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ABSTRACT

Learning to cooperate is crucially important in multi-agent environments. The
key is to understand the mutual interplay between agents. However, multi-agent
environments are highly dynamic, where agents keep moving and their neighbors
change quickly. This makes it hard to learn abstract representations of mutual
interplay between agents. To tackle these difficulties, we propose graph convo-
lutional reinforcement learning, where graph convolution adapts to the dynamics
of the underlying graph of the multi-agent environment, and relation kernels cap-
ture the interplay between agents by their relation representations. Latent features
produced by convolutional layers from gradually increased receptive fields are
exploited to learn cooperation, and cooperation is further improved by temporal
relation regularization for consistency. Empirically, we show that our method sub-
stantially outperforms existing methods in a variety of cooperative scenarios.

1 INTRODUCTION

Cooperation is a widespread phenomenon in nature from viruses, bacteria, and social amoebae to
insect societies, social animals, and humans (Melis & Semmann, 2010). Human exceeds all other
species in terms of range and scale of cooperation. The development of human cooperation is
facilitated by the underlying graph of human societies (Ohtsuki et al., 2006; Apicella et al., 2012),
where the mutual interplay between humans is abstracted by their relations.

It is crucially important to enable agents to learn to cooperate in multi-agent environments for many
applications, e.g., autonomous driving (Shalev-Shwartz et al., 2016), traffic light control (Wiering,
2000), smart grid control (Yang et al., 2018a), and multi-robot control (Matignon et al., 2012). Multi-
agent reinforcement learning (MARL) facilitated by communication (Sukhbaatar et al., 2016; Peng
et al., 2017; Jiang & Lu, 2018), mean field theory (Yang et al., 2018b), and causal influence (Jaques
et al., 2019) have been exploited for multi-agent cooperation. However, communication among all
agents (Sukhbaatar et al., 2016; Peng et al., 2017) makes it hard to extract valuable information
for cooperation, while communication with only nearby agents (Jiang & Lu, 2018) may restrain
the range of cooperation. MeanField (Yang et al., 2018b) captures the interplay of agents by mean
action, but the mean action eliminates the difference among agents and thus incurs the loss of im-
portant information that could help cooperation. Causal influence (Jaques et al., 2019) is a measure
of action influence, which is the policy change of an agent in the presence of an action of another
agent. However, causal influence is not directly related to the reward of the environment and thus
may not encourage cooperation. Unlike existing work, we consider the underlying graph of agents,
which could potentially help understand agents’ mutual interplay and promote their cooperation as
it does in human cooperation (Ohtsuki et al., 2006; Apicella et al., 2012).

In this paper, we propose graph convolutional reinforcement learning, where the multi-agent envi-
ronment is modeled as a graph. Each agent is a node, the encoding of local observation of agent is
the feature of node, and there is an edge between a node and its each neighbor. We apply convolution
to the graph of agents. By employing multi-head attention (Vaswani et al., 2017) as the convolution
kernel, graph convolution is able to extract the relation representation between nodes and convolve
the features from neighboring nodes just like a neuron in a convolutional neural network (CNN).
Latent features extracted from gradually increased receptive fields are exploited to learn cooperative
policies. Moreover, the relation representation is temporally regularized to help the agent develop
consistent cooperative policy.
∗Work done at Peking University.
†Correspondence to Zongqing Lu <zongqing.lu@pku.edu.cn>.
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Graph convolutional reinforcement learning, namely DGN, is instantiated based on deep Q net-
work and trained end-to-end. DGN shares weights among all agents, making it easy to scale. DGN
abstracts the mutual interplay between agents by relation kernels, extracts latent features by convo-
lution, and induces consistent cooperation by temporal relation regularization. We empirically show
the learning effectiveness of DGN in jungle and battle games and routing in packet switching net-
works. We demonstrate that DGN agents are able to develop cooperative and sophisticated strategies
and DGN outperforms existing methods in a large margin.

By ablation studies, we confirm the following. Graph convolution greatly enhances the cooperation
of agents. Unlike other parameter-sharing methods, graph convolution allows the policy to be op-
timized by jointly considering the agents in the receptive field of an agent, promoting the mutual
help. Relation kernels that are independent from the input order of features can effectively capture
the interplay between agents and abstract relation representation to further improve cooperation.
Temporal regularization, which minimizes the KL divergence of relation representations in succes-
sive timesteps, boosts the cooperation, helping the agent to form a long-term and consistent policy
in the highly dynamic environment with many moving agents.

2 RELATED WORK

MARL. MADDPG (Lowe et al., 2017) and COMA (Foerster et al., 2018) are actor-critic mod-
els for the settings of local reward and shared reward, respectively. A centralized critic that takes
as input the observations and actions of all agents are used in both, which makes them hard to
scale. PS-TRPO (Gupta et al., 2017) solves problems that were previously considered intractable
by most MARL algorithms via sharing of policy parameters that also improves multi-agent cooper-
ation. However, the cooperation is still limited without sharing information among agents. Sharing
parameters of value function among agents is considered in (Zhang et al., 2018) and convergence
guarantee is provided for linear function approximation. However, the proposed algorithms and their
convergence are established only in fully observable environments. Value propagation is proposed in
(Qu et al., 2019) for networked MARL, which uses softmax temporal consistency to connect value
and policy updates. However, this method only works on networked agents with static connectivity.
CommNet (Sukhbaatar et al., 2016) and BiCNet (Peng et al., 2017) communicate the encoding of
local observation among agents. ATOC (Jiang & Lu, 2018) and TarMAC (Das et al., 2019) enable
agents to learn when to communicate and who to send messages to, respectively, using attention
mechanism. These communication models prove that communication does help for cooperation.
However, full communication is costly and inefficient, while restrained communication may limit
the range of cooperation.

Graph Convolution and Relation. Many important real-world applications come in the form of
graphs, such as social networks (Kipf & Welling, 2017), protein-interaction networks (Duvenaud
et al., 2015), and 3D point cloud (Charles et al., 2017). Several frameworks (Henaff et al., 2015;
Niepert et al., 2016; Kipf & Welling, 2017; Velickovic et al., 2017) have been architected to extract
locally connected features from arbitrary graphs. A graph convolutional network (GCN) takes as
input the feature matrix that summarizes the attributes of each node and outputs a node-level feature
matrix. The function is similar to the convolution operation in CNNs, where the kernels are con-
volved across local regions of the input to produce feature maps. Using GCNs, interaction networks
can reason the objects, relations and physics in complex systems, which has been proven difficult
for CNNs. A few interaction frameworks have been proposed to predict the future states and under-
lying properties, such as IN (Battaglia et al., 2016), VIN (Watters et al., 2017), and VAIN (Hoshen,
2017). Relational reinforcement learning (RRL) (Zambaldi et al., 2018) embeds multi-head dot-
product attention (Vaswani et al., 2017) as relation block into neural networks to learn pairwise
interaction representation of a set of entities in the agent’s state, helping the agent solve tasks with
complex logic. Relational Forward Models (RFM) (Tacchetti et al., 2019) use supervised learning
to predict the actions of all other agents based on global state. However, in partially observable
environments, it is hard for RFM to learn to make accurate prediction with only local observation.
MAGnet (Malysheva et al., 2018) learns relevance information in the form of a relevance graph,
where relation weights are learned by pre-defined loss function based on heuristic rules, but relation
weights in DGN are learned by directly minimizing the temporal-difference error of value function
end-to-end. Agarwal et al. (2019) used attention mechanism for communication and proposed a
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curriculum learning for transferable cooperation. However, these two methods require the objects in
the environment are explicitly labeled, which is infeasible in many real-world applications.

3 METHOD

We construct the multi-agent environment as a graph, where agents in the environment are repre-
sented by the nodes of the graph and each node i has a set of neighbors, Bi, which is determined
by distance or other metrics, depending on the environment, and varies over time (e.g., the agents
in i’s communication range or local observation). Moreover, neighboring nodes can communicate
with each other. The intuition behind this is neighboring agents are more likely to interact with
and affect each other. In addition, in many multi-agent environments, it may be costly and less
helpful to take all other agents into consideration, because receiving a large amount of information
requires high bandwidth and incurs high computational complexity, and agents cannot differentiate
valuable information from globally shared information (Tan, 1993; Jiang & Lu, 2018). As convolu-
tion can gradually increase the receptive field of an agent1, the scope of cooperation is not restricted.
Therefore, it is efficient and effective to consider only neighboring agents. Unlike the static graph
considered in GCNs, the graph of multi-agent environment is dynamic and continuously changing
over time as agents move or enter/leave the environment. Therefore, DGN should be able to adapt
to the dynamics of the graph and learn as the multi-agent environment evolves.

3.1 GRAPH CONVOLUTION

Encoder (MLP/CNN)

Convolutional Layer
(relation kernel)

Q network

Convolutional Layer
(relation kernel) 

Agent

Figure 1: DGN consists of three modules: en-
coder, convolutional layer, and Q network. All
agents share weights and gradients are accumu-
lated to update the weights.

The problem is formulated as Decentralized Par-
tially Observable Markov Decision Process (Dec-
POMDP), where at each timestep t each agent i re-
ceives a local observation oti, which is the property of
node i in the graph, takes an action ati, and gets an in-
dividual reward rti . The objective is to maximize the
sum of all agents’ expected returns. DGN consists
of three types of modules: observation encoder, con-
volutional layer andQ network, as illustrated in Fig-
ure 1. The local observation oti is encoded into a fea-
ture vector hti by MLP for low-dimensional input or
CNN for visual input. The convolutional layer inte-
grates the feature vectors in the local region (includ-
ing node i and its neighbors Bi) and generates the
latent feature vector h

′t
i . By stacking more convolu-

tional layers, the receptive field of an agent gradu-
ally grows, where more information is gathered, and thus the scope of cooperation can also increase.
That is, by one convolutional layer, node i can directly acquire the feature vectors from the encoders
of nodes in one-hop (i.e., Bi). By stacking two layers, node i can get the output of the first con-
volutional layer of the nodes in one-hop, which contains the information from nodes in two-hop.
However, regardless of how many convolutional layers are stacked, node i only communicates with
its neighbors. This makes DGN practical in real-world applications, where each agent has lim-
ited communication range. In addition, details of the convolution kernel will be discussed in next
subsection.

As the number and position of agents vary over time, the underlying graph continuously changes,
which brings difficulties to graph convolution. To address the issue, we merge all agents’ feature
vectors at time t into a feature matrix F t with size N×L in the order of index, where N is the number
of agents and L is the length of feature vector. Then, we construct an adjacency matrix Cti with size
(|Bi| + 1) × N for agent i, where the first row is the one-hot representation of the index of node i,
and the jth row, j = 2, . . . , |Bi| + 1, is the one-hot representation of the index of the (j − 1)th
neighbor. Then, we can obtain the feature vectors in the local region of node i by Cti × F t.
Inspired by DenseNet (Huang et al., 2017), for each agent, the features of all the preceding layers are
concatenated and fed into the Q network, so as to assemble and reuse the observation representation

1The receptive field of an agent at a convolutional layer is its perceived agents at that layer.
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and features from different receptive fields, which respectively have distinctive contributions to the
strategy that takes the cooperation at different scopes into consideration.

During training, at each timestep, we store the tuple (O,A,O′,R, C) in the replay buffer, where
O = {o1, · · · , oN} is the set of observations, A = {a1, · · · , aN} is the set of actions, O′ =
{o′1, · · · , o′N} is the set of next observations, R = {r1, · · · , rN} is the set of rewards, and
C = {C1, · · · , CN} is the set of adjacency matrix. Note that we drop time t in the notations for
simplicity. Then, we sample a random minibatch of size S from the replay buffer and minimize the
loss

L(θ) = 1

S

∑
S

1

N

N∑
i=1

(yi −Q (Oi,C , ai; θ))
2
, (1)

where yi = ri + γmaxa′Q
(
O′i,C , a

′
i; θ
′) , Oi,C ⊆ O denotes the set of observations of the agents

in i’s receptive fields determined by C, γ is the discount factor, and Q function, parameterized by
θ, takes Oi,C as input and outputs Q value for agent i. The action of agent can change the graph
at next timestep. Ideally, Q function should be learned on the changing graph. However, the graph
may change quickly, which makes Q network difficult to converge. Thus, we keep C unchanged in
two successive timesteps when computing the Q-loss in training to ease this learning difficulty. The
gradients of Q-loss of all agents are accumulated to update the parameters. Then, we softly update
the target network as θ′ = βθ + (1− β)θ′.
Like CommNet (Sukhbaatar et al., 2016), DGN can also be seen as a factorization of a centralized
policy that outputs actions for all the agents to optimize the average expected return. The factoriza-
tion is that all agents share θ and the model of each agent is connected to its neighbors, dynamically
determined by the graph of agents at each timestep. More convolutional layers (i.e., larger receptive
field) yield a higher degree of centralization that mitigates non-stationarity. In addition, unlike other
methods with parameter-sharing, e.g., DQN, that sample experiences from individual agents, DGN
samples experiences based on the graph of agents, not individual agents, and thus takes into con-
sideration the interactions between agents. Nevertheless, the parameter-sharing of DGN does not
prevent the emergence of sophisticated cooperative strategies, as we will show in the experiments.
Note that during execution each agent only requires the (latent) features from its neighbors (e.g., via
communication) regardless of the number of agents, which makes DGN easily scale.

3.2 RELATION KERNEL

Convolution kernels integrate the feature in the receptive field to extract the latent feature. One of
the most important properties is that the kernel should be independent from the order of the input
feature vectors. Mean operation as in CommNet (Sukhbaatar et al., 2016) meets this requirement,
but it leads to only marginal performance gain. BiCNet (Peng et al., 2017) uses the learnable kernel,
i.e., RNN. However, the input order of feature vectors severely impacts the performance, though the
affect is alleviated by bi-direction mechanism. Further, convolution kernels should be able to learn
how to abstract the relation between agents so as to integrate their input features.

Inspired by RRL (Zambaldi et al., 2018), we use multi-head dot-product attention as the convolu-
tional kernel to compute interactions between agents. For each agent i, let B+i denote Bi and i. The
input feature of each agent is projected to query, key and value representation by each independent
attention head. For attention head m, the relation between i and j ∈ B+i is computed as

αmij =
exp

(
τ ·Wm

Qhi · (Wm
Khj)

T
)∑

k∈B+i
exp

(
τ ·Wm

Qhi · (Wm
Khk)

T
) , (2)

where τ is a scaling factor. For each attention head, the value representations of all the input features
are weighted by the relation and summed together. Then, the outputs of M attention heads for agent
i are concatenated and then fed into function σ, i.e., one-layer MLP with ReLU non-linearities, to
produce the output of the convolutional layer,

h
′

i = σ(concatenate[
∑
j∈B+i

αmijWm
V hj ,∀m ∈ M]). (3)

Figure 2 illustrates the computation of the convolutional layer with relation kernel. Multi-head
attention makes the kernel independent from the order of input feature vectors, and allows the kernel
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to jointly attend to different representation subspaces. More attention heads give more relation
representations and make the training more stable empirically (Vaswani et al., 2017). Moreover,
with multiple convolutional layers, higher order relation representations can be extracted, which
effectively capture the interplay between agents and greatly help to make cooperative decision.

3.3 TEMPORAL RELATION REGULARIZATION

DGMDFHQF\�PDWUL[

IHDWXUH�PDWUL[

PXOWL�KHDG�DWWHQWLRQ
�

Figure 2: Illustration of computation of the convolutional
layer with relation kernel of multi-head attention.

Cooperation is a persistent and long-term
process. Who to cooperate with and how to
cooperate should be consistent and stable for
at least a short period of time even when the
state/feature of surrounding agents changes.
Thus, the relation representation, i.e., the at-
tention weight distribution over the neighbor-
ing agents produced by the relation kernel
(Equation 2), should be also consistent and stable for a short period of time. To make the learned
attention weight distribution stable over timesteps, we propose temporal relation regularization. In-
spired by temporal-difference learning, we use the attention weight distribution in the next state as
the target for the current attention weight distribution. We adopt KL divergence to measure how the
current attention weight distribution is different from the target attention weight distribution. Mini-
mizing the KL divergence as a regularization will encourage the agent to form the consistent relation
representation and hence consistent cooperation. In CNNs/GCNs, higher layer learns more abstract
representation. Similarly, in DGN, the relation representation captured by upper layer should be
more abstract and stable. Thus, we apply temporal relation regularization to the upper layer. Mov-
ing average and RNN structures might help the relation representation be stable in static graph.
However, in dynamic environment where the neighbors of the agent quickly change, averaging or
integrating cannot be performed on the attention weights of different neighbors.

It should be noted that we only use target network to produce the target Q value. For the calculation
of KL divergence between relation representations in two timesteps, we apply current network to
the next state to produce the target relation representation. This is because relation representation
is highly correlated with the weights of feature extraction. But update of such weights in target
network always lags behind that of current network, making the relation representation produced by
target network not consistent with that produced by current network.

Let Gκm(Oi,C ; θ) denotes the attention weight distribution of relation representations of attention
head m at convolutional layer κ for agent i. Then, with temporal relation regularization, the loss is
modified as below

L(θ) = 1

S

∑
S

1

N

N∑
i=1

((yi −Q (Oi,C , ai; θ))
2
+ λ

1

M

M∑
m=1

DKL(Gκm(Oi,C ; θ)||Gκm(O′i,C ; θ)), (4)

where λ is the coefficient for the regularization loss. Temporal relation regularization of upper layer
in DGN helps the agent to form long-term and consistent action policy in the highly dynamical
environment with many moving agents. This will further help agents to form cooperative behavior
since many cooperative tasks need long-term consistent cooperation among agents to get the final
reward. We will further analyze this in the experiments.

4 EXPERIMENTS

For the experiments, we adopt a grid-world platform MAgent (Zheng et al., 2017). In the 30 × 30
grid-world environment, each agent corresponds to one grid and has a local observation that con-
tains a square view with 11 × 11 grids centered at the agent and its own coordinates. The discrete
actions are moving or attacking. Two scenarios, battle and jungle, are considered to investigate the
cooperation among agents. Also, we build an environment, routing, that simulates routing in packet
switching networks. These three scenarios are illustrated in Figure 3. In the experiments, we com-
pare DGN with independent Q-learning, DQN, which is fully decentralized, CommNet (Sukhbaatar
et al., 2016), and MeanField Q-learning (MFQ) (Yang et al., 2018b). We also evaluate two vari-
ants of DGN for ablation study, which are DGN without temporal relation regularization, denoted
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Figure 3: Illustration of experimental scenarios: battle (left), jungle (mid), and routing (right).

as DGN-R, and further DGN-R with mean kernels instead of relation kernels, denoted as DGN-M.
In the experiments, DGN and the baselines are parameter-sharing and trained using Q-learning.
Moreover, to ensure the comparison is fair, their basic hyperparameters are all the same and their
parameter sizes are also similar. Please refer to Appendix for hyperparameters and experimental
settings. The code of DGN is available at https://github.com/PKU-AI-Edge/DGN/.

4.1 BATTLE

In this scenario, N agents learn to fight against L enemies who have superior abilities than the agents.
The moving or attacking range of the agent is the four neighbor grids, however, the enemy can move
to one of twelve nearest grids or attack one of eight neighbor grids. Each agent/enemy has six hit
points (i.e., being killed by six attacks). After the death of an agent/enemy, the balance will be easily
lost and hence we will add a new agent/enemy at a random location to maintain the balance. By that,
we can make fair comparison among different methods in terms of kills, deaths and kill-death ratio
besides reward for given timesteps. The pretrained DQN model built-in MAgent takes the role of
enemy. As individual enemy is much powerful than individual agent, an agent has to collaborate
with others to develop coordinated tactics to fight enemies. Moreover, as the hit point of enemy is
six, agents have to consistently cooperate to kill an enemy.

Figure 4: Learning curves in battle.

We trained all the models with the setting of N = 20 and
L = 12 for 2000 episodes. Figure 4 shows their learn-
ing curves in terms of mean reward. For all the mod-
els, the shadowed area is enclosed by the min and max
value of three training runs, and the solid line in middle is
the mean value (same for jungle and routing). DGN con-
verges to much higher mean reward than other baselines,
and its learning curve is more stable. MFQ outperforms
CommNet and DQN which first get relative high reward,
but eventually converge to much lower reward. As ob-
served in the experiment, at the beginning of training,
DQN and CommNet learn sub-optimum policies such as
gathering as a group in a corner to avoid being attacked,
since such behaviors generate relatively high reward. However, since the distribution of reward is
uneven, i.e., agents at the exterior of the group are easily attacked, learning from the “low reward
experiences” produced by the sub-optimum policy, DQN and CommNet converge to more passive
policies, which lead to much lower reward. We evaluate DGN and the baselines by running 30 test
games, each game unrolled with 300 timesteps. Table 1 shows the mean reward, kills, deaths, and
kill-death ratio.

DGN agents learn a series of tactical maneuvers, such as encircling and envelopment of a single
flank. For single enemy, DGN agents learn to encircle and attack it together. For a group of en-

Table 1: Battle

DGN DGN-R DGN-M MFQ CommNet DQN

mean reward 0.91 0.84 0.50 0.70 0.03 −0.03
# kills 220 208 121 193 7 2

# deaths 97 101 84 92 27 74
kill-death ratio 2.27 2.06 1.44 2.09 0.26 0.03
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emies, DGN agents learn to move against and attack one of the enemy’s open flanks, as depicted
in Figure 5a. CommNet agents adopt an active defense strategy. They seldom launch attacks but
rather run away or gather together to avoid being attacked. DQN agents driven by self-interest fail
to learn a rational policy. They are usually forced into a corner and passively react to the enemy’s
attack, as shown in Figure 5b. MFQ agents do not effectively cooperate with each other because the
mean action incurs the loss of important information that could help cooperation. In DGN, relation
kernels can extract high order relations between agents through graph convolution, which can be
easily exploited to yield cooperation. Therefore, DGN outperforms other baselines.

Ablations. As shown in Figure 4 and Table 1, comparing DGN and DGN-R, we see that the re-
moval of temporal relation regularization incurs slight drop in performance. In the experiment, it
is observed that DGN agents indeed behave more consistently and synchronously with each other,
while DGN-R agents are more likely to be distracted by the new appearance of enemy or friend
nearby and abandon its original intended trajectory. This results in fewer appearances of successful
formation of encircling of a moving enemy, which might need consistent cooperation of agents to
move across the field. DGN agents often overcome such distraction and show more long-term strat-
egy and aim by moving more synchronously to chase the enemy until encircle and destroy it. From
this experiment, we can see that temporal relation regularization indeed helps agents to form more
consistent cooperation. Moreover, comparing DGN-R and DGN-M, we confirm that relation kernels
that abstract the relation representation between agents indeed helps to learn cooperation. Although
DGN-M and CommNet both use mean operation, DGN-M substantially outperforms CommNet.
This is attributed to graph convolution can effectively extract latent features from gradually increased
receptive field. The performance of DGN with different receptive fields is available in Appendix.

Encircling

Envelopment of 
a single flank

(a) DGN in battle
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(b) DQN in battle
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(c) DGN in jungle
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(d) DQN in jungle

Figure 5: Illustration of representative behaviors of DGN and DQN agents in battle and jungle.

4.2 JUNGLE

Figure 6: Learning curves in jungle.

This scenario is a moral dilemma. There are N agents
and L foods in the field, where foods are stationary. An
agent gets positive reward by eating food, but gets higher
reward by attacking other agent. At each timestep, each
agent can move to or attack one of four neighboring grids.
Attacking a blank grid gets a small negative reward (in-
hibiting excessive attacks). This experiment is to exam-
ine whether agents can learn collaboratively sharing re-
sources rather than attacking each other. We trained all
the models in the setting of N = 20 and L = 12 for 2000
episodes. Table 2 shows the mean reward and number of
attacks between agents over 30 test runs, each game un-
rolled with 120 timesteps. Figure 6 shows their learning
curves. DGN outperforms all the baselines during training and test in terms of mean reward and
number of attacks between agents. It is observed that DGN agents can properly select the close food
and seldom hurt each other, and the food can be allocated rationally by the surrounding agents, as

Table 2: Jungle

DGN MFQ CommNet DQN

mean reward 0.66 0.62 0.30 0.24
# attacks 1.14 2.74 5.44 7.35
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Table 3: Routing

(N, L) Floyd Floyd w/ BL DGN MFQ CommNet DQN

(20, 20)
mean reward 1.23 1.02 0.49 0.18

delay 6.3 8.7 8.0 9.4 18.6 46.7
throughput 3.17 2.30 2.50 2.13 1.08 0.43

(40, 20)
mean reward 0.86 0.78 0.39 0.12

delay 6.3 13.7 9.8 11.8 23.5 83.6
throughput 6.34 2.91 4.08 3.39 1.70 0.49

(60, 20)
mean reward 0.73 0.59 0.31 0.06

delay 6.3 14.7 12.6 15.5 27.0 132.0
throughput 9.52 4.08 4.76 3.87 2.22 0.45

shown in Figure 5c. Moreover, attacks between DGN agents are much less than others, e.g., 2×
less than MFQ. Sneak attack, fierce conflict, and hesitation are the characteristics of CommNet and
DQN agents, as illustrated in Figure 5d, verifying their failure of learning cooperation.

4.3 ROUTING

The network consists of L routers. Each router is randomly connected to a constant number of
routers (three in the experiment), and the network topology is stationary. There are N data packets
with a random size, and each packet is randomly assigned a source and destination router. If there
are multiple packets with the sum size larger than the bandwidth of a link, they cannot go through
the link simultaneously. In the experiment, data packets are agents, and they aim to quickly reach
the destination while avoiding congestion. At each timestep, the observation of a packet is its own
attributes (i.e., current location, destination, and data size), the attributes of cables connected to
its current location (i.e., load, length), and neighboring data packets (on the connected cable or
routers). It takes some timesteps for a data packet to go through a cable, a linear function of the cable
length. The action space of a packet is the choices of next hop. Once the data packet arrives at the
destination, it leaves the system and another data packet enters the system with random initialization.

We trained all the models with the setting of N = 20 and L = 20 for 2000 episodes. Figure 7
shows their learning curves. DGN converges to much higher mean reward and more quickly than
the baselines. We evaluate all the models by running 10 test games, each game unrolled with 300
timesteps. Table 3 shows the mean reward, mean delay of data packets, and throughput, where the
delay of a packet is measured by the timesteps taken from source to destination and the throughput
is the number of delivered packets per timestep.

Figure 7: Learning curves in routing.

To better interpret the performance of the models, we cal-
culate the shortest path for every pair of nodes in the net-
work using Floyd algorithm. Then, during test, we di-
rectly calculate the delay and throughout based on the
shortest path of each packet, which is Floyd in Table 3.
Note that this delay is without considering the bandwidth
limitation (i.e., data packets can go through any link si-
multaneously). Thus, this is the ideal case for the routing
problem. When considering the bandwidth limit, we let
each packet follow its shortest path, and if a link is con-
gested, the packet will wait at the router until the link is
unblocked. This is Floyd with Bandwidth Limit (BL) in
Table 3, which can be considered as the practical solution.
As shown in Table 3, the performance of DGN is much better than other models and Floyd with BL.

In the experiment, it is observed that DGN agents tend to select the shortest path to the destination,
and more interestingly, learn to select different paths when congestion is about to occur. DQN agents
cannot learn the shortest path due to myopia and easily cause congestion at some links without
considering the influence of other agents. Communication indeed helps as MFQ and CommNet
outperform DQN. However, they are unable to develop the sophisticated strategies as DGN does
and eventually converge to much lower performance.
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To investigate how network traffic affects the performance of the models, we performed the exper-
iments with heavier data traffic, i.e., N = 40 and L = 20, where all the models are directly applied
to the setting without retraining. From Table 3, we can see that DGN is much better than Floyd
with BL, and MFQ is also better than Floyd with BL. The reason is that Floyd with BL (i.e., simply
following the shortest path) is favorable when traffic is light and congestion is rare, while it does
not work well when traffic is heavy and congestion easily occurs. We further apply all the models
learned in N = 20 and L = 20 to the setting of N = 60 and L = 20. DGN still outperforms Floyd
with BL, while MFQ become worse than Floyd with BL. It is observed in the experiments that DGN
without retraining outperforms Floyd with BL up to N = 140 and L = 20, available in Appendix.
From the experiments, we can see that our model trained with fewer agents can well generalize to the
setting with much more agents, which demonstrates that the policy that takes as input the integrated
features from neighboring agents based on their relations scales well with the number of agents.

5 CONCLUSIONS

We have proposed graph convolutional reinforcement learning. DGN adapts to the dynamics of the
underlying graph of the multi-agent environment and exploits convolution with relation kernels to
extract latent features from gradually increased receptive fields for learning cooperative strategies.
Moreover, the relation representation between agents are temporally regularized to make the coop-
eration more consistent. Empirically, DGN significantly outperforms existing methods in a variety
of cooperative multi-agent scenarios.
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A HYPERPARAMETERS

Table 4 summarizes the hyperparameters used by DGN and the baselines in the experiments.

Table 4: Hyperparameters

Hyperparameter DGN CommNet MFQ DQN

discount (γ) 0.96, 0.96, 0.98
batch size 10

buffer capacity 2× 105

β 0.01
ε and decay 0.6/0.996

optimizer Adam
learning rate 10−4

# neighbors 3 − 3 −
# convolutional layers 2 −

# attention heads 8 −
τ 0.25 −
λ 0.03 −
κ 2 −

# encoder MLP layers 2 2 − −
# encoder MLP units (512, 128) (512, 128) − −

Q network affine transformation affine transformation (1024, 256) (1024, 256)
MLP activation ReLU

initializer random normal

B EXPERIMENTAL SETTINGS

In jungle, the reward is 0 for moving, +1 for attacking (eating) the food, +2 for attacking other
agent, −4 for being attacked, and −0.01 for attacking a blank grid. In battle, the reward is +5
for attacking the enemy, −2 for being killed, and −0.01 for attacking a blank grid. In routing, the
bandwidth of each link is the same and set to 1. Each data packet is with a random size between 0 and
1. If the link to the next hop selected by a data packet is overloaded, the data packet will stay at the
current router and be punished with a reward −0.2. Once the data packet arrives at the destination,
it leaves the system and gets a reward +10. In the experiments, we fix the size of B to 3, because
DGN is currently implemented based on TensorFlow which does not support dynamic computing
graph (varying size of B). We also show how different sizes of B affect DGN’s performance in
the following. Indeed, DGN adapts to dynamic environments, no matter how the number of agents
changes, how the graph of agents changes, and how many neighbors each agent has.

C ADDITIONAL EXPERIMENTS

As aforementioned, larger receptive field yields a higher degree of centralization that mitigates non-
stationarity. We also investigate this in the experiments. First we examine how DGN performs with
different number of convolution layers. As illustrated in Figure 8, two convolutional layers indeed
yield more stable learning curve than one layer as expected.

Figure 8: DGN with different
number of convolutional layers in
battle.
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Figure 9: DGN with different
number of neighbors for each
agent in jungle.

Figure 10: Learning curves of
DGN on fixed graph and unfixed
graph in battle.
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We also investigate how the size of neighbors |B| affects the performance of DGN. We set |B| of
each agent to 1, 2, 3 and 4 in jungle. As illustrated in Figure 9, when |B| increases from 1 to 3,
the performance improves. However, when |B| = 4, the performance drops, equivalent to |B| = 1.
In addition, as shown in Figure 6, the full communication method, CommNet, has very limited
performance. These verify that it may be less helpful and even negatively affect the performance to
take all other agents into consideration.

Ideally, Q function should be learned on the changing graph of agents. However, the quickly chang-
ing graph can make Q function difficult to converge. Thus, we fix the graph in two successive
timesteps to mitigate the effect of changing graph and ease the learning difficulty. As shown in
Figure 10, the learning curve of fixed graph indeed converges faster than that of unfixed graph. As
keeping the graph of agents unchanged is necessary for temporal relation regularization, for fair
comparison, we also remove temporal relation regularization for fixed graph.

Figure 11: Learning curves of
DGN, ATOC and TarMAC in bat-
tle.

Figure 12: DGN versus Floyd with
BL under increasingly heavier traf-
fic in routing.

We also perform additional ex-
periments to compare DGN with
ATOC and TarMAC in Battle.
As shown in Figure 11, DGN
outperforms ATOC. The reason
is that LSTM kernel is worse
than multi-head attention kernel
in capturing relation between
agents. Like CommNet, Tar-
MAC is also a full communica-
tion method. Similarly, DGN
also outperforms TarMAC. This
again verifies that receiving re-
dundant information may negatively affect the performance.

We also conducted additional experiments in routing to compare DGN (learned in the setting of
N = 20 and L = 20) and Floyd with BL under increasingly heavier traffic, in terms of mean delay.
As shown in Figure 12, DGN continuously outperforms Floyd with BL up to N = 140. After that,
Floyd with BL outperforms DGN. The reason is that when the traffic becomes so heavy, the network
is fully congested and there is no way to improve the performance. DGN learned in much lighter
traffic may still try to find better routes, but this incurs extra delay.

-R

Figure 13: Learning curves of
DGN, DGN-R, and DGN-M in
jungle.

Figure 14: Learning curves of
DGN, DGN-R, and DGN-M in
routing.

Figure 13 and Figure 14 show
the learning curves of DGN,
DGN-R and DGN-M in jungle
and routing, respectively. We
can see that DGN and DGN-
R outperforms DGN-M. DGN
slightly outperforms DGN-R in
routing, and they performs sim-
ilarly in jungle. The reason is
that in both jungle and routing
the agents do not require cooper-
ation consistency as much as in
battle. In battle the agents need
to cooperatively and consistently attack an enemy since it has six hit points. However, in jun-
gle agents seldom move once they reach the status of sharing food, while in routing data packets
(agents) with different destinations seldom share many links (cooperate continuously) along their
paths.
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