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Abstract
Algorithm learning is a core problem in artificial
intelligence with significant implications on au-
tomation level that can be achieved by machines.
Recently deep learning methods are emerging for
synthesizing an algorithm from its input-output
examples, the most successful being the Neu-
ral GPU, capable of learning multiplication. We
present several improvements to the Neural GPU
that substantially reduces training time and im-
proves generalization. We introduce a new tech-
nique - hard nonlinearities with saturation costs -
that has general applicability. We also introduce
a technique of diagonal gates that can be applied
to active-memory models. The proposed archi-
tecture is the first capable of learning decimal
multiplication end-to-end.

1. Introduction
Several architectures have appeared that are capable of learn-
ing algorithms of moderate complexity. Neural GPU (Kaiser
& Sutskever, 2015) is the most promising among the pro-
posed architectures for algorithm learning because it is the
only one capable of learning multiplication that generalizing
to inputs much longer than the training examples. However,
it is fragile since only a tiny fraction of the trained models
generalize well.

In this paper, we study ways to improve the Neural GPU
to obtain faster training and better generalization. The pro-
posed improvements allow us to achieve substantial gains:
the model can learn binary multiplication in 800 steps ver-
sus 30000 steps that are needed for the original Neural GPU,
and, most importantly all the trained models generalize to
100 times longer inputs with less than 1% error. The model
can also learn a wider range of problems with similar gen-
eralization performance, e.g. the decimal multiplication,
which is the first time it has been learned end-to-end. To
learn decimal multiplication we use a different representa-
tion where each decimal digit is encoded in binary.

The improvements that achieve these goals are introduction
of nonlinearities with saturation cost and introduction of a
diagonal gating mechanism. We also improve the training

schedule by training on all input lengths simultaneously and
use a larger learning rate with AdaMax optimizer (Kingma
& Ba, 2014). We integrate gradient clipping into AdaMax.

We analyze the impact of each improvement separately and
show that all of them are relevant to the achieved perfor-
mance. We find that using hard nonlinearities with satura-
tion cost is the key factor to achieve good generalization.

2. Related Work
Recurrent networks are the simplest devices capable of
computation on arbitrary length inputs. It is employed in
LSTM(Hochreiter & Schmidhuber, 1997) and GRU (Cho
et al., 2014) networks for sequence classification. Thy scale
with sequence length but each cell has a constant amount
of memory that essentially limits the learnable problems to
regular languages. Grid LSTM (Kalchbrenner et al., 2015)
allow explicit unrolling along time and memory dimension
and are able to learn more complex tasks such as addition
and memorization.

Simple algorithms such as sequence copying and reversal
can be learned with the current reinforcement learning tech-
niques (Zaremba & Sutskever, 2015; Zaremba et al., 2016).
(Graves et al., 2014) developed a Neural Turing Machine
capable of learning and executing simple programs such
as repeat copying, simple priority sorting, and associative
recall. (Graves et al., 2016) improve it for solving more
complex tasks.

(Joulin & Mikolov, 2015) introduce differentiable stack and
double linked list data structures. Pointer Networks (Vinyals
et al., 2015) use soft attention and generalize to a variable-
sized output space depending on the input sequence length.
This model was shown to be effective for combinatorial
optimization problems such as the traveling salesman and
Delaunay triangulation. Neural Random-Access Machines
(Kurach et al., 2016) introduce a memory addressing scheme
potentially allowing constant time access due to discretiza-
tion. (Grefenstette et al., 2015) introduce more neural data
structures and evaluate them on several sequence processing
tasks. A hierarchical memory layout with logarithmic ac-
cess time is introduced in (Andrychowicz & Kurach, 2016)
with both differentiable and reinforcement learning versions
being presented. A different setting of algorithm learning
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is explored in (Reed & De Freitas, 2015) where a model
is trained on execution traces instead of input and output
pairs; this richer supervision allows to induce higher level
programs. See also (Kant, 2018) for a recent overview of
the existing approaches.

Neural GPU (Kaiser & Sutskever, 2015; Kaiser & Bengio,
2016) seems the most promising approach since it is simple
and fast and can learn fairly complicated algorithms such
as addition and binary multiplication. But only a small
fraction of the trained models generalize to instances of
unbounded length. The authors train 729 models to find
one that generalizes well. (Price et al., 2016) is able to train
Neural GPU on decimal multiplication by using curriculum
learning when the same model is trained at first for binary
multiplication then for base-4 and only then for decimal.

3. The Model
Neural GPU(NGPU) was introduced by (Kaiser &
Sutskever, 2015). It is a recurrent network with a multi-
dimensional state where a Convolution Gated Recurrent
Unit (CGRU) is applied to the state at every time-step.
CGRU is a combination of convolution operation and
GRU(Cho et al., 2014) which computes the state st at time t
from the state at time t− 1 according to the following rules:

st = ut � st−1 + (1− ut)� ct
ct = tanh(U ∗ (rt � st−1) +B)

ut = σ(U ′ ∗ st−1 +B′)

rt = σ(U ′′ ∗ st−1 +B′′)

In the above equations, U , U ′, U ′′ are convolution kernel
banks, B, B′, B′′ are bias vectors; these are the parameters
that will be learned. U ∗ s denotes a convolution of a kernel
bank U with a state s; u � s denotes element-wise vector
multiplication and σ is the sigmoid function.

Given an input of length n, it is embedded into the first
state, each symbol independently, producing a state with
its first dimension equal to n, then CGRU is applied to it
several times, and output is read from the last state by using
a softmax for each symbol.

We use a 2-dimensional state of shape [n,m] where n is
the length of input and m is the number of maps. The
convolution kernel banks are of shape [3,m,m] and we fix
the filter length to 3. We confirmed experimentally that this
is the optimal setting for all considered tasks. We use n
applications of the convolutional unit, all with the same set
of parameters.

The gating mechanism incorporated in the CGRU facilitates
data copying to the same cell in the next time-step. This
is essential for bringing together features separated in time
during training. However, for most tasks, it is also required
to bring together features from both ends of the input. There-

fore, we introduce gates that copy data to a neighboring cell
in the next time-step. We call these diagonal gates. We split
all maps of a state into 3 parts st = (s1t , s

2
t , s

3
t ). The first

part has a gate from the same cell in the previous time-step
as in a CGRU, the second part uses gate from the left neigh-
bor cell, and the third part uses gate from the right neighbor
cell. To implement the diagonal gates, we need to shift the
parts s2t−1 and s3t−1 to the right and left respectively and
then apply a CGRU to the result. Shifting can be conve-
niently expressed as a convolution. Right shift corresponds
to convolution with filter [1,0,0], left shift to convolution
with [0,0,1] and no shift to convolution with [0,1,0]. We
define the Diagonal Convolutional Gated Recurrent Unit
(DCGRU), which we will use instead of CGRU, as follows:

st = ut � s̃t + (1− ut)� ct
s̃t = (s̃1t , s̃

2
t , s̃

3
t )

s̃1t = s1t−1 ∗ [0, 1, 0]
s̃2t = s2t−1 ∗ [1, 0, 0]
s̃3t = s3t−1 ∗ [0, 0, 1]

Definitions of ut and ct are the same as for CGRU. The
division of maps into 3 parts is only conceptual; an imple-
mentation uses a depthwise convolution operating directly
on st−1 convolving each map with the required convolution
filter independently.

Using gates that operate in different directions is not a novel
idea. A similar mechanism is used in Grid LSTM (Kalch-
brenner et al., 2015) where different units perform gating
along different dimensions of the grid. But introduction
such gates in a convolutional architecture is new.

(Kaiser & Sutskever, 2015) have found that introducing
gate cutoff improves performance. We go further and use
hard tanh and hard sigmoid functions for all nonlinearities
in the DCGRU. They are piecewise linear approximations
of tanh and σ, namely

hard tanh(x) = max(−1,min(1, x))

hard σ(x) = max(0,min(1, (x+ 1)/2))1

To keep the units away from saturation we add an ex-
tra cost to the loss function. For one unit we define

saturation cost(x) = min(0, |x| − s limit)
with a parameter s limit slightly less than 1 to keep the unit
in its linear range. A value s limit = 0.9 works well in our
case. We calculate the saturation cost for each application of
hard tanh(x) and hard σ(x), sum all of them together and
add to the loss function with an appropriately small weight.
We choose the weight such that the total saturation cost is
100 times smaller than the error loss.

1Other literature may contain a slightly different definition, but
the following one is preferable in our case since we can use the
same saturation cost for both functions.
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Figure 1. Accuracy on test set length 401 vs.
step on binary multiplication.

Figure 2. Accuracy on inputs of different
lengths. The vertical dashed line shows the
training length.

Figure 3. Ablation study of the proposed fea-
tures.

We train the model on inputs of all lengths simultaneously.
As in the original architecture, we instantiate several bins of
different lengths and place each training example into the
smallest bin it fits and pad the remaining length. However,
instead of training each bin separately, we sum their losses
together and use one optimizer for the total loss. In this way,
we avoid scheduling of bins and obtain faster convergence
since, typically, several bins contribute to progress at each
training step. We do not use parameter sharing relaxation of
NGPU since we find in unnecessary.

We use initial learning rate lr = 0.005 and decrease it
if no progress is made for 600 steps. We use AdaMax
optimizer (Kingma & Ba, 2014); it has a strong guarantee
that each parameter value will change by no more than lr
at each step. We integrate gradient clipping into AdaMax
optimizer. We clip each variable separately to the range
proportional to its decayed maximum that is used internally
by the optimizer. In this way, we do not need to set some
predetermined clipping threshold. We use gradient noise of
magnitude proportional to the learning rate as suggested in
(Neelakantan et al., 2015). We apply dropout only to the
update vector ct of the CGRU as proposed in (Semeniuta
et al., 2016). Such dropout helps to avoid memory loss over
many time steps.

4. Evaluation
We have implemented the proposed architecture in tensor-
flow. The code is available on GitHub2. In this section, we
compare the proposed architecture (denoted by DNGPU)
with the original architecture (denoted NGPU) by (Kaiser
& Sutskever, 2015) and evaluate individual improvements
of DNGPU proposed in this paper. We choose multiplica-
tion task as the basis for the evaluation since it is the most
complex of the tasks considered in (Kaiser & Sutskever,
2015). On other tasks including addition and sorting our
architecture performs the same or better.

For comparison we use NGPU implementation provided by

2To appear in final version.

the authors (Kaiser & Sutskever, 2015). We set the number
of maps nmaps = 24, dropout probability = 0.09, other
parameters leaving at their default values.

For DNGPU we use the number of maps m = 96 to match
the data amount carried in one state of NGPU (which use
24 maps in 4 rows). We use learning rate lr = 0.05, and
dropout probability = 0.1.

We use essentially the same training set as in the (Kaiser
& Sutskever, 2015) consisting of 10000 examples of every
length up to 41 (two 20 bit numbers are multiplied). We
trained 5 models with a random initialization and measured
their accuracy on a test set containing random inputs of
length 401 (two 200 bit numbers are multiplied). In this
way, we can show both training speed and generalization in
one graph. We used a computer with Intel Xeon E312 2.4
GHz processor, 64GB RAM and a Tesla K40 GPU card for
testing.

4.1. Performance and generalization

To compare DNGPU with NGPU, we plot the accuracy of
both models on the test set for each step of training, see Fig 1.
The solid lines show the average of all runs and the shaded
area shows the scatter among different runs. Accuracy is
defined as the percentage of correctly predicted output bits
over all examples. We can see that the DNGPU converges
much faster and achieves near 100% accuracy in all runs. It
requires only about 800 steps to reach 99% accuracy.

To explore generalization beyond length 401, see Fig 2
which shows the accuracy of both architectures depending
on input length. We see that DNGPU generalizes much
better. All trained DNGPU models exceeded 90% accuracy,
and two out of five exceeded 99% accuracy on length 4001.

To summarize, our architecture outperforms the original
by a wide margin both in terms of training speed and of
generalization. Our implementation consistently reaches
99% accuracy on the test set in less than 15 minutes. The
original NGPU trains slower and achieves 90% accuracy
only on some runs. Our findings about NGPU are consistent
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with a much more massive evaluation in (Neelakantan et al.,
2015) Table 6 which shows that only a small fraction of its
trained instances generalize well to length 401. Note that
generalization of both models can be improved by increasing
dropout probability together with the number of maps.

4.2. Ablation study

We tried to understand how much each of the proposed en-
hancements contributes to the improved performance. Fig 3
shows how the model performs when one of the proposed
features is turned off. The magenta line shows the effect of
using traditional soft tanh and sigmoid instead of hard ones.
The yellow line shows performance with hard nonlinearities
but without saturation cost. The red line shows performance
without diagonal gates. The blue line is the suggested archi-
tecture which performs the best. A model trained without
hard nonlinearities leads to especially poor performance.
A closer look reveals that these models managed to fit the
training set but generalized poorly to long test instances.
The same figure shows that hard nonlinearities without sat-
uration cost also perform poorly. Training is unstable and
does not converge to 100% accuracy.

4.3. Decimal multiplication

Our model can learn base-4 multiplication with consistently
good generalization if we increase the number of maps to
192. However, like our predecessors, we did not succeed
on the decimal multiplication task in its originally proposed
form. But our architecture can learn decimal multiplication
if we encode each decimal digit in binary. We use 4 bits
per digit and mark the start of each digit with a different
encoding of its first bit. Such encoding produces 4 times
longer inputs and outputs. We implemented this encoding
in input/output data generation part, but equivalently it can
be implemented inside the Neural GPU itself by appropriate
adjustment of its input and output layers.

For evaluation, we increased the number of maps m to 192
and performed training on examples of length 41 (multi-
plication of two 5 digit decimal numbers) and tested on
examples of length 401 (multiplication of two 50 digit deci-
mal numbers) as before. Fig 4 shows the results.

We were surprised to see that it generalized so well despite
training only on very short examples containing two 5 digit
numbers. Additionally, two models out of 5 generalized to
length 401 with less than 1% error. Of course, for better
generalization we have to train on longer inputs. The binary
encoding allows easier training. However, it comes with a
significant overhead, i.e., a 4x increase in the input length
which leads to a 16x increase in the unrolled model and
a proportional increase training time and memory require-
ments.

Figure 4. Accuracy on test set length 401 vs. step on decimal
multiplication.

5. Conclusions
We have presented several improvements to the Neural GPU
architecture that substantially decrease training time and
improve generalization. The main improvements are hard
nonlinearities with saturation cost and a diagonal gating
mechanism. We have shown that the hard nonlinearities
with saturation cost contribute the most to obtaining better
generalization. They may find further applications also in
ordinary reccurent networks such as LSTM and GRU.

A larger learning rate together with AdaMax optimizer also
helps the training performance, but the introduced saturation
cost is essential to keep the learning convergent.

The improved architecture can easily learn a variety of tasks
including the binary multiplication on which other architec-
tures struggle. If we increase the number of maps to 192,
we can also learn base-4 multiplication with consistently
good generalization. Furthermore, if we encode the decimal
input/output digits in binary, the architecture can also learn
decimal multiplication end-to-end.

The improved architecture is considerably simpler than the
original NeuralGPU, enabling an easier extension to handle
harder problems. One such possible extension could be
scaling the model to solve tasks requiring more than n slots
of memory or more than n time steps. Simply enlarging
the size of the model did not work well. So we leave the
question of proper scaling of the model for future work.

The correct generalization of the learned models to arbitrary
large inputs is still an open problem, and it is not even
clear why some models generalize, and others do not. With
the proposed simpler model and faster training, it will be
possible to address this question more effectively.
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Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre, Caglar,
Bahdanau, Dzmitry, Bougares, Fethi, Schwenk, Holger,
and Bengio, Yoshua. Learning phrase representations
using rnn encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078, 2014.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural
turing machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, Alex, Wayne, Greg, Reynolds, Malcolm, Harley,
Tim, Danihelka, Ivo, Grabska-Barwińska, Agnieszka,
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Appendix 1
To see that diagonal gates have impact, we can inspect execution trace of a trained model on some input. An execution trace
is a collection of state values arising in the computation over all time steps. It is visualized as an image for each map where
the input is given at the top, and the result is read from the bottom row of the image. In the figure below we can see all 96
maps of an execution trace performing binary multiplication on two 50 digit random numbers. We can notice computing
patterns that are aligned with the gate direction. Every 4 image rows correspond to maps with a different gate direction.
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Appendix 2
All 48 maps of an execution trace performing sorting where 100 numbers in range 0 to 5 are sorted. We can notice computing
patterns that are aligned with the gate direction. Every 16 images correspond to maps with a different gate direction.
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Appendix 3
We have tested the proposed architecture on all tasks given in (Kaiser & Sutskever, 2015). Multiplication was the hardest
task which was explored in detail in this paper. The second hardest was sorting. Here we give a chart showing the accuracy
of our model on the sorting task where natural numbers in range 0 to 5 are being sorted.


