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ABSTRACT

Learning domain-invariant representation is a dominant approach for domain gen-
eralization. However, previous methods based on domain invariance overlooked
the underlying dependency of classes on domains, which is responsible for the
trade-off between classification accuracy and the invariance. This study proposes
a novel method adversarial feature learning under accuracy constraint (AFLAC),
which maximizes domain invariance within a range that does not interfere with
accuracy. Empirical validations show that the performance of AFLAC is superior
to that of baseline methods, supporting the importance of considering the depen-
dency and the efficacy of the proposed method to overcome the problem.

1 INTRODUCTION

In supervised learning we typically assume that samples are obtained from the same distribution in
training and testing; however, because this assumption does not hold in many practical situations it
reduces the classification accuracy for the test data (Torralba & Efros, 2011). One typical situation is
domain generalization (DG) (Blanchard et al., 2011; Shankar et al., 2018; Sriram et al., 2018; Erfani
et al., 2016): we have labeled data from several source domains and collectively exploit them such
that the trained system generalizes to other unseen, but somewhat similar, target domain(s).

This paper considers DG under the situation where domain d and class y labels are statistically
dependent owing to some common latent factor z (Figure 1-(c)), which we referred to as domain-
class dependency. For example, the WISDM Activity Prediction dataset (WISDM, Kwapisz et al.
(2011)), where y and d correspond to activities and wearable device users, exhibits this dependency
because (1) some activities (e.g., jogging) are strenuous to the extent that some unathletic subjects
avoided them (data characteristics), or (2) other activities were added only after the study began and
the initial subjects could not perform them (data-collection errors). The dependency is common
in real-world datasets (Zhang et al., 2013) and a similar setting has been investigated in domain
adaptation (DA) studies, but most prior DG studies overlooked the dependency.

Most prior DG methods utilize invariant feature learning (IFL) (e.g., Muandet et al. (2013)). IFL
attempts to learn feature representation h from input data x which is invariant to d. When source
and target domains have some common structure (see, Muandet et al. (2013)), IFL prevents the clas-
sifier from overfitting to source domains (Figure 1-(b)). However, under the dependency, merely
imposing the domain invariance can adversely affect the classification accuracy as pointed out by
Xie et al. (2017) and illustrated in Figure 1. Although that trade-off occurs in source domains (be-
cause DG uses only source data during optimization), it can also negatively affect the classification
performance for target domain(s). For example, if the target domain has characteristics similar (or
same as an extreme case) to those of a certain source domain, giving priority to domain invariance
obviously interferes with the DG performance (Figure 1-(d)).

In this paper, considering that prioritizing domain invariance under the trade-off can negatively
affect the DG performance, we propose a novel method adversarial feature learning under accuracy
constraint (AFLAC), which maximizes domain invariance within a range that does not interfere with
the classification accuracy (Figure 1-(e)) on adversarial training. Specifically, AFLAC is intended
to achieve accuracy-constrained domain invariance, which we define as the maximum H(d|h) (H
denotes entropy) value under the condition H(y|x) = H(y|h) (h has as much y information as x).
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Figure 1: Explanation of domain-class dependency and the induced trade-off. (a) When the domain
and the class are independent, (b) domain invariance and classification accuracy can be optimized
at the same time, and the invariance prevents the classifier from overfitting to source domains. (c)
When they are dependent, a trade-off exists between these two: (d) optimal classification accuracy
cannot be achieved when perfect invariance is achieved, and (e) vice versa.

Empirical validations show that the performance of AFLAC is superior to that of baseline methods,
supporting the importance of considering domain-class dependency and the efficacy of the proposed
approach for overcoming the issue.

2 RELATED WORK

DG has been attracting considerable attention in recent years, and most prior DG methods utilize
IFL (Muandet et al., 2013; Erfani et al., 2016; Ghifary et al., 2017). In particular, our proposed
method is based on Domain Adversarial Nets (DAN), which was originally invented for DA (Ganin
et al., 2016) and Xie et al. (2017) demonstrated its efficacy in DG. In addition, Xie et al. (2017)
intuitively explained the trade-off between classification accuracy and domain invariance, but they
did not suggest any solution to the problem except for carefully tuning a weighting parameter.

Several studies that address DG without utilizing IFL have been conducted. For example, CCSA
(Motiian et al., 2017), CIDG (Li et al., 2018b), and CIDDG (Li et al., 2018c) proposed to make
use of semantic alignment, which attempts to make latent representation given class label (p(h|y))
identical within source domains. This approach was originally proposed by Gong et al. (2016) in the
DA context, but its efficacy to overcome the trade-off problem is not obvious. CrossGrad (Shankar
et al., 2018), which is one of the recent state-of-the-art DG methods, utilizes data augmentation
with adversarial examples. However, because the method relies on the assumption that y and d are
independent, it might not be directly applicable to our setting.

In DA, Zhang et al. (2013); Gong et al. (2016) address the situation where p(y) changes across
the source and target domains by correcting the change of p(y) using unlabeled target data, which
is often accomplished at the cost of classification accuracy for the source domain. However, this
approach is not applicable (or necessary) to DG because we are agnostic on target domain(s), and
this paper is concerned with the change of p(y) within source domains. Instead, we propose to
maximize the classification accuracy for source domains while improving the domain invariance.

3 PROPOSED METHOD

3.1 ACCURACY-CONSTRAINED DOMAIN INVARIANCE

Here we provide the notion of accuracy-constrained domain invariance, which is the maximum do-
main invariance within a range that does not interfere with the classification accuracy. The reason for
the constraint is that the primary purpose of DG is the classification for unseen domains rather than
domain itself, and the improvement of the invariance could detrimentally affect the performance.

Theorem 1 Let h = f(x), i.e., h is a deterministic mapping of x with a function f . We define
accuracy-constrained domain invariance as the maximum H(d|h) value under the constraint that
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H(y|x) = 0, i.e., there is no labeling error, and h has as much y information as x, i.e., H(y|h) =
H(y|x). Accuracy-constrained domain invariance equals H(d|y).

Proof 1 Using the properties of entropy, the following inequation holds:

H(d|h) ≤ H(d, y|h) = H(d|y, h) +H(y|h) ≤ H(d|h) +H(y|h) (1)

By assumption, H(y|x) = H(y|h) = 0, and thus the following inequation holds:

H(d|h) ≤ H(d|y) (2)

Thus, the maximum H(d|h) value under the constraints is H(d|y).

3.2 AFLAC

We propose a novel method named AFLAC, which is designed to achieve accuracy-constraind do-
main invariance. Formally, we denote fE(x), qM (y|h), and qD(d|h) (E,M , and D are the param-
eters) as the deterministic encoder, probabilistic model of the label classifier, and that of domain
discriminator, respectively. Then, the objective function of AFLAC is described as follows:

min
E,M

V (E,M) = Ex,d,y∼p(x,d,y)[γDKL[p(d|y)|qD(d|h = fE(x))]− log qM (y|h = fE(x))] (3)

min
D

W (D) = Ex,d∼p(x,d)[− log qD(d|h = fE(x))] (4)

Here γ denotes a weighting parameter. Note that, although we cannot obtain true distribution p(d|y),
we can use the maximum likelihood estimator of it when y and d are discrete, as is usual with DG.

Here we formally show that AFLAC is intended to achieve H(d|h) = H(d|y) (accuracy-constrained
domain invariance) by a Nash equilibrium analysis similar to Goodfellow et al. (2014); Xie et al.
(2017). We define D∗ and M∗ as the solutions to Eq. 3 and Eq. 4 with fixed E. They obviously
satisfy q∗D = p(d|h), q∗M = p(y|h), respectively. Thus, V in Eq. 3 can be written as follows:

V (E) = E[γDKL[p(d|y)|p(d|h)]] +H(y|h) (5)

E∗, which we define as the solution to Eq. 5 and in Nash equilibrium, satisfies not only H(y|h) =
H(y|x) (optimal classification accuracy) but also Eh,y∼p(h,y)[DKL[p(d|y)|p(d|h)]] = 0, which is a
sufficient condition for H(d|h) = H(d|y) by the definition of the conditional entropy.

4 EXPERIMENTS

4.1 DATASETS

BMNISTR We created the Biased Rotated MNIST dataset (BMNISTR) by modifying the sample
size of the popular benchmark dataset MNISTR (Ghifary et al., 2015), such that the class distribution
differed among the domains. In MNISTR, each domain was created by rotating images by 15 degree
increments: 0, 15, ..., 75 (referred to as M0, ..., M75). We created four variants of MNISTR that
have different types of domain-class dependency, referred to as BMNISTR-1 through BMNISTR-3.
As shown in Table 1-left, BMNISTR-1, -2 have similar trends but different degrees of dependency,
whereas BMNISTR-1 and BMNISTR-3 differ in terms of their trends. In training, we employed a
leave-one-domain-out setting (Ghifary et al., 2015): we trained the models on five of the six domains
and tested them using the remaining one.

WISDM WISDM contains sensor data of accelerometers of six human activities (walking, jogging,
upstairs, downstairs, sitting, and standing) performed by 36 users (domains). WISDM has the de-
pendency for the reason noted in Sec. 1. we randomly selected <10 / 26> and <26 / 10> users as
<source / target> domains, and split the source data into training and validation data.

4.2 BASELINES

We compared AFLAC with the following methods. (1) CNN is a vanilla convolutional networks
trained on the aggregation of data from all source domains. (2) DAN (Xie et al., 2017) is expected
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Table 1: Left: Sample sizes for each domain-class pair in BMNISTR. Those for the classes 0∼4
are variable across domains, whereas the classes 5∼9 have identical sample sizes across domains.
Right: Mean F-measures for the classes 0∼4 and classes 5∼9 with the target domain M0. RI denotes
relative improvement of AFLAC to AFLAC-Abl

Dataset Class M0 M15 M30 M45 M60 M75
BMNISTR-1 0∼4 100 85 70 55 40 25

5∼9 100 100 100 100 100 100
BMNISTR-2 0∼4 100 90 80 70 60 50

5∼9 100 100 100 100 100 100
BMNISTR-3 0∼4 100 25 100 25 100 25

5∼9 100 100 100 100 100 100

CNN DAN CIDDG AFLAC AFLAC RI
Dataset Class -Abl

BMNISTR-1 0∼4 83.86 84.54 87.50 87.46 90.62 3.6%
5∼9 83.90 85.24 87.46 86.46 88.10 1.9%

BMNISTR-2 0∼4 82.54 85.30 87.64 88.60 89.64 1.2%
5∼9 82.18 85.80 86.74 87.60 89.04 1.6%

BMNISTR-3 0∼4 71.26 79.22 76.76 76.56 80.02 4.5%
5∼9 78.62 83.14 82.64 82.94 82.80 -0.2%

(a) BMNISTR-1, M0 (b) BMNISTR-1, M75 (c) WISDM, 10 users (d) WISDM, 26 users

Figure 2: Classification Accuracy with various γ. Each caption shows dataset and target name.

to generalize across domains utilizing domain-invariant representation, but it can be affected by
the trade-off as pointed out by Xie et al. (2017). (3) CIDDG is our re-implementation of Li et al.
(2018c), which is designed to achieve semantic alignment on adversarial training. Additionally,
we used (4) AFLAC-Abl, which is a version of AFLAC modified for ablation studies. AFLAC-
Abl replaces DKL[p(d|y)|qD(d|h)] in Eq. 3 of DKL[p(d)|qD(d|h)], thus it attempts to learn the
representation that is completely invariant to domains or make H(d|h) = H(d) hold as well as
DAN. Comparing AFLAC and AFLAC-Abl, we measured the genuine effect of taking domain-class
dependency into account. When training AFLAC and AFLAC-Abl, we cannot obtain true p(d|y)
and p(d), hence we used their maximum likelihood estimators for calculating the KLD terms.

4.3 RESULTS

We first investigated the extent to which domain-class dependency affects the performance of
domain-invariance-based methods. In Table 1-right, we compared the mean F-measures for the
classes 0 through 4 and classes 5 through 9 in BMNISTR with the target domain M0. Recall that the
sample sizes for the classes 0∼4 are variable across domains, whereas the classes 5∼9 have identical
sample sizes across domains. The F-measures show that AFLAC outperformed baselines in most
dataset-class pairs, which supports that the dependency reduces the performance of IFL methods and
that AFLAC can mitigate the problem. Further, the relative improvement of AFLAC to AFLAC-Abl
is more significant for the classes 0∼4 than for 5∼9 in BMNISTR-1 and BMNISTR-3, suggesting
that AFLAC tends to increase performance more significantly for classes in which the dependency
occurs. Moreover, the improvement is more significant in BMNISTR-1 than in BMNISTR-2, sug-
gesting that the stronger the dependency is, the lower the performance of domain-invariance-based
methods becomes. Finally, although the dependencies of BMNISTR-1 and BMNISTR-3 have dif-
ferent trends, AFLAC improved the F-measures in both datasets.

Next we investigated the relationship between the strength of regularization and performance. Fig-
ures 2-(b, c, d) show that the accuracy gaps of AFLAC-Abl and AFLAC increase with strong reg-
ularization (such as when γ = 10), suggesting that AFLAC, as it was designed, does not tend to
reduce accuracy with strong regularizer, and thus AFLAC is robust toward hyperparameter choice.

5 CONCLUSION

In this paper, we proposed a novel method AFLAC, which maximizes domain invariance within
a range that does not interfere with classification accuracy on adversarial training. Empirical val-
idations show the superior DG performance of AFLAC to the baseline methods, supporting the
importance of the domain-class dependency in domain generalization tasks and the efficacy of the
proposed method for overcoming the issue.
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