine control over many
units. A relational agent with iterative blocks of attention was required for this strategy to emerge.
For more details, see Table 1 in the Appendix.

RESULTS

For these results we used the full action set provided by SC2LE and performance was measured as
the mean score over 30 episodes of the best run for each mini-game. Our agent implementations
achieved high scores across all the mini-games (Figure 6), consistently outperforming the previous
best models. In particular, the agent augmented with a relational module achieved state-of-the-art
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results in six mini-games and its performance surpassed that of the human grandmaster in four of
them3.

Head-to-head comparisons between our two implementations show that the agent with the relational
component (relational) achieves similar or better results than the one without (control). Concretely,
for Collect Mineral Shards, Defeat Roaches and Defeat Zerglings and Banelings, the relational agent
improved relative to the control agent by 9, 8 and 134 points, with a standard error of 1.5, 6.4 and
18.2, respectively.

We note that both models improved substantially over the previous best (Vinyals et al., 2017), and
in some mini-games, they approach an empirical ceiling performance. This can be attributed to a
combination of factors: improved RL algorithm (Espeholt et al., 2018), more robust architecture,
better hyperparameter tuning to address issues of credit assignment and exploration, better action
selection procedure, and longer training. Next, we focus on differences afforded by relational
inductive biases and turn to particular generalization tests to determine the behavioural traits of the
control and relational agents.

GENERALIZATION CAPABILITY

As observed in Box-World, a capacity to better understand underlying relational structure – rather than
latch onto superficial statistics – may manifest in better generalization to never-before-seen situations.
To test generalization in SC2 we took agents trained on Collect Mineral Shards, which involved using
two marines to collect randomly scattered minerals and tested them, without further training, on
modified levels that allowed the agents to instead control up to ten marines. It’s worth highlighting the
agents have never been exposed to a single observation present in these generalization experiments.
Intuitively, if an agent understands that marines are independent units that can be coordinated, yet
controlled independently to collect resources, then increasing the number of marines available should
only affect the underlying strategy of unit deployment, and should not catastrophically break model
performance.

We observed that—at least for medium sized networks—some interesting generalization capabilities
emerge, with the best seeds of the relational agent achieving better generalization scores in the
test scenario. However, we noticed high variability in these quantitative results, with the effect
diminishing when using larger models (which may be more prone to overfitting on the training set).
Qualitative analysis of the policies revealed distinct behaviours for the best performing control and
relational agents: while the former adopted a "land sweep strategy", controlling many units as a
group to cover the space, the latter managed to independently control several units simultaneously,
suggesting a finer grained understanding of the game dynamics. Further work is required to draw
firm conclusions about the generalization capabilities of a relational agent in more complex domains
such as StarCraft II (see Figure 9 in Appendix).

Given the combinatoric richness and multi-agent aspects of the full StarCraft II game, an agent is
frequently exposed to situations in which it might not have been trained on. Thus, an improved
capability to generalize to new, unseen situations aided by a better understanding of underlying
abstract entities and their relations is fundamental.

4 CONCLUSION

By introducing structured perception and relational reasoning into deep RL architectures, our agents
can learn interpretable representations, and exceed baseline agents in terms of sample complexity,
ability to generalize, and overall performance. Behavioral analyses showed that the learned rep-
resentations allowed for better generalization, which is characteristic of relational representations.
Analysis of attention weights showed that the model’s internal computations were interpretable, and
congruent with the computations we would expect from a model computing task-relevant relations.

One important future direction is to explore ways to scale our approach to larger inputs spaces,
without suffering, as this and other approaches do (e.g., Wang et al., 2017; Santoro et al., 2017), from
the quadratic complexity that results from considering all input pairs. Possible avenues involve using
a distinct attentional mechanisms that scales linearly with the number of inputs (Hoshen, 2017) or

3For replay videos visit: http://bit.ly/2kQWMzE
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filtering out unimportant relations (Malinowski et al., 2018). Other future directions include exploring
perceiving complex scenes via more structured formats, such as scene graphs (Xu et al., 2017; Chen
et al., 2018), which could be powerful additions to our approach’s input module. More complex
relational modules could be explored, such as richer graph network implementations (Battaglia
et al., 2018), learned approaches for inducing compositional programs (Reed & De Freitas, 2015;
Parisotto et al., 2017; Allamanis et al., 2017; Devlin et al., 2017) and reasoning about structured
data (Neelakantan et al., 2015; Liang et al., 2016), or even explicit logical reasoning over structured
internal representations (Evans et al., 2018), drawing inspiration from more symbolic approaches in
classic AI. Our approach may also interface well with approaches for hierarchical RL (Vezhnevets
et al., 2017), planning (Guez et al., 2018), and structured behavior representation (Huang et al.,
2018), so that the structured internal representations and patterns of reasoning can translate into more
structured behaviors.

More speculatively, this work blurs the line between model-free agents, and those with a capacity
for more abstract planning. An important feature of model-based approaches is making general
knowledge of the environment available for decision-making. Here our inductive biases for entity-
and relation-centric representations and iterated reasoning reflect key knowledge about the structure
of the world. While not a model in the technical sense, it is possible that the agent learns to exploit this
relational architectural prior similarly to how an imagination-based agent’s forward model operates
(Hamrick et al., 2017; Pascanu et al., 2017; Weber et al., 2017). More generally, our work opens
new directions for RL via a principled hybrid of flexible statistical learning and more structured
approaches.
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APPENDIX

A BOX-WORLD

TASK

Each level in Box-world is procedurally generated. We start by generating a random graph (a tree)
that defines the correct path to the goal – i.e., the sequence of boxes that need to be opened to reach
the gem. This graph also defines multiple distractor branches – boxes that lead to dead-ends. The
agent, keys and boxes, including the one containing the gem, are positioned randomly in the room,
assuring that there is enough space for the agent to navigate between boxes. There is a total of 20
keys and 20 locks that are randomly sampled to produce the level. An agent receives a reward of +10
for collecting the gem, +1 for opening a box in the solution path and −1 for opening a distractor box.
A level terminates immediately after the gem is collected or a distractor box is opened.

The generation process produces a very large number of possible trees, making it extremely unlikely
that the agent will face the same level twice. The procedural generation of levels also allows us to
create different training-test splits by withholding levels that conform to a particular case during
training and presenting them to the agent at test time.
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Figure 7: Alternative RL algorithms produced similar results on Box-World. The difference in
performance that we observed between relational and baseline agents using the RL algorithm
proposed by Espeholt et al. (2018) was still present when using A3C or distributed DQN. These
experiments were done using 10× 10 pixel maps, solution sequences of up to 3 boxes and up to 3
distractor branches.
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Figure 8: Box-World: forward branching versus backward branching. With backward branching, any
given key can only open one box; however, each key type (i.e. color), can appear in multiple boxes.
This means that an agent can adopt a more reactive policy without planning beyond which box to
open next.
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Mini-game

Agent 1 2 3 4 5 6 7

DeepMind Human Player (Vinyals et al., 2017) 26 133 46 41 729 6880 138

StarCraft Grandmaster (Vinyals et al., 2017) 28 177 61 215 727 7566 133

Random Policy (Vinyals et al., 2017) 1 17 4 1 23 12 < 1

FullyConv LSTM (Vinyals et al., 2017) 26 104 44 98 96 3351 6

PBT-A3C (Jaderberg et al., 2017) – 101 50 132 125 3345 0

Relational agent 27 196 ↑ 62 ↑ 303 ↑ 736 ↑ 4906 123

Control agent 27 187 ↑ 61 295 ↑ 602 5055 120

Table 1: Mean scores achieved in the StarCraft II mini-games using full action set. ↑ denotes a
score that is higher than a StarCraft Grandmaster. Mini-games: 1–Move To Beacon, 2–Collect
Mineral Shards, 3–Find And Defeat Zerglings, 4–Defeat Roaches, 5–Defeat Zerglings And Banelings,
6–Collect Minerals And Gas, 7–Build Marines.

B RL TRAINING PROCEDURE

We used distributed A2C agents with off-policy corrections (Espeholt et al., 2018). Each agents
consisted of 100 actors generating trajectories of experience, and a single learner, which learns π and
B using the actors’ experiences. The model updates were performed on GPU using mini-batches of
32 trajectories provided by the actors via a queue. The agents used an entropy cost of 0.005, discount
(γ) of 0.99 and unroll length of 40 steps.

Training was done using RMSprop optimiser with momentum of 0, ε of 0.1 and a decay term of 0.99.
The learning rate was tuned, taking values between 1e−5 and 2e−4.

AGENT ARCHITECTURE

The input module contained two convolutional layers with 12 and 24 kernels, 2 × 2 kernel sizes
and a stride of 1, followed by a rectified linear unit (ReLU) activation function. The output was
tagged with two extra channels indicating the spatial position (x and y) of each cell in the feature map
using evenly spaced values between −1 and 1. This was passed to the relational module, consisting
of relational blocks, with shared parameters. Queries, keys and values were produced by 2 to 4
attention heads and had an embedding size (d) of 64. The output of this module was aggregated using
a feature-wise max pooling function and passed to 4 fully connected layers, each followed by a ReLU.
Policy logits (π, size 4) and baseline function (B, size 1) were produced by a linear projection. The
policy logits were normalized and used as multinomial distribution from which the action (a) was
sampled.

BASELINE AGENT ARCHITECTURE

As a baseline agent we used the same architecture as the relational agent but replaced the relational
module with a variable number (3 to 6) of residual-convolutional blocks. Each residual block
comprised two convolutional layers, with 3× 3 kernels, stride of 1 and 26 output channels.

C STARCRAFT II MINI-GAMES

StarCraft II agents were trained with Adam optimiser for a total of 10 billion steps using batches of
32 trajectories, each unrolled for 80 steps. A linear decay was applied to the optimiser learning rate
and entropy loss scaling throughout training (see Table 2 for details). We ran approximately 100
experiments for each mini-game, using the hyperparameter settings indicated in Table 4 combined
with 3 seeds.
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Figure 9: Generalization results on the StarCraft II mini-game Collect Mineral Shards. Agents were
trained on levels with 2 marines and tested on levels with 1, 2, 3, 4, 5 or 10 marines. Colored bars
indicate mean score over the ten best runs; error bars indicate standard error.

RELATIONAL AGENT ARCHITECTURE

The StarCraft II (SC2) agent architecture follows closely the one we adopted in Box-World. Here we
highlight the changes needed to satisfy SC2 constraints.

Input-preprocessing. At each time step agents are presented with 4 sources of information: min-
imap, screen, player, and previous-action. These tensors share the same pre-processing: numerical
features are re-scaled with a logarithmic transformation and categorical features are embedded into a
continuous 10-dimensional space.

State encoding. Spatially encoded inputs (minimap and screen) are tiled with binary masks denoting
whether the previous action constituted a screen- or minimap-related action. These tensors are then
fed to independent residual convolutional blocks, each consisting of one convolutional layer (4× 4
kernels and stride 2) followed by a residual block with 2 convolutional layers (3 × 3 kernels and
stride 1), which process and downsample the inputs to [8× 8×#channels1] outputs. These tensors
are concatenated along the depth dimension to form a singular spatial input (inputs3D, with shape
[8 × 8 × #channels1 + #channels1]). The remaining inputs (player and previous-action) are
concatenated and passed to a 2-layer MLP (128 units, ReLU, 64 units) to form a singular non-spatial
input (inputs2D).

Memory processing. Next, inputs3D is passed to the Conv2DLSTM along with its previous state to
produce a new state and outputs3D (shape [8× 8×#channels2]), which represents an aggregated
history of input observations.

Relational processing. outputs3D is flattened along the first two dimensions (forming a 2D tensor
of shape [64×#channels2] and passed to the stacked MHDPA blocks (see Table 3 for details). Its
output tensors (of shape [64× attention embedding size ∗ number of attention heads]) follow
two separate pathways – relational-spatial: reshapes the tensors to their original spatial shape [8× 8];
relational-nonspatial: aggregates through a feature-wise max-pooling operation (combining the 64
embeddings into a flat tensor) and further processes using a 2-layer MLP (512 units per layer, ReLU
activations).

Output processing. inputs2D and relational-nonspatial are concatenated to form a set of shared
features. Policy logits are produced by feeding shared features to a 2-layer MLP (256 units, ReLU,
|actions| units) and masking unavailable actions (following Vinyals et al. (2017)). Similarly, baselines
values V are generated by feeding shared features to a separate 2-layer MLP (256 units, ReLU, 1
unit).

Actions are sampled using computed policy logits and embedded into a 16 dimensional vector.
This embedding is used to condition shared features and generate logits for non-spatial arguments
(Args) through independent linear combinations (one for each argument). Finally, spatial arguments
(Argsx,y) are obtained by first deconvolving relational-spatial to [32× 32×#channels3] tensors
using Conv2DTranspose layers, conditioned by tiling the action embedding along the depth dimension
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Hyperparameter Value

Conv2DLSTM

Output channels (#channels2) 96

Kernel shape (3, 3)

Stride (1, 1)

Conv2DTranspose

Output channels (#channels3) 16

Kernel shape (4, 4)

Stride (2, 2)

Discount (γ) 0.99

Batch size 32

Unroll Length 80

Baseline loss scaling 0.1

Clip global gradient norm 100.0

Adam β1 0.9

Adam β2 0.999

Adam ε 1e−8

Table 2: Shared fixed hyperparameters across mini-games.

Setting Value

MLP layers 2

Units per MLP layer 384

MLP activations ReLU

Attention embedding size 32

Weight sharing shared MLP across blocks

shared embedding across blocks

Table 3: Fixed MHDPA settings for StarCraft II mini-games.

and passed by 1× 1× 1 convolution layers (one for each spatial argument). Spatial arguments (x, y)
are produced by sampling resulting tensors and selecting the corresponding row and column indexes.

CONTROL AGENT ARCHITECTURE

The control agent architecture only differs on the relational processing part of the pipeline. Analogous
to the relational agent, outputs2D are obtained from Conv2DLSTM layers. These tensors are first
passed to a 12-layer deep residual model – comprising 4 blocks of 3 convolutions layers (32 output
channels, 4 × 4 kernel for the first convolution and 3 × 3 for the second and third, and stride 1)
interleaved with ReLU activations and skip-connections – as proposed by He et al. (2016), to form
the relational-spatial outputs. These tensors also follow a separate pathway where they are flattened
and passed to a 2-layer MLP (512 units per layer, ReLU activations) to produce what we refer to
above as relational-nonspatial. The remaining architecture is identical to the relational agent.
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Hyperparameter Value

Relational module

Number of heads [1, 3]

Number of blocks [1, 3, 5]

Entropy loss scaling [1e−1, 1e−2, 1e−3]
Adam learning rate [1e−4, 1e−5]

Table 4: Swept hyperparameters across mini-games.
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