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ABSTRACT

We present a causal view on the robustness of neural networks against input ma-
nipulations, which applies not only to traditional classification tasks but also to
general measurement data. Based on this view, we design a deep causal manipu-
lation augmented model (deep CAMA) which explicitly models the manipulations
of data as a cause to the observed effect variables. We further develop data aug-
mentation and test-time fine-tuning methods to improve deep CAMA’s robustness.
When compared with discriminative deep neural networks, our proposed model
shows superior robustness against unseen manipulations. As a by-product, our
model achieves disentangled representation which separates the representation of
manipulations from those of other latent causes.

1 INTRODUCTION

Deep neural networks (DNNs) have great success in many real-life applications, however, they are
easily fooled even by a tiny amount of perturbation (Szegedy et al., 2013; Goodfellow et al., 2015;
Carlini & Wagner, 2017b; Athalye et al., 2018). Lack of robustness hinders the application of DNNs
to critical decision making tasks such as uses in health care. To address this, a deep learning prac-
titioner may suggest training DNNs with datasets that are not only big but also diverse. Indeed,
data augmentation and adversarial training have shown improvements in both the generalization and
robustness of DNNs (Kurakin et al., 2016; Perez & Wang, 2017; Madry et al., 2017). Unfortunately,
this does not address the vulnerability of DNNs for unseen manipulations. For example, as shown in
Figure 1, a DNN trained on clean MNIST digits fails to classify shifted digits. Although observing
(adversarial) perturbations of clean data in training improves robustness against that particular ma-
nipulation (the green line), the DNN is still fragile when unseen manipulations are present (orange
line). Since it is unrealistic to augment the training data towards all possible manipulations that
many occur, a principled method that fundamentally improves the robustness is much needed.

On the other hand, humans naturally understand the independent causal mechanisms for visual
recognition tasks, where the generative process of the perceived view is composed of modules that
do not influence each other (Parascandolo et al., 2017). After learning the concept of an “elephant”,
a child can identify the elephant in a photo taken under any lightning condition, location, etc. Im-
portantly, the elephant, the lightning condition, and the location are causes of the presented view in
the photo. Therefore we argue that the incapability for causal reasoning (Pearl & Mackenzie, 2018;
Gopnik et al., 2004) is the reason of DNN’s vulnerability to (adversarial) data manipulations.

This work discusses the robustness of DNNs from a causal perspective. Our contributions are:

• A causal view on robustness of neural networks. We argue from a causal perspective that
adversarial examples for a model can be generated by manipulations on the effect variables
and/or their unseen causes. Therefore DNN’s vulnerability to adversarial attacks is due to
the lack of causal understanding.

• A causal inspired deep generative model. We design a causal deep generative model which
takes into account the unseen manipulations of the effect variables. Accompanied with
this model is a test-time inference method to learn unseen manipulations and thus improve
classification accuracy on noisy inputs. Data augmentation techniques can also be safely
applied to our model during training without deteriorating its generalization ability to un-
seen manipulations. Compared to DNNs, experiments on both MNIST and a measurement-
based dataset show that our model is significantly more robustness to unseen manipulations.
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Figure 1: Robustness results for DNNs against different manipulations on MNIST. Panels (a) and (b)
show the accuracy on classifying noisy test data generated by shifting the digits vertically (Ver) and
horizontally (Hor). It shows that data augmentation during training makes generalization to unseen
shifts worse (orange versus blue lines).

2 A CAUSAL VIEW ON ROBUSTNESS OF NEURAL NETWORKS

Discriminative DNNs are not robust to manipulations such as adversarial noise injection (Goodfel-
low et al., 2015; Carlini & Wagner, 2017a; Athalye et al., 2018), rotation and shift. They do not
understand the causal mechanisms of the data generating process, which leads to overfiting to nui-
sance factors that are less related to the ground truth classification results. By exploiting the overfit
to the nuisance factors, an adversary can easily manipulate the inputs to fool discriminative DNNs
into predicting the wrong outcomes.

On the contrary, we as human can easily recognize an object in a scene and be indifferent to the
changes in other aspects such as background, viewing angle, the presence of a sticker to the ob-
ject, etc. More importantly, our recognition is not affected even when some of the perturbations,
e.g. changes in the lighting condition, are significant. We argue that the main difference here is due
to our ability to perform causal reasoning, which identifies independent mechanisms that are not
causally related to the object recognition results (Freeman, 1994; Peters et al., 2017; Parascandolo
et al., 2017). This leads to robust human perception to not only a certain type of perturbations, but
also to many types of manipulations. Thus we argue that one should incorporate causal mechanisms
into model design, and make the model robust on the level of different types of perturbations.

Before presenting our causally informed model, we first define a valid manipulation of inputs in a
causal sense. A valid manipulation is a perturbation on data, which only changes the effects, not the
cause of the target. We visualize a causal graph in Figure 2, where the arrows indicate the cause-
effect relationship between variables. Take hand-written digit classification for example, X is the
image of a digit and Y is the class label. The appearance of X is an effect of the digit number Y ,
latent causes Z such as writing styles, and possible manipulationsM , such as rotation or translation.
Changes to Z and M cause the appearance of X to change, but X still carries the same information
about Y regardless of these perturbations, since Z, M and Y are independent mechanisms. Thus,
any manipulation that does not influence the Y → X relationship are valid manipulations. Humans
are extremely robust to these manipulations while machine learning algorithms are vulnerable.

In summary, from the causal perspective, any manipulation M on data X , that is a co-parent of
Y , is a valid manipulation. This definition includes many manipulations used in existing work on
the robustness of neural networks, such as noise injection, shift and rotation (Engstrom et al., 2019).
Ideally, a machine learning model should be able to generalize to any valid manipulation, at the same
time training with manipulated data of certain types should never harm the model’s robustness to
unseen manipulations. However, discriminative deep learning models ignore the causal structure and
consider X → Y only, which explains their vulnerability to data manipulations. Inspired by causal
reasoning of humans, we propose a deep learning framework concerning the causal relationship.

3 THE CAUSAL MANIPULATION AUGMENTED MODEL

We propose a deep CAusal Manipulation Augmented model (deep CAMA), which takes into ac-
count the causal relationship for model design. Our proposed model is more robust to unseen
manipulations on effect variables, and more importantly, our model can learn these manipulations
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Figure 2: A simple ex-
ample, where X is the
effect of Y, Z and M.
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Figure 3: Graphical presenta-
tion of proposed causally con-
sistent deep generative model
for single modal data.

Figure 4: The network architecture.
Shaded areas show the selective part
for do(m) training and the fine-tune
method, respectively.

without supervision. The robustness can be further improved by training-time data augmentation,
without sacrificing the generalization ability to unseen manipulations. Below we first present the
deep CAMA for single modality data, which focuses on predicting Y using X , and then present a
generic deep CAMA for multimodality measurement data.

3.1 DEEP CAMA FOR SINGLE MODALITY DATA

The task of predicting Y from X covers a wide range of applications such as image/speech recogni-
tion and sentiment analysis. Normally a discriminative DNN takes X as input and directly predicts
(the distribution of) the target variable Y . Generative classifiers, on the other hand, build a generative
model Y → X , and use Bayes’ rule for predicting Y given X: p(y|x) = p(y)p(x|y)/p(x).
We design deep CAMA (Figure 3) following the causal relationship as shown in Figure 2. Taking
MNIST for example: Y is the label and X is the image, Z models the latent style of the digits, and
M handles the manipulations that we desire the model to be robust to. The model is defined as:

pθ(x, y, z,m) = p(m)p(z)p(y)pθ(x|y, z,m) (1)

For efficient inference we follow the amortized inference approach in variational auto-encoders
(Kingma & Welling, 2013; Rezende et al., 2014; Zhang et al., 2018) and define an inference network
as the approximate posterior distribution:

qφ(z,m|x, y) = qφ1
(z|x, y,m)qφ2

(m|x). (2)

We use φ to denote all the parameters of the encoder network and φ = {φ1, φ2}, where φ1 is the
parameter for the encoder network for the variational distribution qφ1

(z|x, y,m), and φ2 is used for
the qφ2

(m|x) part. Note that we assume the dependence of M on X only in qφ2
(m|x), which, as

we shall show later, allows deep CAMA to learn unseen manipulations with unlabelled noisy data.

The network architecture is presented in Figure 4. For the p model, the cause variables Y , Z and
M are first transformed into feature vectors hY , hZ and hM . Later, these features are merged to-
gether and then passed through another neural network to produce the distributional parameters of
pθ(x|y, z,m). For the approximate posterior q, two different networks are used to compute the
distributional parameters of qφ2

(m|x) and qφ1
(z|x, y,m), respectively.

Model training Assume that during training, the model observes clean dataD = {(xn, yn)} only.
In this case we set the manipulation variable M to a null value, e.g. do(m = 0), and train deep
CAMA by maximizing the likelihood function log p(x, y|do(m = 0)) under training data. Since
this marginal distribution is intractable, we instead maximize the intervention evidence lower-bound
(ELBO) with do(m = 0), i.e. maxθ,φ ED[ELBO(x, y, do(m = 0))], with the ELBO defined as

ELBO(x, y, do(m = 0)) :=Eqφ(z|x,y,do(m=0))

[
log

pθ(x, y, z|do(m = 0))

qφ(z, |x, y, do(m = 0))

]
=Eqφ1

(z|x,y,m=0)

[
log

pθ(x|y, z,m = 0)p(y)p(z)

qφ1(z|x, y,m = 0)

]
.

(3)
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See appendix A for a detailed derivation. If noisy data D′ is available during training, then similar
to data augmentation and adversarial training (Goodfellow et al., 2015; Tramèr et al., 2018; Madry
et al., 2017), we can augment the training data with this noisy data. We still use the intervention
ELBO (3) for clean data. For the manipulated instances, we can either use the intervention ELBO
with do(m = m0) when the noisy data D′ = {(m0(x), y)} is generated by a known manipulation
m0, or, as done in our experiments, infer the latent variable M for unknown manipulations. This is
achieved by maximizing the ELBO on the joint distribution log p(x, y) using noisy data:

ELBO(x, y) := Eqφ(z,m|x,y)
[
log

pθ(x, y, z,m)

qφ(z,m|x, y)

]
, (4)

and therefore the total loss function to be maximized is defined as

Laug(θ, φ) = λED[ELBO(x, y, do(m = 0))] + (1− λ)ED′ [ELBO(x, y)]. (5)

Our causally consistent model effectively disentangles the latent representation: Z models the un-
known causes in the clean data, such as personal writing style; andM models possible manipulations
which the model should be robust to, such as shift, rotation, noise etc. Due to independent mech-
anism assumptions in causality, the influence of Y , Z and M on X can be independently applied.
Thus, with our model design, we can also ensure that the dependencies Y → X and Z → X are not
affected by noisy data present during training. As a result, deep CAMA’s can still generalize to un-
seen manipulations even after seeing lots of noisy datapoints from other manipulations, in contrast
to the behavior of discriminative DNNs as shown in Figure 1.

Prediction In general the test data D̃ can be noisy, and we would like our model to be robust to
the unseen manipulated test data. Thus, at test-time, M is unknown, and deep CAMA classifies
an unseen test data x∗, using a Monte Carlo approximation to Bayes’ rule with samples mu ∼
qφ2

(m|x), zkc ∼ qφ1
(z|x∗, yc,mu):

p(y∗|x∗) = p(x∗|y∗)p(y∗)
p(x∗)

≈ softmaxCc=1

[
log

K∑
k=1

pθ(x|y, zkc ,mu)p(yc)p(z)

qφ1
(zkc |x∗, yc,mu)

]
. (6)

In addition, deep CAMA can be adapted to the unseen manipulations present at test time without
labels on the noisy data. From the causal graph, the conditional distributions p(X|Y ) and p(X|Z)
are invariant to the interventions on X based on the independent mechanism assumption (Peters
et al., 2017), however, we would like to learn the manipulation mechanism M → X . As shown in
Figure 4, for the generative model, we only fine-tune the networks that are dependent only on M ,
i.e. NNpMby maximizing the ELBO of the marginal distribution log p(x):

ELBO(x) := log

[
C∑
c=1

exp[ELBO(x, yc)]

]
. (7)

To reduce the possibly negative effect of fine-tuning to model generalization, we use a shallow
network for NNpmerge and deep networks for NNpM , NNpY and NNpZ . We also fine-tune the network
NNqM for the approximate posterior q since M is involved in the inference of Z. In sum, in fine-
tuning the selective part of the deep CAMA model is trained to maximize the following objective:1

Lft(θ, φ) = αED[ELBO(x, y)] + (1− α)ED̃[ELBO(x)]. (8)

Notice that there may exist infinitely many manipulations and it is impossible to observe all of them
at training time. Therefore by fine-tuning at test-time, the model can be adapted to any unseen
manipulation which is desirable in many real-life applications. As shown in our experiments, the
proposed deep CAMA model and the training methods are capable of improving the robustness of
the generative classifier to unseen manipulations.

3.2 DEEP CAMA FOR GENERIC MEASUREMENT DATA

We now discuss an even more general version of deep CAMA to handle multimodality in measure-
ment data. To predict the target variable Y in a directed acyclic graph, only variables in the Markov

1One can also use the intervention ELBO for the clean training data.
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Figure 6: Graphical presentation of proposed
causal deep generative model for generic
measurement modal data.

blanket of Y (shown in Figure 5) are needed. This includes the parents (A), children (X), and
co-parents (C) of the target Y . Similar to the single modal case above, here a valid manipulation
can only be independent mechanisms applied to X or C to ensure that Y does not change and the
relationship from Y to X does not change.

We design the generic deep CAMA (shown in Figure 6) following the causal process in Figure
5. Unlike discriminative DNNs where A, C and X are used together to predict Y directly, we
consider the full causal process and treat them separately. Building on the deep CAMA for single
modality data, we add the extra consideration of the parent and observed co-parent of Y , while
modelling the latent unobserved cause in Z and potential manipulations in M . We do not need to
model manipulation on C as they are out of the Markov Blanket of Y . Thus, our model and the
approximate inference network are defined as:

pθ(x, y, z,m, a, c) = p(a)p(m)p(z)p(c)pθ1(y|a)pθ2(x|y, c, z,m), (9)

qφ(z,m|x, y, a, c) = qφ1
(z|x, y,m, a, c)qφ2

(m|x). (10)

Training, fine-tuning and prediction proceed in the same way as in the single modality deep CAMA
(Section 3.1) with do(m) operations and Monte Carlo approximations. As we only fine-tune the
networks that are dependent on M , using similar reasoning one can show that the multimodality
deep CAMA is robust to manipulations directly on the effect variable X .

Our proposed model is also robust to manipulations on the co-parentsC by design. By our definition
of valid manipulation, perturbingC is valid as only causes the changes inX . If the underlying causal
relationship between C and X remains the same, and the trained model learns p(x|y, c) perfectly,
then our model is perfectly robust to such changes. This is because we use Bayes’ rule for prediction:

p(y|a, x, c) = p(y|a)p(a)p(c)p(x|y, c)
p(a)p(c)

∫
y
p(y|a)p(x|y, c)

=
p(y|a)p(x|y, c)∫
y
p(y|a)p(x|y, c)

, (11)

and the manipulations on C (thus changing X) do not affect the conditional distribution p(x|y, c) in
the generative classifier (Eq. 11). In contrast, discriminative DNNs concatenate X , C, A together
and map these variables to Y , therefore they are sensitive to manipulations on C and/or X .

4 EXPERIMENTS

In this section, we first show the robustness of our proposed deep CAMA for image classification
using both MNIST and a binary classification task derived from CIFAR-10. Then, we demonstrate
the behaviour of our generic deep CAMA for measurement data. We evaluated the perfromance
of CAMA on both manipulations such as shifting and adverserial examples generated using the
CleverHans package (Papernot et al., 2018). More results with different DNN architectures and
different manipulations are shown in the appendix.

4.1 ROBUSTNESS TEST ON IMAGE CLASSIFICATION WITH DEEP CAMA

We first demonstrate the robustness of our model against vertical (VT) and horizontal (HT) shifts.
Details such as network architectures are presented in the appendix. The experiments are repeated
for 5 times, and on MNIST, the results are stable and the variances are not visible in the plot.
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Figure 7: The first row shows the results of testing the model robustness against horizontal shifts
and the second row shows the results against vertical shifts.
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Figure 9: Visualization of the disentangled representation.

Training with clean MNIST data only. Figure 7 shows the results for deep CAMA trained on
clean data only. Deep CAMA without fine-tuning (orange lines) perform similarly to a DNN (blue
lines) on horizontally shifted images, but it is more robust to vertical shifts. The advantage of deep
CAMA is clear when fine-tuning is used at test time (green lines): fine-tuning on noisy test data
with the same shift clearly improves the robustness of the network (panels 7(b) and 7(d)). We
further inspect the generalization of deep CAMA to unseen manipulation after fine-tuning in panels
7(a) and 7(e). The robustness results of fine-tuned models are similar or even slightly better than the
models without fine-tuning. This clearly shows that our model is capable of learning manipulations
in an unsupervised manner, without deteriorating the generalization ability to unseen manipulations.
Lastly, panels 7(c) and 7(f) show the robustness of our model to both shifts when both types of
manipulation are used for fine-tuning, and we see clear improvements over both manipulations.

Training with augmented MNIST data We explore the setting where the training data is aug-
mented with noisy data. As discussed in Section 3.1, here deep CAMA naturally learns disentangled
representation due to its independent mechanism design. Indeed this is confirmed by Figure 9, where
panel 9(b) shows the reconstructions of noisy data from panel 9(a) with do(m = 0). In this case
the model keeps the identity of the digits but moves them to the center of the image. Recall that
do(m = 0) corresponds to clean data which contains centered digits. This shows that deep CAMA
can disentangle the intrinsic unknown style Z and the shifting manipulation variable M .

We show the robustness results of deep CAMA with augmented training in Figure 10 (cf. Figure 1).
Here shift range 0.5 is used to augment the training data. Take the vertical shift test in panel 10(a)
for example. When vertically shifted data are augmented to the training set, the test performance
without fine-tuning (green line) is significant better. Further, fine-tuning (brown line) brings in even
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Figure 10: Performance of our model against different manipulation (c.f. Figure 1).
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Figure 12: Test accuracy on adversarial examples
crafted on CIFAR-binary data.
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Figure 13: Test accuracy on adversarial examples
crafted on measurement data.

larger improvement for large scale shifts. On the other hand, when using horizontally shifted data
in training, deep CAMA’s robustness on vertically shifted data also improves (red line), which is
different from discriminative DNNs overfitting behaviour (Figure 1). Therefore deep CAMA shows
significant advantage over discriminative DNNs as its robustness to unseen manipulations can be
improved by observing other related manipulations. Our model does not overfit to a specific type of
manipulations, at the same time further fine-tuning can always improve the robustness against new
manipulations in the test set (pink line). The same conclusion holds in panel 10(b).

We also quantify the amount of noisy data required for fine-tuning in order to improve the robustness
of deep CAMA models. As shown in Figure 8, even using 1% of the noisy data is sufficient to learn
the vertical shift manipulation presented in the test set.

Adversarial Attack Test on MNIST We further test deep CAMA’s robustness against two ad-
versarial attacks: fast gradient sign method (FGSM) (Goodfellow et al., 2014) and projected gra-
dient descent (PGD) (Madry et al., 2017). Note that, these attacks are specially developed for im-
ages with the small perturbation constraint. However, theses attack does not have guarantee to
be valid by our definition as the manipulation depends on the class label Y , which has the risk
of changing the ground-truth label. Such risk has also been discussed in Elsayed et al. (2018).
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Figure 11: Test accuracy on MNIST adversarial examples.

Figure 11 show the results
comparing CAMA and the
DNN; both are trained on
clean images only. CAMA
is significantly more robust
to both attacks than DNN
(orange line), and with fine-
tuning, CAMA shows addi-
tional 20% − 40% accuracy
increase. We also show the
clean data test accuracy after

fine-tuning maintains to be the same thanks to our causal consistent model design.

Adversarial attack test on natural image classification The last experiment in this section eval-
uates the adversarial robustness of deep CAMA when trained on natural images. In this case we
follow Li et al. (2018) and consider CIFAR-binary, a binary classification dataset containing air-
plane and frog images from CIFAR-10. We choose to work with CIFAR-binary because VAE-based
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Figure 14: Manipulate co-parents

0.0 0.2 0.4 0.6 0.8 1.0
Shift up range

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

DNN 
Ours w/o FT
Ours w FT 
Clean after FT

(a) Shift Up

0.0 0.2 0.4 0.6 0.8 1.0
Shift down range

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

DNN
Ours w/o FT
Ours w FT
Clean after FT

(b) Shift Down

Figure 15: Manipulate children

fully generative classifiers are less satisfactory for classifying clean CIFAR-10 images (< 50% clean
test accuracy). The deep CAMA model trained with data augmentation (adding Gaussian noise with
standard deviation 0.1, see objective (5)) achieves 88.85% clean test accuracy on CIFAR-binary,
which is on par with the results reported in Li et al. (2018). For reference, a discriminative CNN
with 2× more channels achieves 95.60% clean test accuracy. Similar to previous sections we apply
FGSM and PGD attacks with different ε values to both deep CAMA and the discriminative CNN,
and evaluate classification accuracies on the adversarial examples before and after finetuning.

Results are reported in Figure 12. For both FGSM and PGD tests, we see that deep CAMA, before
finetuning, is significantly more robust to adversarial attacks when compared with a discriminative
CNN model. Regarding finetuning, although PGD with large distortion (ε = 0.2) also fools the
finetuning mechanism, in other cases finetuning still provides modest improvements (5% to 8%
when compared with the vanilla deep CAMA model) without deteriorating test accuracy on clean
data. Combined with adversarial robustness results on MNIST, we conjecture that with a better
generative model on natural images the robustness of deep CAMA can be further improved.

4.2 ROBUSTNESS TEST ON MEASUREMENT BASED DATA WITH GENERALIZED DEEP CAMA

Our causal view on valid manipulations allows us to test the robustness of models to generic mea-
surement data. Unfortunately, there exists no public dataset with multiple variables where ground
truth causal relationships are known. Therefore we generate synthetic data (see appendix) following
a causal process, and test the performance of the generic deep CAMA on this measurement based
data. Here we use Gaussian variables for A, C and X , and categorical variables for Y . All the
ground truth causal relationships are nonlinear (quadratic mainly).

Manipulation Test First, we test manipulations on co-parents, C, while keeping the ground truth
causal influence from C to X static. Thus, both C and X change. We manipulate C by shifting
it up or down, which is a reasonable analogy to the noisiness in measurement data. For example,
in medical measurement data, different doctors may have different subjective standards while ex-
amining the patients, thus the same measurement can be shifted up or down. Figure 14 shows the
result: compared to a discriminatively trained DNN, deep CAMA is significantly more robust to
a wide range of manipulations. However, when the range of the shifting manipulations increases,
the classification accuracy of the discriminative DNN drops drastically. This confirms our theory in
Section 3.2 that manipulations in C do not affect the decision making of deep CAMA, therefore our
model is more robust to manipulation on co-parents as compared to discriminative DNNs.

Figure 15 shows the performance of the generic deep CAMA when the children X are manipulated,
and the model only sees clean data at training time. While deep CAMA achieves the same accuracy
as a discriminative DNN on clean data, it is again significantly more robust to manipulations even
without fine-tuning (the orange line vs the blue line). With fine-tuning (green line), the robustness
of deep CAMA is further improved, especially when the amount of distortion is large. The red
line shows that deep CAMA’s test accuracy on clean data, which does not drop after fine-tuning on
different shifts. This further confirms that during test time, fine-tuning learns the influence of M
without affecting the causal relationships between Y and Z.

Adversarial Attack Test Lastly we evaluate the adversarial robustness of the generalized CAMA
model. We only allow attacks on the childrenX and coparents C to be consistent with our definition
of valid attacks. This applies to both DNN and CAMA. Figure 13 shows the results in terms of test
accuracy with adversarial examples generated using FGSM and PGD attack methods. Again deep
CAMA demonstrate significantly improved robustness against adversarial attacks, and fine-tuning
further provides improvements on robustness while keeping high accuracy on clean test examples.
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5 RELATED WORK

Adversarial robustness Adversarial attacks can easily fool a discriminative DNN for vi-
sion/speech/language modelling tasks by adding imperceptible perturbations (Carlini & Wagner,
2018; Alzantot et al., 2018; Carlini & Wagner, 2017b; Szegedy et al., 2013; Papernot et al., 2017).
Adversarial training (Madry et al., 2017; Tramèr et al., 2018) has shown some success in defending
attacks, however, these techniques assume the knowledge of the adversary and present the perturba-
tion to the model during training. Still, a discriminative model after adversarial training is vulnerable
to unseen manipulations. Deep generative modelling has recently been applied as a defence mecha-
nism to adversarial attacks. Specifically, existing work considered de-noising adversarial examples
before feeding these inputs to the discriminative classifier (Song et al., 2018; Samangouei et al.,
2018). Very recently, research revisited (deep) generative classifiers and provided evidence that they
are more robust to adversarial attacks (Li et al., 2018; Schott et al., 2019; Lee et al., 2018).

Causal learning Causal inference has a long history in statistical research (Spirtes et al., 2000;
Pearl, 2009; Peters et al., 2017; Pearl & Mackenzie, 2018). Although it has fundamental importance,
the causal view has not been widely incorporated to the robustness analysis of neural networks on
unseen manipulations. The most relevant work is in applying the existing causal views to transfer
learning and domain adaption (Zhang et al., 2013; Stojanov et al., 2019; Zhao et al., 2019; Gong
et al., 2016), where the difference in various domains are treated as either target shift or conditional
shift from a causal perspective. As an extension to the domain adaptation work, Rothenhäusler
et al. (2018); Heinze-Deml & Meinshausen (2017); Arjovsky et al. (2019) also discussed learning
robust predictors across different domains. However, in these approaches the domain is specified
either explicitly or though exemplar paired points, thus an unseen manipulation is not explicitly
considered. By contrast, our proposed method does not rely on any given domain information.
Another related area is causal feature selection (Aliferis et al., 2010), where causal discovery is
applied first and features in the Markov Blanket of the prediction target are selected. We also note
that CAMA’s design is aligned with causal and anti-causal learning analyses (Schölkopf et al., 2012;
Kilbertus et al., 2018), in that CAMA models the causal mechanism Y → X and use Bayes’ rule
for anti-causal prediction. Different from Schölkopf et al. (2012), CAMA is not limited to only two
endogenous variables; rather it provides more generic design handling latent causes that correspond
to both intrinsic variations and data manipulations.

Disentangled representations Learning disentangled representations has become a hot topic of
research in recent deep generative modelling literature. A considerable amount of effort went to
developing training objectives for variational auto-encoders, e.g. β-VAE (Higgins et al., 2017) and
other information theoretic approaches (Kim & Mnih, 2018; Chen et al., 2018). Additionally, dif-
ferent factorization structure in graphical model design has also been explored for disentanglement
(Narayanaswamy et al., 2017; Li & Mandt, 2018).

6 DISCUSSION

We have provided a causal view on the robustness of neural networks, showing that the vulnerability
of discriminative DNNs is due to the lack of causal reasoning. We defined valid manipulations
under this causal view, which are the manipulations on the children and/or the co-parents of the
target variables, independent of the target and/or the cause of the target. We further proposed a deep
causal manipulation augmented model (deep CAMA), which follows the causal relationship in the
model design, and can be adapted to unseen manipulations at test time. Our model has demonstrated
improved robustness, even without adversarial training. When manipulated data are available, our
model’s robustness increases for both seen and unseen manipulation.

Our framework is generic, however, manipulations can change over time, and a robust model should
adapt to these perturbations in a continuous manner. Our framework thus should be adapted to
online learning or continual learning settings. In future work, we will explore the continual learning
setting of deep CAMA where new manipulations come in a sequence. In addition, our method is
designed for generic class-independent manipulations, therefore a natual extension would consider
class-dependent manipulations whereM is an effect of Y . Lastly out design excludes gradient-based
adversarial attacks which is dependent on both the target and the victim model. As such attacks are
commonly adopted in machine learning, we would also like to extend our model to such scenarios.
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A DERIVATION DETAILS

A.1 THE INTERVENTION ELBO

When training with clean data D = {(xn, yn)}, we set the manipulation variable M to a null value,
e.g. do(m = 0). In this case we would like to maximise the log-likelihood of the intervened model,
i.e.

max
θ

ED[log pθ(x, y|do(m = 0))].

This log-likelihood of the intervened model is defined by integrating out the unobserved latent vari-
able Z in the intervened joint distribution, and from do-calculus we have

log pθ(x, y|do(m = 0)) = log

∫
pθ(x, y, z|do(m = 0))dz

= log

∫
pθ(x|y, z,m = 0)p(y)p(z)dz.

(12)

A variational lower-bound (or ELBO) of the log-likelihood uses a variational distribution q(z|·)

log pθ(x, y|do(m = 0)) = log

∫
pθ(x|y, z,m = 0)p(y)p(z)

q(z|·)
q(z|·)

dz

≥ Eq(z|·)
[
log

pθ(x|y, z,m = 0)p(y)p(z)

q(z|·)

]
.

(13)

The lower-bound holds for arbitrary q(z|·) as long as it is absolutely continuous w.r.t. the posterior
distribution pθ(z|x, y, do(m = 0)) of the intervened model. Now recall the design of the inference
network/variational distribution in the main text:

qφ(z,m|x, y) = qφ1
(z|x, y,m)qφ2

(m|x),

where φ1 and φ2 are the inference network parameters of the corresponding variational distributions.
Performing an intervention do(m = 0) on this q distribution gives

qφ(z|x, y, do(m = 0)) = qφ1
(z|x, y,m = 0).

Defining q(z|·) = qφ1
(z|x, y, do(m = 0)) and plugging-in it to eq. (13) return the intervention

ELBO objective (3) presented in the main text.

A.2 THE ELBO FOR UNLABELLED TEST DATA

The proposed fine-tuning method in the main text require optimising the marginal log-likelihood
log pθ(x) for x ∼ D̃, which is clearly intractable. Instead of using a variational distribution for the
unobserved class label Y , we consider the variational lower-bound of log pθ(x, y) for all possible
y = yc:

log pθ(x, y) = log

∫
pθ(x, y, z,m)dzdm

= log

∫
pθ(x, y, z,m)

qφ(z,m|x, y)
qφ(z,m|x, y)

dzdm

≥ Eqφ(z,m|x,y)
[
log

pθ(x, y, z,m)

qφ(z,m|x, y)

]
:= ELBO(x, y).

(14)

Since both logarithm and exponent functions preserve monotonicity, and for all yc, c = 1, ..., C we
have log pθ(x, yc) ≥ ELBO(x, yc), we have

log pθ(x, yc) ≥ ELBO(x, yc),∀c ⇒ pθ(x, yc) ≥ exp[ELBO(x, yc)],∀c

⇒ log p(x) = log

[
C∑
c=1

pθ(x, yc)

]
≥ log

[
C∑
c=1

exp[ELBO(x, yc)]

]
:= ELBO(x),

which justifies the ELBO objective (7) defined in the main text.
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B ADDITIONAL RESULTS

CNN We also performed experiments using different DNN network architectures. The convo-
lution layers in CNN are designed to be robust to shifts. Thus, we test these vertical and hori-
zontal shifts with a standard CNN architecture as used in https://keras.io/examples/
cifar10_cnn/. 4 convolution layers are used in this architecture.

Figure 16 shows the performance against different shifts. We see that adding vertical shifts to the
training data clearly harmed the robustness performances to unseen horizontal shifts as shown in
17(b). Adding horizontal shifted images in training did not influences the performance on vertical
shifts much. Thus, we see that using different architectures of DNN, even the one that are designed to
be robust to these manipulations, lack of generalization ability to unseen data is a common problem.
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Figure 16: Robustness results for DNNs against different manipulations on MNIST using CNN.
Panels (a) and (b) show the accuracy on classifying noisy test data generated by shifting the digits
vertically (vt) and horizontally (ht). It shows that data augmentation during training makes general-
ization to unseen shifts worse (orange versus blue lines).
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Figure 17: Robustness results for DNNs against different manipulations on MNIST using a large
MLP. Panels (a) and (b) show the accuracy on classifying noisy test data generated by shifting the
digits vertically (vt) and horizontally (ht). It shows that data augmentation during training makes
generalization to unseen shifts worse (orange versus blue lines).

Enlarge Network Size Here we exam whether network capacity has any influence on the robust-
ness performance to unseen manipulation. We use a wider network with [1024, 512, 512, 1024]
units in each hidden layer instead of [512, 256, 126, 512] sized network in the paper. Figure 17
shows the robustness performance using this enlarged network. We observe the similar degree of
over-fitting to the augmented data. The penalization ability shows no improvement by enlarging the
network sizes.

ZCA Whitening Manipulation Our result does not limited to shifts, it generalizes to other ma-
nipulations. Figure 18 compare the result from training with clean images and training with ZCA
whitening images added. We see that adding ZCA whitening images in training harm both robust-
ness against vertical shift and horizontal shift.
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Figure 18: ZCA Whitening manipulation result. Figure shows the robustness results for DNNs
against different manipulations on MNIST using CNN. The blue curve shows that result from train-
ing with clean data. The orange curve shows that result from training with zca whitening data added.
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Figure 19: Performance regarding different
percentage of test data used for fine-tuning
manipulation of horizontal shift without us-
ing do(m) = 0 for the cleaning training data
during fine-tuning.
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Figure 20: Performance regarding different
percentage of test data used for fine-tuning
manipulation of vertical shift using do(m) =
0 for the cleaning training data during fine-
tuning.

Additional Figures In addition to Figure 8, We also show the result testing with Vertical shift
show in Figure 19, where a smaller Np

M network ([dimM, 500, 500]) is used. The conclusion is
the same was using the vertical shift. We need very few data for fine-tune. More than 1% data is
sufficient.

Similar as Figure 8, we show the result using different percentage of data for fine-tuning in this
experiment setting in 20.

C EXPERIMENTAL SETTINGS

Network architecture

• MNIST experiments:

– Discriminative DNN: The discriminate model used in the paper contains 4 densely
connected hidden layer of [512, 256, 126, 512] width for each layer. ReLU activations
and dropout are used with dropout rate [0.25, 0.25, 0.25, 0.5] for each layer.

– Deep CAMA’s p networks: we use dim(Y ) = 10, dim(Z) = 64 and dim(M) = 32.
NNpY : an MLP of layer sizes [dim(Y ), 500, 500] and ReLU activations.
NNpZ : an MLP of layer sizes [dim(Z), 500, 500] and ReLU activations.
NNpM : an MLP of layer sizes [dim(M), 500, 500, 500, 500] and ReLU activations.
NNpmerge: an projection layer which projects the feature outputs from the previous
networks to a 3D tensor of shape (4, 4, 64), followed by 3 deconvolutional layers with
stride 2, SAME padding, filter size (3, 3, 64, 64) except for the last layer (3, 3, 64, 1).
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All the layers use ReLU activations except for the last layer, which uses sigmoid
activation.

– Deep CAMA’s q networks:
NNqM : it starts from a convolutional neural network (CNN) with 3 blocks of {conv3×
3,max-pool} layers with output channel size 64, stride 1 and SAME padding, then
performs a reshape-to-vector operation and transforms this vector with an MLP of
layer sizes [4 × 4 × 64, 500, dim(M) × 2] to generate the mean and log-variance of
q(m|x). All the layers use ReLU activation except for the last layer, which uses linear
activation.
NNqZ : first it uses a CNN with similar architecture as NNMq ’s CNN (except that the
filter size is 5) to process x. Then after the reshape-to-vector operation, the vector first
gets transformed by an MLP of size [4×4×64, 500], then it gets combined with y and
m and passed through another MLP of size [500+dim(Y )+dim(M), 500, dim(Z)×2]
to obtain the mean and log-variance of q(z|x, y,m). All the layers use ReLU activa-
tion except for the last layer, which uses linear activation.

• Measurement data experiments:

– Discriminative DNN: The A,C,X variables are concatenated to an input vector of
total dimension 20. Then the DNN contains 3 densely connected hidden layer of
[64, 16, 32] width for each layer, and output Y . ReLU activations and dropout are
used with dropout rate [0.25, 0.25, 0.5] for each layer.

– Deep CAMA’s p networks: we use dim(Y ) = 5, dim(A) = 5, dim(C) =
5, dim(Z) = 64 and dim(M) = 32.
p(y|a): an MLP of layer sizes [dim(A), 500, 500, dim(Y )], ReLU activations except
for the last layer (softmax).
p(x|y, c, z,m) contains 5 networks: 4 networks {NNpY ,NNpC ,NNpZ ,NNpM} to pro-
cess each of the parents of X , followed by a merging network.
NNpY : an MLP of layer sizes [dim(Y ), 500, 500] and ReLU activations.
NNpC : an MLP of layer sizes [dim(C), 500, 500] and ReLU activations.
NNpZ an MLP of layer sizes [dim(Z), 500, 500] and ReLU activations.
NNpM : an MLP of layer sizes [dim(M), 500, 500, 500, 500] and ReLU activations.
NNpmerge: it first start from a concatenation of the feature outputs from the above
4 networks, then transforms the concatenated vector with an MLP of layer sizes
[500 × 4, 500, dim(X)] to output the mean of x. All the layers use ReLU activations
except for the last layer, which uses linear activation.

– Deep CAMA’s q networks:
q(m|x): it uses an MLP of layer sizes [dim(X), 500, 500, dim(M) × 2] to obtain the
mean and log-variance. All the layers use ReLU activations except for the last layer,
which uses linear activation.
q(z|x, y,m, a, c): it first concatenates x, y,m, a, c into a vecto, then uses an MLP of
layer sizes [dim(X)+dim(Y )+dim(M)+dim(A)+dim(C), 500, 500, dim(Z)×2]
to transform this vector into the mean and log-variance of q(z|x, y,m, a, c). All the
layers use ReLU activations except for the last layer, which uses linear activation.

• CIFAR-binary experiments:

– Discriminative CNN: The discriminate model used in the paper is a CNN with 3 con-
volutional layers of filter width 3 and channel sizes [128, 128, 128], followed by a
flattening operation and a 2-hidden layer MLP of size [4 × 4 × 128, 1000, 1000, 10].
It uses ReLU activations and max pooling for the convolutional layers.

– Deep CAMA’s p networks: we use dim(Y ) = 10, dim(Z) = 128 and dim(M) = 64.
NNpY : an MLP of layer sizes [dim(Y ), 1000, 1000] and ReLU activations.
NNpZ : an MLP of layer sizes [dim(Z), 1000, 1000] and ReLU activations.
NNpM : an MLP of layer sizes [dim(M), 1000, 1000, 1000] and ReLU activations.
NNpmerge: an projection layer which projects the feature outputs from the previous
networks to a 3D tensor of shape (4, 4, 64), followed by 4 deconvolutional layers with
stride 2, SAME padding, filter size (3, 3, 64, 64) except for the last layer (3, 3, 64, 3).
All the layers use ReLU activations except for the last layer, which uses sigmoid
activation.
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– Deep CAMA’s q networks:
NNqM : it starts from a convolutional neural network (CNN) with 3 blocks of {conv3×
3,max-pool} layers with output channel size 64, stride 1 and SAME padding, then per-
forms a reshape-to-vector operation and transforms this vector with an MLP of layer
sizes [4× 4× 64, 1000, 1000, dim(M)× 2] to generate the mean and log-variance of
q(m|x). All the layers use ReLU activation except for the last layer, which uses linear
activation.
NNqZ : first it re-uses NNqM CNN network for feature extraction on x. Then after
the reshape-to-vector operation, the vector gets combined with y and m and passed
through another MLP of size [4×4×64+dim(Y )+dim(M), 1000, 1000, dim(Z)×2]
to obtain the mean and log-variance of q(z|x, y,m). All the layers use ReLU activa-
tion except for the last layer, which uses linear activation.

Measurement data generation We set the target Y to be categorical, its children, co-parents and
parents are continuous variables. The set 5 classes for Y , and Y has 10 children variables and 5
co-parents variables, also one 5 dimensional parents.

Parents (A) and co-parents (C) are generated by sampling from a normal distribution. We generate
Y using structured equation Y = fy(A) + σY . We use fy = argmax g(A) and g() is a quadratic
function 0.2 ∗A2 − 0.8A. σY is the Gaussain noise.

To generate the children X = f(Y,C) + σx, we also used quadratic function f and the parameters
were sampled from a Gaussian distribution. As in the experiment, we were using fixed scale shift,
we also added a normalize the children before adding the Gaussian random noise σx. So that all
observations are in similar scale.

Other For MNIST experiments, we uses 5% of the training data as the validation set. We used the
training results with the highest validation accuracy for testing. If not otherwise specified, 50% of
noisy test data are used for fine-tuning in the shift experiments and all data are used for fine-tuning
in the attack experiments.

For the experiments with measurement data. We generated 1000 data in total. We split, 500 data
for testing, 450 for training and 50 for validation. We used the training results with the highest
validation accuracy for testing for both deep CAMA and for DNN.
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