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Abstract

Accurate assessment of Lung nodules is a time consuming and error prone ingredient of the
radiologist interpretation work. Automating 3D volume detection and segmentation can
improve workflow as well as patient care. Previous works have focused either on detecting
lung nodules from a full Computed Tomography (CT) scan or on segmenting them from a
small Region Of Interest (ROI). We adapt the state of the art architecture for 2D object
detection and segmentation, MaskRCNN, to handle 3D images and employ it to detect and
segment lung nodules from CT scans. We report on competitive results for the lung nodule
detection on LUNA16 data set. The added value of our method is that in addition to lung
nodule detection, our framework produces 3D segmentations of the detected nodules.

Keywords: Lung Nodule detection, Convolutional Neural Network (CNN), 3D segmenta-
tion, Deep learning, Mask-RCNN

1. Introduction

Detection of lung nodules and accurate evaluation of their size are crucial for tracking
cancer progression. Detecting the nodules is difficult since nodules vary greatly in shape
and texture, and non-nodules such as vessels, fibrosis, diffusive diseases etc. have similar
appearance to nodules. Once detected, nodules size is currently evaluated using Response
Evaluation Criteria In Solid Tumors (RECIST). This measurement criteria relies on a linear
measurement of the nodule along its largest axial slice. RECIST is shown to be inferior
to a volumetric measurement (Welsh et al., 2012; Hayes et al., 2016). Nevertheless, it
has become the standard of care since the time and effort required to manually delineate
the 3D boundaries of nodules make such a workflow impractical for clinical applications.
Therefore, an automated system that detects nodules and segments their 3D volumes can
improve patient care by providing better information on disease progression, as well as
reducing the time taken by radiologists to assess a lung CT study.

There is a large volume of work dedicated to detection of lung nodules on CT scans
using 2D and 3D architectures. See for example (Ding et al., 2017; Jaeger et al., 2018; Setio
et al., 2016). Similarly, previous works used CNNs to segment lung nodules from small
ROIs (Nam et al., 2018; Feng et al., 2017; Qin et al., 2019; Wu et al., 2018).

(Jaeger et al., 2018) combined segmentation signals with object detection tasks to im-
prove detection rates in various implementations of 2D and 3D networks. However, to date,
no one reported on both object detection and segmentation results derived from one, end
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to end, trainable network. We propose to adapt the MaskRCNN model (He et al., 2017),
which achieves state of the art results on various 2D detection and segmentation tasks, to
detect and segment lung nodules on 3D CT scans.

2. Methods

Architecture. MaskRCNN is a 2-stage object detector (Region Proposal Network (RPN)
followed by Region based Convolutional Neural Network (RCNN) and a semantic segmen-
tation model (MASK)). We modify the 2D implementation of MaskRCNN (Abdulla, 2017)
to handle 3D images and to account for small object detection. Details regarding the full
implementation of the model can be found in Appendix A and (Kopelowitz, 2019).

Training. 3DMaskRCNN is fully trainable end to end. Nonetheless, convergence is faster
when training the backbone and RPN together first, and then training only the second stage
heads. Focal loss (Lin et al., 2017) and Intersection Over Union (IOU) loss improve results
in the class and MASK heads respectively. Training both segmentation and detection tasks
simultaneously improves detection rate, similar to (Jaeger et al., 2018). We use dropout
and heavy augmentation during training to avoid overfitting. We perform 10-fold cross
validation.

Inference. We scan each image with overlapping sliding windows. Overlapping boxes are
filtered using Non Max Suppression (NMS). To reduce False Positive (FP)s, we keep only
boxes with a segmentation mask volume > 0. We use our in house lung mask CAD to
remove nodules detected outside of the lungs.

3. Experiments and Results

We tested our model on the LUNA16 challenge, taken from the LIDC/IDRI database (III
et al., 2015), which includes 888 CT scans. The reference standard of the challenge consists
of all nodules >= 3 mm accepted by at least 3 out of 4 radiologists (Armato et al., 2011).

Detection evaluation is performed using the Competition Performance Metric (CPM),
defined as the average sensitivity at 7 predefined FP rates: 1/8, 1/4, 1/2, 1, 2, 4, 8.
Radiologists performance was evaluated in two cases: (1) Including only nodules > 3 mm
and (2) including all nodules. Sensitivity and FPs were averaged over the 4 individual
performances with respect to the other three. The results are summarized in Table 1
together with state of the art method (Ding et al., 2017) and ZNET, the winner of the
LUNA16 challenge.

Note that our network achieves CPM of 0.826 with a single inference step, beating the
winning result of the challenge. Improved detection results (score of 0.86) were obtained
by performing a second FP reduction step, in which the model is fed with centered patches
around proposed nodules. Although (Ding et al., 2017) reports on 15 Candidates per scan,
3DMaskRCNN achieves the highest sensitivity at 7-8 FPs per scan since the average number
of True Positive (TP)s per scan < 2.

Nodule segmentation results are shown in Appendix B, Figure 2 demonstrating both
small and large nodules as well as solid and ground-glass nodules.
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Table 1: Comparison of Detection results

Model Sensitivity FPs/scan CPM
Radiologists (> 3mm) 0.75 1 NA
Radiologists (all) 0.85 5 NA
3DMaskRCNN (ours) FP reduction 0.936 7 0.86
3DMaskRCNN (ours) 0.932 8 0.826
2DRcnn + 3DCNN (Ding et al., 2017) 0.946 < 15 0.891
ZNET (Setio et al., 2016) NA NA 0.811

Segmentation overlap is measured with the Dice Similarity Coefficient (DSC). Table 2
lists these results. Our results are comparable with radiologists’ agreement (as calculated
from their individual segmentations). Comparing to competing methods is difficult as other
papers show segmentation results for predefined ROIs whereas our results are over the full
3D scan. Note, that the test set used in (Nam et al., 2018) contains only 113 nodules
whereas ours has over 1000 nodules.

Table 2: Comparison of Segmentation results

Model DSC
3DMaskRCNN (ours) 70 ± 10
Radiologists 76 ± 16
CNN on diameter(Nam et al., 2018) 79 ± 19
PN-SAMP-S1(Wu et al., 2018) 74 ± 3.57

We evaluate the correlation between predicted segmentations volume and Ground Truth
(GT) and found a strong correlation of 0.96, indicating that volumes are indeed a reliable
measurement for size. The accuracy of the boundaries is assessed with Hausdorff Distance
(HD) and is 2.49mm± 2.05mm. The fact that the standard deviation is of the same size of
the HD suggests that this measurement may be irrelevant for small object segmentation.

4. Conclusions

We show that 3DMaskRCNN can achieve competitive results for both detection and seg-
mentation tasks. We demonstrate strong correlation between predicted volumes and GT
and suggest that nodules volume evaluated and predicted by our model is a reliable mea-
sure of nodules size and may replace manual segmentation. As most of the FPs our model
detects seem like genuine nodules, see Figure 3 in Appendix B, we believe that continued
training/testing in order to further improve the CPM will inadvertently cause overfitting to
the LUNA dataset and hurt generalization on unseen studies as we are continually testing
on the same test data. A known problem with the LUNA dataset is that the GT is the in-
tersection of 3-4 radiologists’ detections, resulting in a very limited and strict dataset, very
unlike a typical output of a single radiologist (Armato et al., 2011). We plan on training
3DMaskRCNN on a wider dataset in order to generalize our results.
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Appendix A. 3DMaskRCNN Model Architecture

The 3DMaskRCNN is composed of four parts: backbone, RPN, RCNN for classification
and bounding box regression and another CNN for pixel segmentation of objects, which we
refer to as MASK.

Input. Images are rescaled to a resolution of 0.5 mm per pixel, and cropped into patches
of size 1283). To reduce FPs, we concatenate positive and negative patches (Pan, 2018).
Positive patches contain at least one nodule. The concatenated patches are normalized to
have zero mean and unit variance.

A.1 Backbone. We implement the Inception Resnet v2 model (Szegedy et al., 2016) in
3D. In the reduction blocks we replace pooling layers with kernel dilation of 2 and 3 (known
as Atrous kernels, (Chen et al., 2016)), thus achieving a wider field of view while maintaining
full resolution. The output of the network is a feature map comprised of the output of the
first and last reduction steps.

RPN. The RPN model operates on the feature map outputs of the backbone. Each pixel
in the feature map is scanned with two anchors (of sizes 16 and 64 with a ratio of 1). We
apply a bounding box regression and classification on every anchor. RPN proposals with
scores greater than 0.1 are passed to the ROI Align layer. If no proposal scores higher than
0.1 are found, the 10 anchors with highest scores are passed. The low thershold was chosen
to reduce False Negative (FN)s. Proposals and anchors are considered positive(negative)
if their IOU with a ground truth box is greater(lower) than 0.5(0.1). The ROI Align layer
crops the proposals from the feature maps and rescales them to a fixed size.

RCNN and MASK. RCNN receives the aligned proposals and applies several convolution
layers to predict final object classification and bounding box regression. The MASK head
of the network receives dilated ROIs (5 mm on each edge) in order to get a wider view of
the nodule. Then, several convolution and deconvolution layers are applied to predict pixel
level nodule segmentation.

During training we add dropout layers in the RPN and RCNN class heads. Training
parameters are: lr = 0.01 (reduced by half on plateau) for the backbone and RPN. lr =
0.001 (reduced by half on plateau) for the RCNN and Mask heads. Momentum is set to 0.9
throughout training, and Stochastic Gradient Decent (SGD) optimizer is used. Each part
is trained for 100 epochs. We perform 10-fold cross validation as required by the challenge
in order to predict on the full data set. We implement our model using Keras Tensorflow.
Please refer to (Abdulla, 2017) to find the full detailed description of each layer in the
MaskRCNN.

Appendix B. Figures
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Figure 1: Diagram of the 3DMaskRCNN model

Figure 2: Examples of Nodule segmentation with 3DMaskRCNN. Box size is 3cm2
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Figure 3: Examples of nodules detected by 3DMaskRCNN
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