
Published as a conference paper at ICLR 2020

EPISODIC REINFORCEMENT LEARNING WITH ASSO-
CIATIVE MEMORY

Guangxiang Zhu1∗, Zichuan Lin2∗, Guangwen Yang2, Chongjie Zhang1

1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
2Department of Computer Science and Technology, Tsinghua University, Beijing, China
guangxiangzhu@outlook.com, linzc16@mails.tsinghua.edu.cn,
ygw@tsinghua.edu.cn, chongjie@tsinghua.edu.cn

ABSTRACT

Sample efficiency has been one of the major challenges for deep reinforcement
learning. Non-parametric episodic control has been proposed to speed up para-
metric reinforcement learning by rapidly latching on previously successful poli-
cies. However, previous work on episodic reinforcement learning neglects the
relationship between states and only stored the experiences as unrelated items. To
improve sample efficiency of reinforcement learning, we propose a novel frame-
work, called Episodic Reinforcement Learning with Associative Memory (ER-
LAM), which associates related experience trajectories to enable reasoning effec-
tive strategies. We build a graph on top of states in memory based on state tran-
sitions and develop a reverse-trajectory propagation strategy to allow rapid value
propagation through the graph. We use the non-parametric associative memory as
early guidance for a parametric reinforcement learning model. Results on the nav-
igation domain and Atari games show our framework achieves significantly higher
sample efficiency than state-of-the-art episodic reinforcement learning models.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable performance on extensive complex do-
mains (Mnih et al., 2015; Lillicrap et al., 2016; Silver et al., 2016; Schulman et al., 2017). Deep
RL research largely focuses on parametric methods, which usually depend on a parametrized value
function. The model-free approaches are quite sample inefficient and require several orders of mag-
nitude more training samples than a human. This is because gradient-based updates are incremental
and slow and have global impacts on parameters, leading to catastrophic inference issues.

Recently, episodic reinforcement learning has attracted much attention for improving sample effi-
ciency of deep reinforcement learning, such as model-free episodic control (MFEC) (Blundell et al.,
2016), neural episodic control (NEC) (Pritzel et al., 2017), ephemeral value adjustments (EVA)
(Hansen et al., 2018), and episodic memory deep q-networks (EMDQN) (Lin et al., 2018). Episodic
control is inspired by the psychobiological and cognitive studies of human memory (Sutherland &
Rudy, 1989; Marr et al., 1991; Lengyel & Dayan, 2008; Botvinick et al., 2019) and follows the idea
of instance-based decision theory (Gilboa & Schmeidler, 1995). It builds a non-parametric episodic
memory to store past good experiences and thus can rapidly latch onto successful policies when
encountering states similar to past experiences.

However, most of the current breakthroughs have focused on episodic memory and leave the asso-
ciation of memory largely unstudied. Previous work usually uses a tabular-like memory, and expe-
riences are stored as unrelated items. Studies in psychology and cognitive neuroscience (Kohonen,
2012; Anderson & Bower, 2014) discover that associative memory in the hippocampus plays a vital
role in human activities, which associates past experiences by remembering the relationships be-
tween them. Inspired by this, we propose a novel associative memory based reinforcement learning
framework to improve the sample-efficiency of reinforcement learning, called Episodic Reinforce-
ment Learning with Associative Memory (ERLAM), which associates related experience trajectories

∗Equal Contribution

1

Published as a conference paper at ICLR 2020

to enable reasoning effective strategies. We store the best historical values for memorized states like
episodic memory, and maintain a graph on top of these states based on state transitions at the same
time. Then we develop an efficient reverse-trajectory propagation strategy to allow the values of
new experiences to propagate to all memory items through the graph rapidly. Finally, we use the
fast-adjusted non-parametric high values in associative memory as early guidance for a parametric
RL agent so that it can rapidly latch on states that previously yield high returns instead of waiting
for many slow gradient updates.

Episodic
Memory

Associative
Memory

Past
Experiences

B

A
C

G

D

Figure 1: Comparison of selected poli-
cies based on episodic memory and as-
sociative memory. An agent starts from
two places A and B, to collect two ex-
periences.

To illustrate the superiority of the associative memory in
reinforcement learning, consider a robot exploring in a
maze to seek out the apple (place G), as shown in Fig-
ure 1. It collects two trajectory experiences starting from
place A and B (i.e., blue dash line A-D-C and B-D-G),
respectively. All the states of trajectory A-D-C receive no
reward because the agent terminates at a non-reward state
(place C). While in trajectory B-D-G, the final non-zero
reward of catching an apple (place G) back-propagates to
all the states of this trajectory. Episodic memory keeps a
higher value of two trajectories at the intersection (place
D) when taking actions toward the lower-right corner, but
the other states in trajectory A-D are still 0. If an episodic
memory based robot starts from place A again, it will
wander around A because there are no positive values in-
dicating the way to the goal. Thus based on the episodic
memory, the robot may eventually take a policy like the
green line (A-B-D-G) after multiple attempts. However,
if the robot adopts associative memory, the high value in
the place D collected from trajectory B-D-G will be fur-
ther propagated to the start point A, and thus the robot can
correctly take the red-line policy (A-D-G).

To some extent, our associative memory is equivalent to automatic augmentation of counterfactual
combinatorial trajectories in memory. Thus, our framework significantly improves the sample-
efficiency of reinforcement learning. Comparisons with state-of-the-art episodic reinforcement
learning methods show that ERLAM is substantially more sample efficient for general settings of
reinforcement learning. In addition, our associative memory can be used as a plug-and-play module
and is complementary to other reinforcement learning models, which opens the avenue for further
research on associative memory based reinforcement learning.

2 BACKGROUND

In the framework of reinforcement learning (Sutton & Barto, 1998), an agent learns a policy to
maximize its cumulative rewards by exploring in a Markov Decision Processes (MDP) environment.
An MDP is defined by a tuple (S,A, P,R, γ), where S is a finite set of states, A is a finite set of
actions available to the agent, P : S × A × S → R defines the transition probability distribution,
R is the reward function, and γ ∈ (0, 1] is the discount factor. At each time step t, the agent
observes state st ∈ S , selects an action at ∈ A according to its policy π : S → A, and receives a
scalar reward rt. In the setting of finite horizon, the accumulated discounted return is calculated as,
Rt =

∑T
k=0 γ

krt+k where T is the episode length and goal of the agent is to maximize the expected
return for each state st.

The state-action value function Qπ(s, a) = E[Rt|st = s, a] is the expected return for executing
action a on state s and following policy π afterwards. DQN (Mnih et al., 2015) parameterizes
this action-value function by deep neural networks Qθ(s, a) and use Q-learning (Watkins & Dayan,
1992) to learn it to rank which action at is best to take in each state st at time step t. The parameters
of the value network θ are optimized by minimizing the L2 difference between the networks output
Qθ(s, a) and the Q-learning target yt = rt + γmaxaQθ̂(st+1, at), where θ̂ are parameters of a
target network that is a older version of the value network and updated periodically. DQN uses an
off-policy learning strategy, which samples (st, at, rt, st+1) tuple from a replay buffer for training.

2

Published as a conference paper at ICLR 2020

DQN, as a typical parametric reinforcement learning method, suffers from sample inefficiency be-
cause of slow gradient-based updates. Thus episodic reinforcement learning is proposed to speed
up the learning process by a non-parametric episodic memory. Episodic reinforcement learning en-
ables fast learning by modeling hippocampal instance-based learning. The key idea is to store good
past experiences in a tabular-based non-parametric memory and rapidly latch onto past successful
policies when encountering similar states instead of waiting for many steps of optimization.

3 RELATED WORK

Deep Reinforcement Learning Our method is closely related to DQN (Mnih et al., 2015). As the
seminal work of deep reinforcement learning, DQN learns a deep neural network for state-action
value function by gradient back-propagation and conducts parametric control. Following this line, a
large number of extensions have been proposed to improve the learning efficiency of the parametric
model. Double DQN (Van Hasselt et al., 2016) alleviates the over-estimation issue of Q-Network.
Dueling network (Wang et al., 2015) separates Q-Network into two streams which predict state value
and advantage value respectively and achieves better generalization across actions. Prioritized expe-
rience replay (Schaul et al., 2015b) changes the sampling priority of each training sample according
to its learning error. Apart from these prior improvements, many algorithms have been proposed
to accelerate reward propagation and backup mechanism. Optimality Tightening method(He et al.,
2016) combines the strength of DQN with a constrained optimization approach to rapidly propagate
close-by rewards. Q∗(λ) (Harutyunyan et al., 2016) and Retrace(λ) (Munos et al., 2016) incorporate
on-policy samples into off-policy learning targets. Noisy Net (Fortunato et al., 2017) adds noise to
the parametric model during learning to improve the exploration ability. Distributional RL (Belle-
mare et al., 2017) learns the value function as a full distribution instead of a expected value. Unlike
these works, we focus on combining non-parametric memory and parametric model in this paper.
Thus our method is complementary to these prior extensions and can be combined with them seam-
lessly.

Episodic Reinforcement Learning Our work is also related to episodic reinforcement learning.
Model-free episodic control (Blundell et al., 2016) uses a completely non-parametric model that
keeps the best Q values of states in a tabular-based memory and replays the sequence of actions that
so far yielded the highest return from a given start state. At the end of each episode, the Q values
in memory are updated by the greater of the existing values and the accumulated discounted returns
in the current episode. In the execution stage, the agent selects actions according to a k-nearest-
neighbors lookup in the memory table. Recently, several extensions have been proposed to inte-
grate episodic control with parametric DQN. Neural episodic control (Pritzel et al., 2017) develops
end-to-end episodic control by a differentiable neural dictionary to generate semi-tabular represen-
tation as slow-changing keys and then retrieves fast-updating values by context-based lookup for
action selection. To better leverage the trajectory nature of experience, ephemeral value adjustments
method (Hansen et al., 2018) proposes to further leverage trajectory information from replay buffer
to propagate value through time and produce trajectory-centric value estimates. Our method differs
from EVA in that we associate memory by a graph, and thus we can leverage not only intra-episode
but also inter-episode information. Episodic memory deep q-networks (Lin et al., 2018) distills
the information of episodic memory into a parametric model by adding a regularization term in the
objective function and significantly boosts up the performance of DQN. Unlike these prior works,
which adopt either tabular memory or semi-tabular memory, our work builds a graph on memory
items based on their relationship to form an associative memory.

Graph Based Methods in Deep Reinforcement Learning Recently, several works have also
been proposed to use graph for planning in deep reinforcement learning. Eysenbach et al. (2019)
builds a directed graph directly on top of states in replay buffer and runs graph search to find the se-
quence of waypoints, leading to many easier sub-tasks and thus improve learning efficiency. Huang
et al. (2019) abstracts state space as a small-scale map which allows it to run high-level planning
using a pairwise shortest path algorithm. Unlike these prior works that use graphs for planning, our
method reorganizes episodic memory by a graph to allow faster reward propagation. In addition,
these graph-based models rely on goal-conditioned RL (Kaelbling, 1993; Schaul et al., 2015a) and
only demonstrate their performance in navigation-like problems, while our approach is intended for
general RL settings.

3

Published as a conference paper at ICLR 2020

Exploration Efficient exploration is a long-standing problem in reinforcement learning. Prior
works have proposed guiding exploration based on criteria such as intrinsic motivation (Stadie
et al., 2015), state-visitation counts (Tang et al., 2017), Thompson sampling and bootstrapped mod-
els (Chapelle & Li, 2011; Osband et al., 2016), optimism in the face of uncertainty (Kearns & Singh,
2002), parameter-space exploration (Plappert et al., 2017; Fortunato et al., 2017). Recently, Oh et al.
(2018) proposed self-imitation learning (SIL) and found that exploiting past good experiences can
indirectly drive deep exploration. In their work, the agent imitates its own decisions in the past only
when such decisions resulted in larger returns than expected. Like SIL, EMDQN (Lin et al., 2018)
learns from episodic memory to replay past best decisions, therefore incentivizing exploration. In
our method, we build associative memory through a graph, which enhances the exploitation of past
good experiences and thus can indirectly encourage deeper exploration than EMDQN (Lin et al.,
2018).

4 EPISODIC REINFORCEMENT LEARNING WITH ASSOCIATIVE MEMORY

4.1 ASSOCIATING EPISODIC MEMORY AS A GRAPH

Similar with previous episodic reinforcement learning, we adopt an episodic memory to maintain the
historically highest values QEC(φ(s), a) of each state-action pair, where φ is an embedding function
and can be implemented as a random projection or variational auto-encoders (VAE) (Kingma &
Welling, 2013). When receiving a new state, the agent will look up in the memory and update the
values of states according to the following equation,

QEC(φ(st), at)←
{

max(QEC(φ(st), at), Rt) , if(φ(st), at) ∈ QEC
Rt , otherwise. (1)

However, episodic memory stores states as unrelated items and does not make use of the relationship
between these items. To fully exploit information in episodic memory, we further build a directed
graph G on top of items in the episodic memory to form an associative memory, as shown in Figure
2. In this graph, each node corresponds to a memory item that records the embedded vector of a
state φ(s), and we leverage transitions of states to bridge the nodes. The graph is defined as,

G = (V,E), V = φ(s), E = {s→ s′ | (s, a, s′) is stored in memory}. (2)

Given a sampled trajectory, we temporarily add each state to the graph. We add directed edges from
the given state to every other previously memorized state that is the successor of it under a certain
action. Our associative memory reorganizes the episodic memory and connects these fragmented
states that previously yielded high returns by a graph. We rewrite these stored valuesQEC(φ(s), a) as
QG(φ(s), a) in our graph augmented episodic memory. In addition, we adopt a strategy of discarding
the least recently used items when the memory is full.

4.2 PROPAGATING VALUES THROUGH ASSOCIATIVE MEMORY

Typical deep RL algorithms sample experience tuples uniformly from the replay buffer to update
value function. However, the way of sampling tuples neglects the trajectory nature of an agent’s
experience (i.e., one tuple occurs after another, and thus information of the following state should
be quickly propagated into the current state). EVA (Hansen et al., 2018) encourages faster value
propagation by introducing trajectory-centric planning (TCP) algorithm. Nonetheless, EVA only
propagates value through the current episode, which we refer to as intra-episode propagation. Our
insight here is that one state might appear in different trajectories, and such join points can help
connect different trajectories. Therefore, we explicitly build the graph between states from different
trajectories in memory and thus allows inter-episode value propagation.

Since the graph over states is complicated (e.g., not a tree structure), value propagation over such a
graph is always slow. To accelerate the propagating process, we propagate values using the sequen-
tial property. The pseudo-code of value propagation is shown in Algorithm 1. Our general idea is
to update the values of the graph in the reverse order of each trajectory. Specifically, when adding a
new state to the memory, we record the sequential step ID t of the state at the current trajectory. For
memory associating, we first sort the elements in memory by their sequential step IDs in descending
order and propagate the value from states with large sequential step ID to a small one for several

4

Published as a conference paper at ICLR 2020

Algorithm 1 Value propagation in Associative
Memory
h: embedded vector of state, h = φ(s)
G ← Sort nodes in graph G by sequential step
ID t in descending order
repeat

for m = 1 . . . |G| do
Get current state-action pair (s, a) =

(sm, am)
Get successor state embedding s′ and

action a′ using graph G.
Update graph augmented memory us-

ing Eq. 3.
end for

until QG converges

/

/

Experiences

Episodic Memory

Trajectories

Associative Memory

Key Value

Value Propagation

Join points

Figure 2: Comparison of episodic memory and as-
sociative memory.

iterations untilQG values converge. At each update, we get all successor state-action pairs (s′, a′) of
the current one (s, a) and current reward r according to the graph G and apply max operation on suc-
cessor action a′ to propagate the values to current state-action pair. Formally, our graph augmented
memory is updated as follow:

QG(φ(s), a)← r + γmax
a′

QG(φ(s
′), a′). (3)

Since most of states at the beginning are similar across different episodes, our reverse order updating
strategy can efficiently propagate all the values of the graph. In addition, as we show in Theorem 1,
our graph-based value propagation algorithm can converge to a unique optimal point. The proofs
are shown in Appendix A.
Theorem 1. Denote the Bellman backup operator in Equation 3 as B : R|S|×|A| → R|S|×|A| and a
mapping Q0 : S ×A → R|S|×|A| with |S| <∞ and |A| <∞, and define Qk+1 = BQk. Repeated
application of the operator B for our graph-based state-action value estimate Q̂G converges to a
unique optimal value Q∗G .

In the previous episodic reinforcement learning with no graph built, only the values of exactly the
same or similar states can be updated. This is because in the typical update rule of episodic memory,
as shown in Eq. 1, the relationship between states has been neglected. Episodic memory does
not leverage the information of edges E in our graph G. Consequently, stored values in episodic
memory often violate Bellman’s equation. On the contrary, our associative memory allows efficient
value propagation through the edges of the graph to compute the more accurate values for each state.

4.3 LEARNING WITH ASSOCIATIVE MEMORY

Building associative memory can be viewed as a way of augmenting counterfactual experiences. As
shown in Figure 2, the same states might appear in N > 1 trajectories. Vanilla episodic memory
maps such states to the highest values among N trajectories, while our associative memory regards
such states as join points to connect different trajectories, leading to totally N2 trajectories. This is
equivalent to sample more combinatorial trajectories from environments and thus can significantly
improve sample efficiency of RL algorithms.

Our associative memory can be applied to both the learning and control phases. In this paper, we
use our associative memory as guidance for the learning of the Q function. The overall framework
is shown as Figure 3. Specifically, we use associative memory as a regularization term of objective
function to supervise the learning of the Q network. The Q network is learned by minimizing the
following objective function:

Lθ = E(s,a,s′,r)∼D

[(
r + γmax

a
Qθ̂(s

′, a)−Qθ(s, a)
)2

+ λ
(
QG(φ(s), a)−Qθ(s, a)

)2]
, (4)

where λ is the weight of the regularization term, θ represents parameters of parametric Q-network.
Similar with DQN (Mnih et al., 2015), we also adopt a target network parameterized by θ̂ to stabi-

5

Published as a conference paper at ICLR 2020

Value Network Q value

Random

Projection

Observation

s

Hidden

Vectors

Guidance

Experienced

High Value

Associative Memory

Value Propagation on Graph

Figure 3: Overall framework of ERLAM.

lize the learning process. Through the combination of parametric and non-parametric term, we can
efficiently guide the learning of a conventional Q-network by the fast-adjusted high values in asso-
ciative memory so that the agent can rapidly latch on strategies that previously yield high returns
instead of waiting for many steps of slow gradient update. The pseudo code of our method is shown
in Algorithm 2.

Algorithm 2 ERLAM: Episodic Reinforcement Learning with Associative Memory
D: Replay buffer
G: Graph (Associative memory)
Te: Trajectory length of e-th episode
K: Associate frequency
for Episode number e = 1 . . . E do

for t = 1 . . . Te do
Receive initial observation st from environment with state embedding ht = φ(st)
at← ε-greedy policy baesd on Qθ(st, a)
Take action at, receive reward rt and next state st+1

Append (st, at, rt, st+1) to D
if t mod update freq == 0 then

Sample training experiences (s, a, r, t) from D
Retrieve QG(φ(s), a) from associative memory
Update parameter θ using Eq. 4

end if
end for
for t = Te . . . 1 do

Rt ← rt + γRt+1, if t < Te ; Rt ← rt, if t = Te
Append (ht, at, rt, t, Rt) to G if (ht, at) /∈ G
Update QG using Eq.1 if (ht, at) ∈ G

end for
if e mod K == 0 then

Run Algorithm 1 to update QG
end if

end for

4.4 CONNECTION TO GRAPH-BASED DEEP REINFORCEMENT LEARNING

When the general RL setting used in our approach degenerates to a setting of navigation-like task
that is usually adopted by goal-conditional RL (Kaelbling, 1993; Schaul et al., 2015a), the update
target of associative memory in Eq. 3, y = r + γmaxa′ QG(φ(s

′), a′) can be rewritten as,

y =

{
r , if s′ is a terminal state,
γmaxa′ QG(φ(s

′), a′) , otherwise. (5)

Optimizing with the target in Eq. 5 is equivalent to finding the shortest path in the graph of all states.
In this case, algorithm 1 is analogous to Bellman-Ford algorithm (Bellman, 1958), which is proved

6

Published as a conference paper at ICLR 2020

that the value can converge in limited iterations. In the context of goal-conditional RL, some graph-
based methods (Huang et al., 2019; Eysenbach et al., 2019) also calculated shortest path. They focus
on a graph of waypoints learned by goal-conditional RL instead of memorized states that previously
yield high returns. In addition, they use a parametric approach for value approximation, while we
develop a non-parametric approach to improve sample efficiency of a parametric RL agent.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

We follow the same setting for network architecture and all hyper-parameters as DQN (Mnih et al.,
2015). The raw images are resized to an 84 × 84 grayscale image st, and 4 consecutive frames
are stacked into one state. The Q value network alternates convolutions and ReLUs followed by a
512-unit fully connected layer and an output layer whose size is equal to the number of actions in
each game. Denote Conv(W , F , S) as the convolutional layer with the number of filters W , kernel
size F , and stride S. The 3 convolutional layers can be indicated as Conv(32,8,4), Conv(64,4,2),
and Conv(64,3,1). We used the RMSProp algorithm (Tieleman & Hinton, 2012) with learning rate
α = 0.00025 for gradient descent training. The discount factor γ is set to 0.99 for all games. We
use annealing ε-greedy policies from 1.0 to 0.1 in the training stage while fixing ε = 0.05 during
evaluation.

For hyper-parameters of associative memory, we set the value of λ as 0.1 and associate frequency
K as 10 in the navigation domain, Monster Kong. In Atari games, we use the same settings for all
games. The value of λ is 0.3, and the associate frequency K is 50. The memory size is set as 1
million. We use random projection technique and project the states into vectors with the dimension
of d = 4. For efficient table lookup, we build a kd-tree for these low-dimension vectors.

(a) MonsterKong1 (b) MonsterKong2 (c) MonsterKong3

Figure 4: Maps of Monster Kong. Compared to MonsterKong1, MonsterKong2 has a different goal
and MonsterKong3 has a totally different MDP.

5.2 RESULTS ON NAVIGATION DOMAIN

We first test our model on the navigation domain, which contributes to demonstrate the superiority of
our algorithm and understand the contribution of associative memory. We use a video game Monster
Kong from Pygame Learning Environment (PLE)(Tasfi, 2016) to set up the navigation experiments.
In this game, the goal of the agent is to approach the princess with actions up, down, left, right,
jump and noop from random starting positions. The agent will win with an extra reward +1 when
touching the princess and lose when hitting the thorns (silver triangles). We run ERLAM on three
maps of Monster Kong (see Figure 4) and compare it with EMDQN and DQN.

As shown in Figure 5, the sample-efficiency of ERLAM significantly outperforms EMDQN and
DQN. ERLAM with only 10M samples can gain higher scores than EMDQN with 80M samples
on map MonsterKong2 and MonsterKong3. Then, we inspect the value estimation of Q networks
and the stored values in memory to provide insight into our reinforcement learning results. We plot
the average values of states in associative memory (orange line in the bottom row of Figure 5) dur-
ing the training process of ERLAM. To better understand the contribution of the value propagation

7

Published as a conference paper at ICLR 2020

Figure 5: Learning curves of ERLAM, EMDQN, and DQN on Monster Kong. The top row com-
pares the average scores per episode between all models. The bottom row shows state-action value
estimates by associative memory, episodic memory, and Q networks when running ERLAM. The
black dash line represents the actual discounted state-action values of the best learned policy.

process in associative memory, we maintain a memory without value propagation (which amounts
to episodic memory, shown as the green line in the bottom row of Figure 5) in the meanwhile and
compare the state-action values of it to associative memory. As expected, the values after value
propagation of associative memory grow higher, indicating associative memory provides a better
non-parametric lower bound of Q value than episodic memory. Values estimated by associative
memory are closer to the true values of optimal policy (black dash line) and capable of guiding
the learning of the Q network (blue line). We further visualize and compare the execution policies
according to associative memory and episodic memory to gain a deeper understanding of their con-
nections. We study a case in Figure 6. We observe that the policy provided by associative memory
(yellow dash line) is exactly the combination of two policies in episodic memory (blue line and red
line), and such a combinatorial trajectory is not a real trajectory in replay buffer. This result suggests
that the value propagation in associative memory enables automatic augmentation of counterfactual
combinatorial trajectories, which accounts for the improvement of sample efficiency in ERLAM.

5.3 RESULTS ON ATARI GAMES

Figure 6: Visualization of trajecto-
ries. The blue line and red line vi-
sualize two policies using episodic
memory, while the yellow dash
line represents the combinatorial
trajectory by value propagation in
associative memory.

To further evaluate the sample efficiency of ERLAM on a di-
verse set of games, we conduct experiments on the benchmark
suite of Atari games from the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), which offer various scenes
to test RL algorithms over different settings. We largely fol-
low the training and evaluation protocol as (Mnih et al., 2015).
We train our agents for 10 epochs, each containing 1 million
frames, thus 10 million frames in total. For each game, we
evaluate our agent at the end of every epoch for 0.5 million
frames, with each episode up to 18000 frames, and start the
game with up to 30 no-op actions to provide random starting
positions for the agent.

In our experiments, we compare ERLAM with episodic rein-
forcement learning baselines, MFEC (Blundell et al., 2016),
NEC (Pritzel et al., 2017), EMDQN (Lin et al., 2018), EVA
(Hansen et al., 2018), as well as an ablation (i.e., DQN with no
associative memory). MFEC directly uses the non-parametric
episodic memory for action selection, while NEC, EMDQN,
and EVA combine non-parametric episodic memory and a
parametric Q-network. Different from previous work, ER-
LAM adopts associative memory to guide the learning of a
Q-network.

8

Published as a conference paper at ICLR 2020

5700%

2633%

2110%

Figure 7: Comparison between ERLAM (i.e., DQN with associative memory) and EMDQN (i.e.,
DQN with episodic memory) measured in improvements of scores over DQN as shown in Eq. 6.
Bars indicate how much each algorithm outperforms the DQN (i.e., DQN with no memory) agent.
0% means the performance is equal to DQN and higher is better.

Table 1: Performance comparisons on mean and median human-normalized scores as in (Mnih et al.,
2015). All agents are trained using 10 million frames except for EMDQN which is trained with 40
million frames.

DQN A3C Prior. DQN MFEC NEC EVA EMDQN(40M) ERLAM
Mean 83.6 40.1 116.6 77.7 106.1 172.2 250.6 515.4

Median 16.0 6.9 32.3 40.9 53.3 39.2 95.5 103.5

We tested ERLAM on 25 popular and challenging Atari games. To evaluate our approach, we follow
Wang et al. (2015) and measure improvement in percentage in score over the better of human and
DQN agent scores for both ERLAM and EMDQN:

ScoreAgent − ScoreDQN

max{ScoreHuman,ScoreDQN} − ScoreRandom
. (6)

To test the sample efficiency of our method, we limit our training data to 10 million frames and
compare with state-of-the-art results on episodic RL (i.e., EMDQN (Lin et al., 2018)), which are
trained with 40 million frames and reported in their original paper. The results are shown in Fig-
ure 7. We found that even though our agent uses 4 times fewer training samples than EMDQN,
ERLAM still outperforms EMDQN on 17 games. Overall, ERLAM significantly outperforms all
baselines over most games. This suggests that associative memory can efficiently guide the learning
of a parametric RL agent, and our framework of combining associative memory with parametric
RL can achieve significantly better sample efficiency than existing RL algorithms. For the games
where ERLAM does not perform very well, we summarize the reasons as follows. First, ERLAM
is good at improving the sample-efficiency in near-deterministic environments but may suffer from
overestimation in highly stochastic environments, such as Tutankham. Second, since representations
learning is not the focus of this paper, we simply use the naive random projection as the state repre-
sentations in memory. Random projection is only used for dimension reduction and does not contain
useful high-level features or knowledge (e.g., objects and relations). Thus in some games with rarely
revisited states, there are not enough joint nodes in our graph, and our algorithm does not perform
well, such as FishingDerby and Jamesbond. In addition, We compare the overall performance (mean
and median) of ERLAM with other methods in Table 1, which also shows that ERLAM has the best
performance.

To gain a better understanding of our superior performance, we further plot learning curves (Figure
8) on four games, which include three general good cases (Atlantis, BattleZone, StarGunner) and a
bad case (BankHeist) to demonstrate when associative memory works extremely well and when it is

9

Published as a conference paper at ICLR 2020

not particularly effective. In addition, we plot the average values of states in memory (Figure 8) for
better revealing the performance difference on game scores. Across most games, ERLAM is signifi-
cantly faster at learning than EMDQN and DQN, but ERLAM only has a slightly better performance
than EMDQN on BankHeist. The reasons lie in two folds. Firstly, there are more crossed experi-
ences on Atlantis, BattleZone, StarGunner than BankHeist. Thus on the first three games, the values
computed by associative memory are significantly larger than those in episodic memory. Secondly,
we observe that the background objects in BankHeist have abnormally changeable appearance and
complex behaviors, which are intractable for memory-based methods (e.g., MFEC, NEC, EMDQN,
and ERLAM), especially with a simple random projection embedding function for state feature ab-
straction (we also discuss this in Conclusion Section). It also accounts for the reason why ERLAM
and EMDQN have similar performance with DQN on this game.

Figure 8: Examples of learning curves on 10 million frames compared with EMDQN and DQN.
The top row shows average scores per episode and the bottom row shows average values of states in
memory. One Plot Number is equivalent to about 30K frames. Note that 0 indicates the first million.

We also add experiments to verify our superior performance benefits from associative memory rather
than representations (e.g., random projection). As shown in Appendix Figure 9, DQN with only
random projections as inputs has much worse performance than ERLAM and the vanilla DQN,
which suggests that it is associative memory that matters.

6 CONCLUSION

In this paper, we propose a biologically inspired sample efficient reinforcement learning frame-
work, called Episodic Reinforcement Learning with Associative Memory (ERLAM). Our method
explicitly organizes memorized states as a graph. We develop an efficient reverse-trajectory prop-
agation strategy to allow the values of new experiences to propagate to all memory items through
the graph rapidly. Experiments in the navigation domain and Atari games demonstrate that our pro-
posed framework can significantly improve the sample efficiency of current reinforcement learning
algorithms.

In the future, there are some interesting research directions that can be pursued within our proposed
framework. Firstly, in this paper, following the work of Blundell et al. (2016) and Lin et al. (2018),
our state embedding function φ is implemented as random projection. It is possible to incorporate
advanced representation learning approaches that can capture useful features into our framework
to support more efficient memory retrieval and further boost up performance. Secondly, existing
episodic reinforcement learning algorithms mainly focus on value-based methods. It will be an in-
teresting future work to extend episodic memory to policy gradient methods. Thirdly, we instantiate
our associative memory in the learning phase in this paper. However, associative memory can also
be used in explicit episodic control to enhance exploitation further. Fourthly, at the current stage,
ERLAM, as a kind of episodic RL approach, is only good at improving sample-efficiency in near-
deterministic environments. To deal with completely stochastic environments, our model can be
potentially extended by storing the distribution of Q values (Bellemare et al., 2017; Dabney et al.,
2018) instead of the maximum Q value in the associative memory.

10

Published as a conference paper at ICLR 2020

REFERENCES

John R Anderson and Gordon H Bower. Human associative memory. Psychology press, 2014.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 449–458. JMLR. org, 2017.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Mathew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis
Hassabis. Reinforcement learning, fast and slow. Trends in cognitive sciences, 2019.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
neural information processing systems, pp. 2249–2257, 2011.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. arXiv preprint arXiv:1806.06923, 2018.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridg-
ing planning and reinforcement learning. arXiv preprint arXiv:1906.05253, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Itzhak Gilboa and David Schmeidler. Case-based decision theory. The Quarterly Journal of Eco-
nomics, 110(3):605–639, 1995.

Steven Hansen, Alexander Pritzel, Pablo Sprechmann, André Barreto, and Charles Blundell. Fast
deep reinforcement learning using online adjustments from the past. In Advances in Neural In-
formation Processing Systems, pp. 10567–10577, 2018.

Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q(λ) with off-policy
corrections. In International Conference on Algorithmic Learning Theory, pp. 305–320. Springer,
2016.

Frank S He, Yang Liu, Alexander G Schwing, and Jian Peng. Learning to play in a day: Faster deep
reinforcement learning by optimality tightening. arXiv preprint arXiv:1611.01606, 2016.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. arXiv preprint arXiv:1908.05451, 2019.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. In Pro-
ceedings of the tenth international conference on machine learning, volume 951, pp. 167–173,
1993.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49(2-3):209–232, 2002.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

Published as a conference paper at ICLR 2020

Teuvo Kohonen. Self-organization and associative memory, volume 8. Springer Science & Business
Media, 2012.

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. In Advances
in neural information processing systems, pp. 889–896, 2008.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations, 2016.

Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep q-networks.
arXiv preprint arXiv:1805.07603, 2018.

David Marr, David Willshaw, and Bruce McNaughton. Simple memory: a theory for archicortex.
In From the Retina to the Neocortex, pp. 59–128. Springer, 1991.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv preprint
arXiv:1806.05635, 2018.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026–4034, 2016.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2827–2836. JMLR.
org, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312–1320, 2015a.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Robert J Sutherland and Jerry W Rudy. Configural association theory: The role of the hippocampal
formation in learning, memory, and amnesia. Psychobiology, 17(2):129–144, 1989.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2011.

12

Published as a conference paper at ICLR 2020

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pp. 2753–
2762, 2017.

Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/
PyGame-Learning-Environment, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

13

https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

Published as a conference paper at ICLR 2020

A THEORETICAL CONVERGENCE

Proof. Note that our graph-based value propagation is similar to the proof of value iteration (Bell-
man, 1966; Bertsekas et al., 1995; Sutton & Barto, 2011). For any estimate of our graph-based
action-value function Q̂G

BQ̂G(s, a) = R(s, a) + γmax
a′∈A

∑
s′∈S

PG(s
′|s, a)Q̂G(s′, a′),

where PG(s′|s, a) defines transition probability given graph G. For any action-value function esti-
mates Q̂1

G , Q̂2
G ,

|BQ̂1
G(s, a)−BQ̂2

G(s, a)|

=γ

∣∣∣∣max
a′∈A

∑
s′∈S

PG(s
′|s, a)Q̂1

G(s
′, a′)−max

a′∈A

∑
s′∈S

PG(s
′|s, a)Q̂2

G(s
′, a′)

∣∣∣∣
≤γmax

a′∈A

∣∣∣∣ ∑
s′∈S

PG(s
′|s, a)Q̂1

G(s
′, a′)−

∑
s′∈S

PG(s
′|s, a)Q̂2

G(s
′, a′)

∣∣∣∣
=γmax

a′∈A

∑
s′∈S

PG(s
′|s, a)|Q̂1

G(s
′, a′)− Q̂2

G(s
′, a′)|

≤γ max
s∈S,a∈A

|Q̂1
G(s, a)− Q̂2

G(s, a)|

So the contraction property of Bellman operator holds:

max
s∈S,a∈A

|BQ̂1
G(s, a)−BQ̂2

G(s, a)| ≤ γ max
s∈S,a∈A

|Q̂1
G(s, a)− Q̂2

G(s, a)| (7)

For the fixed point Q∗G , we have:

max
s∈S,a∈A

|BQ̂G(s, a)−BQ̂∗G(s, a)| ≤ γ max
s∈S,a∈A

|Q̂G(s, a)− Q̂∗G(s, a)| =⇒ Q̂G → Q∗G (8)

Therefore, we prove that our graph-based value propagation algorithm can converge to unique opti-
mal value.

14

Published as a conference paper at ICLR 2020

B RAW SCORES ON ATARI GAMES

Table 2: Raw scores on Atari games at 10 million frames. All agents are trained using 10 million
frames except for EMDQN which is trained with 40 million frames.

DQN A3C Prior.DQN MFEC NEC EVA EMDQN(40M) ERLAM
Alien 634.80 415.50 800.50 1717.70 3460.60 1007.93 1662.00 2070.85
Amidar 126.80 96.30 99.10 370.90 811.30 231.19 374.10 980.47
Assault 1489.50 720.80 1339.90 510.20 599.90 550.77 2566.80 3230.18
Atlantis 14210.50 36383.00 12579.10 95499.40 51208.00 180367.20 290953.30 359530.00
BankHeist 29.30 15.80 70.10 163.70 343.30 4022.45 348.00 702.92
BattleZone 6961.00 2354.20 13500.00 19053.60 13345.50 14000.47 28300.00 33095.24
BeamRider 3741.70 450.20 3249.60 858.80 749.60 1914.30 5980.90 7116.67
Boxing 31.30 2.50 64.70 10.70 72.80 58.43 89.30 87.77
ChopperCommand 827.20 1036.70 1426.50 3075.60 5070.30 1612.93 3106.70 4172.83
CrazyClimber 66061.60 70103.50 76574.10 9892.20 34344.00 90656.27 107038.70 106538.71
Defender 2877.90 4596.00 3486.40 10052.80 6126.10 2890.44 14408.00 705833.33
DemonAttack 5541.90 346.80 6503.60 1081.80 641.40 504.52 5603.10 11056.75
Enduro 364.90 0.00 1125.80 0.00 1.40 1106.35 659.00 912.73
FishingDerby -81.60 -89.50 -48.20 -90.30 -72.20 -68.10 8.40 -30.20
Frostbite 339.10 218.90 711.30 925.10 2747.40 1005.44 596.30 3193.83
Hero 1050.70 4598.20 5164.50 14767.70 16265.30 12075.89 7247.80 13615.00
Jamesbond 165.90 31.50 203.80 244.70 376.80 252.18 586.70 518.42
Krull 6015.10 3627.60 6700.70 4555.20 5179.20 4030.04 7798.30 7755.80
KungFuMaster 17166.10 6634.60 21456.20 12906.50 30568.10 25005.15 23890.00 20353.49
Riverraid 3144.90 2312.60 4871.80 4195.00 5498.10 4026.74 7728.30 8138.66
RoadRunner 7285.40 759.90 24746.60 5432.10 12661.40 28194.17 27856.60 37318.63
Robotank 14.60 2.40 8.50 7.30 11.10 15.13 5.30 25.44
Seaquest 618.70 514.10 1192.20 711.60 1015.30 1714.15 4235.90 2693.96
StarGunner 604.80 613.60 1131.40 14843.90 1171.40 2006.22 23933.30 9432.97
Tutankham 148.70 108.30 194.00 86.30 121.60 171.33 148.00 146.94
YarsRevenge 7614.10 9953.00 9228.50 5956.70 21490.50 11010.90 13236.70 14259.26

Figure 9: Learning curves on 10 million frames compared with ERLAM, DQN with random project
and vanilla DQN.

15

	Introduction
	Background
	Related Work
	Episodic Reinforcement Learning with Associative Memory
	Associating episodic memory as a graph
	Propagating values through associative memory
	Learning with associative memory
	Connection to graph-based deep reinforcement learning

	Experiments
	Experiment setting
	Results on Navigation Domain
	Results on Atari games

	Conclusion
	Theoretical Convergence
	Raw Scores on Atari Games

