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ABSTRACT

Face completion is a challenging task with the difficulty level increasing signifi-
cantly with respect to high resolution, the complexity of “holes" and the controllable
attributes of filled-in fragments. Our system addresses the challenges by learning a
fully end-to-end framework that trains generative adversarial networks (GANs) pro-
gressively from low resolution to high resolution with conditional vectors encoding
controllable attributes. We design a novel coarse-to-fine attentive module network
architecture. Our model is encouraged to attend on finer details while the network is
growing to a higher resolution, thus being capable of showing progressive attention
to different frequency components in a coarse-to-fine way. We term the module
Frequency-oriented Attentive Module (FAM). Our system can complete faces
with large structural and appearance variations using a single feed-forward pass of
computation with mean inference time of 0.54 seconds for images at 1024× 1024
resolution. A pilot human study shows our approach outperforms state-of-the-art
face completion methods. The code will be released upon publication.

1 INTRODUCTION

Image completion is a technique to replace target regions, either missing or unwanted, of images
with synthetic content so that the completed images look natural, realistic and appealing. Two types
of methods have been used: data similarity driven methods and data distribution based generative
methods. In the first paradigm, texture synthesis or patch matching are usually used (Efros & Leung,
1999; Kwatra et al., 2003; Criminisi et al., 2003; Wilczkowiak et al., 2005; Komodakis, 2006; Barnes
et al., 2009; Darabi et al., 2012; Huang et al., 2014; Wexler et al., 2007). The second paradigm learns
the underlying distribution governing the data generation with respect to the context and is able to
synthesize novel content. Much progress (Iizuka et al., 2017; Yeh et al., 2017; Li et al., 2017; Yang
et al., 2016; Denton et al., 2016; Pathak et al., 2016; Yu et al., 2018; Liu et al., 2018) has been made
since the generative adversarial network (GAN) was proposed (Goodfellow et al., 2014).

We adopt the data distribution based generative method and focus on human face completion in this
paper. Three important issues are addressed. First, previous methods are only able to complete faces
at low resolutions (e.g. 176 × 216 (Iizuka et al., 2017) and 256 × 256 (Yu et al., 2018)). Second,
most approaches cannot control the attributes of the synthesized content. Previous methods focus on
generating random realistic content. However, users may want to complete the missing parts with
certain properties (e.g. expressions). Third, most existing approaches (Iizuka et al., 2017; Yeh et al.,
2017; Li et al., 2017) require post processing (e.g. Poisson Blending (Pérez et al., 2003)) or complex
inference process (e.g. thousands of optimization iterations (Yeh et al., 2017) or repeatedly feeding
an incomplete image to CNNs at multiple scales (Yang et al., 2016)).

To overcome the above limitations, we propose a novel progressively attentive GAN to complete face
images at high resolution with multiple controllable attributes in a single forward pass without any
post processing. We utilize facial landmarks as backbone guidance of face structures and propose
a straightforward method of integrating them in our system. The training methodology of growing
GANs progressively (Karras et al., 2017) is used to generate high-resolution images end-to-end. To
avoid distorting the learned coarse structures when the network is growing to a higher resolution, we
design a novel Frequency-oriented Attentive Module (FAM) to encourage the model to attend on
finer details (i.e. higher-frequency structures, see Figure 1). A conditional version of our network
is designed so that the appearance properties (e.g. male or female), and facial expressions of the
synthesized faces can be controlled. Moreover, we design a set of loss functions inducing the network

1



Under review as a conference paper at ICLR 2019

Figure 1: Face completion results of our method on CelebA-HQ (Karras et al., 2017). Top: our
approach can complete face images at high resolution (1024 × 1024). Middle and Bottom: the
frequency-attention filters of readers and writers of the top left image. While the resolution increases
from 8× 8 to 1024× 1024, the model attends on higher frequency information. Regions with rich
details (e.g. eyes) get more attention, especially at high resolutions. Best viewed in magnification.

to blend the synthesized content with the contexts in a realistic way. Our method was compared with
state-of-the-art approaches on a high-resolution face dataset CelebA-HQ (Karras et al., 2017). Both
the evaluations and a pilot user study showed that our approach completed face images significantly
more naturally than existing methods.

The main contributions of this paper are: (i) We propose a progressively attentive GAN architecture,
which incorporates a novel frequency-oriented attention mechanism, to complete face images with
random masks in much higher resolution than existing methods. (ii) A conditional version of our
model is designed to control multiple attributes of the synthesized content. (iii) Our framework is
able to complete images in a single forward pass, without any post-processing, and thus fast.

2 RELATED WORK

There is a large body of image completion literature. Early non-learning based algorithms (Efros &
Leung, 1999; Bertalmio et al., 2000; 2003) complete missing content by propagating information
from known neighborhoods, based on low level cues or global statistics (Levin et al., 2003). Texture
synthesis and patch matching based approaches (Efros & Leung, 1999; Kwatra et al., 2003; Criminisi
et al., 2003; Wilczkowiak et al., 2005; Komodakis, 2006; Barnes et al., 2009; Darabi et al., 2012;
Huang et al., 2014; Wexler et al., 2007) find similar structures from the context of the input image or
from an external database (Hays & Efros, 2007) and then paste them to fill in the holes.

Recent learning based methods have shown the capability of CNNs to complete large missing content.
Based on existing GANs, the Context Encoder (CE) (Pathak et al., 2016) encodes the contexts of
masked images to latent representations, and then decodes them to natural content images, which are
pasted into the original contexts for completion. However, the synthesized content of CE is often
blurry and has inconsistent boundaries. Given a trained generative model, Yeh et al. (Yeh et al.,
2017) propose a framework to find the most plausible latent representations of contexts to complete
masked images. The Generative Face Completion model (GFC) (Li et al., 2017) and the Global and
Local Consistent model (GL) (Iizuka et al., 2017) use both global and local discriminators, combined
with post processing, to complete images more coherently. Built on GL, Yu et al. (Yu et al., 2018)
design a contextual attention layer (CTX) to help the model borrow contextual information from
distant locations. Liu et al. (Liu et al., 2018) incorporates partial convolutions to handle irregular
masks. Unfortunately, these approaches can only complete face images in relatively low resolutions
(e.g. 176 x 216 (Iizuka et al., 2017) and 256× 256 (Yu et al., 2018)). Yang et al. (Yang et al., 2016)
combine a global content network and a texture network, and the networks are trained at multiple
scales repeatedly to complete high-resolution images (512× 512). Like the patch matching based
approaches, Yang et al. assume that the missing content always shares some similar textures with the
context, which is improbable for the face completion task.
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Many methods try to generate high quality images and stabilize the training process. The Laplacian
GAN (Denton et al., 2015) uses a a cascade of CNNs to synthesize images from coarse to fine by
generating high frequency information at different layers. The Deep Recurrent Attentive Writer
(DRAW) architecture (Gregor et al., 2015), which is a spatial attention mechanism, generates images
iteratively by learning to read and write parts of images at each time-step with a sequence of variational
auto-encoders (VAEs). Unfortunately, these techniques are unable to synthesize high-resolution
images (e.g. 64× 64 (Gregor et al., 2015; Denton et al., 2015)). Karras et al. (Karras et al., 2017)
put forward a progressive training methodology (Progressive GAN) to grow GANs from low to high
resolution, and are able to generate realistic 1024× 1024 images. However, since all the parameters
remain trainable at the growing stage, learned coarse structures can be altered and distorted, and thus
the training process of Progressive GANs is usually unstable. Note that these generative models
cannot be applied to the image completion task directly because they aim at generating natural
content which are not necessarily consistent with the image contexts.

3 APPROACH

3.1 PROBLEM FORMULATION

Denoted by Λ an image lattice (e.g., 1024 × 1024 pixels). Let IΛ be an RGB image defined on
the lattice Λ. Denote by Λt and Λc the target region to complete and the remaining context region
respectively which form a partition of the lattice.Without loss of generality, we assume Λt is a single
connected component region.IΛt is masked out with the same gray pixel value. Let MΛ be a binary
mask image with all pixels in MΛt being 1 and all pixels in MΛc being 0. For notational simplicity,
we will omit the subscripts Λ, Λt and Λc when the text context is clear.

The objective of image completion is to generate a synthesized image Isyn that looks natural, realistic
and appealing for an observed image Iobs with the target region IobsΛt

masked out in the ground-truth
full image Igt. Furthermore, it is desirable to control the completion according to a set of attributes
which are assumed to be independent from each other (e.g., to respect the underlying intrinsic
ambiguities due to the loss of information in the target region). Let A = (a1, · · · , aN ) be a N -dim
vector with ai ∈ {0, 1} encoding if a corresponding attribute appears (ai = 1) or not (ai = 0) (e.g.
the “Male” attribute in Figure 5). We define the generator as,

Isyn = G(Iobs,M,A; θG), subject to IsynΛc
≈ IobsΛc

(1)

where θG collects all parameters of the generator, and ≈ represents the two context regions, IsynΛc
and

IobsΛc
, need to kept very similar (both to be elaborated later).

3.2 THE PROPOSED METHOD

The proposed method is built on progressive GANs with well-executed combination between the
network architecture, appropriate receipt of loss functions and a novel FAM.

Denote by Gr and Dr the generator and discriminator at resolution r respectively, where r ∈
{1, · · · , R} is the index of resolution (e.g., r = 1 represents 4 × 4 and r = R = 9 represents
1024× 1024). Accordingly, we have the observed corrupted image, its corresponding binary mask
and its ground-truth uncorrupted image (in training only), Iobsr , Mr and Igtr at each resolution.

The generator, Gr takes as input the observed data XG
r and the attribute vector A, then outputs a

completed image Isynr . It consists of two components,

Isynr = Gr(XG
r , A; θGr

) = Gcompl
r (Genc

r (XG
r ; θGenc

r
), A; θGcompl

r
), (2)

where Genc
r (·) encodes the input XG

r to a latent low dimensional vector. The latent vector is
concatenated with the attribute vector. The concatenated vector plays the role of the noise random
variable z in the original GAN. Then, Gcompl

r (·) transforms the concatenated vector to a sample Isynr
(i.e., the completed image). Genc

r and Gcompl
r are mirrored to each other in the form of U-shape

networks (Ronneberger et al., 2015; Newell et al., 2016). θGr
= (θGenc

r
, θGcompl

r
).

The discriminator, Dr classifies its input XD
r and has two output branches, the fake versus real

classification branch and the attribute prediction branch. It consists of three components: a shared
feature backbone and two head classifiers. We have,

Dr(XD
r ; θDr ) = {Dcls

r (Fr(XD
r ; θFr ); θDcls

r
), Dattr

r (Fr(XD
r ; θFr ); θDattr

r
)} (3)
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Where the feature backbone, Fr(XD
r ; θFr

) computes the feature map. On top of the feature map, the
first head classifier, Dcls(·) computes binary classification between real and fake, and the second
one, Dattr(·) predicts an attribute vector. All the parameters of the discriminator are collected by
θDr

= (θFr
, θDcls

r
, θDattr

r
). We note that the discriminator is only needed in training. We will omit

the notations for parameters in equations when no confusion is caused.

Progressive Growing of Generators and Discriminators. Following the methodology proposed
in (Karras et al., 2017), we start with training G1 and D1. Then, at the growing stage r (r > 1),
Gr = (Gr−1, G

fade−in
r ) is first created on top of the previous trained stage Gr−1 with newly added

layers Gfade−in
r , and both of them are trainable in a fade-in process for smooth transition. The

discriminators grow in the same way. The alternation of Gr−1 in training stage Gr may lead
to the instability of the growing process and the loss of learned structures of the underlying
image distribution, which motivates the proposed FAM in growing generators (Section 3.2.1).

Inputs for Generators and Discriminators, XG
r and XD

r . We have,

XG
r = (Îobsr ,Mr, Lr) and XD

r = (Ir, Lr) (4)

where Lr represents the facial landmarks. Recent works (Isola et al., 2016; Wang et al., 2017; Zhu
et al., 2017; Sangkloy et al., 2017; Xian et al., 2017; Chen & Hays, 2018) have shown the capability
of GANs to translate sketches or edges to photo-realistic images. Given a corrupted image, it is better
if the model is able to “draw” a sketch of face first, which provides a backbone guidance for image
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Figure 2: Overview of our method. See text for
details.

completion. We utilize the following methods to
compute landmarks (Figure 2).

• In training, we extract landmarks from the un-
corrupted image at 256 × 256 resolution using
an off-the-shelf pre-trained Face Alignment Net-
work (FAN) (Bulat & Tzimiropoulos, 2017) which
achieved very good results for faces in the wild.

• In testing, to predict landmarks from corrupted
images, we first train a single stage face completion
network at 256× 256 resolution, denoted by GL,
using reconstruction loss (Section 3.2.2) only. For
a testing image, we use GL to generate a blurry
completed image from which the landmarks are
extracted with FAN.

L is up-sampled or down-sampled to Lr to match the size of networks at different resolutions. Ir in
XD

r represents either the uncorrupted image or the image synthesized by Gr. For Îobsr in XG
r , we

have Îobs1 = Iobs1 , and Îobsr is the output of FAM (r > 1) as described in following section.

3.2.1 FAM: THE PROPOSED FREQUENCY-ORIENTED ATTENTIVE MODULE

Figure 3 illustrates the proposed FAM. To obtain a smooth transition from low to high resolutions,
we design a FAM architecture (i.e. the red components in Figure 3), which is a frequency-oriented
attention mechanism integrated along with the resolution change, so that the model learns filters to
encourage Gfade−in

r (blue components in Figure 3) to read and write information that are important
at level r, but have not been handled well at level r − 1. By doing those,

• Our model attends on higher frequency signals as resolution increases (see Figure 1), thus improv-
ing the completion performance.

• Our model preserves what have been learned in previous progressive stages, thus furthering the
stability of progressive GANs.

Existing approaches (Gregor et al., 2015; Yu et al., 2018) use spatial attention mechanisms to
encourage networks to attend to selected parts of images (e.g. rectangular regions), while FAM is
an attention model in the frequency domain. But different from a regular band-pass filter, the filters
generated by FAM is predicted based on semantics of images which are enforced by the objective
function (Eqn. 10), and thus is also sensitive to locations inferred on-the-fly in a coarse-to-fine manner.
For instance, the model pays more attention to eye regions where the rich details aggregate, especially
at a high resolution.
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Figure 3: The proposed FAM used in growing GANs progressively. Here, we show the example of increasing
resolutions from 32× 32 to 64× 64. See text for details. Best viewed in color and magnification.

Recall that at the growing stage r (r > 1) in training, we haveGr = (Gr−1, G
fade−in
r ). In the vanilla

progressive GANs, we will compute the completed image Isynr = Gr(Iobsr ,Mr, Lr, A) (simplified
from Eqn. 2 for clarity). The previously trained Gr−1 can be changed while optimizing the stage r,
which may lead to unexpected updating. Our FAM prevents Gr−1 from changing to wrong directions.
To that end, we first introduce a read module which utilizes a read filter F̂read to extract the most
valuable information in both Iobsr and Iobsr−1,

Îobsr , Îobsr−1 = read(Iobsr , Iobsr−1, F̂read), (5)

which is implemented by,

Îobsr = F̂read � (1−Mr)� Iobsr , (6)

Îobsr−1 = Downsample((1− F̂read)� (1−Mr)� Ĩobsr−1), (7)

where � denotes element-wise multiplication. Ĩobsr−1 is up-sampled from Iobsr−1 to match the resolution
of Iobsr . Ĩobsr−1 represents the blurred (i.e. low-frequency) version of Iobsr since high-frequency
information is lost when Iobsr−1 is down-sampled from Iobsr . The read filter F̂read is defined by,

F̂read = β · Fread + γ, β :

{
2α,
2− 2α,

γ :

{
0, α ≤ 0.5
2α− 1, 0.5 < α ≤ 1.0

(8)

where Fread is computed by Fread = ToFilter(Gfixed
r−1 (Iobsr−1,Mr−1, Lr−1)) using a trained generator

Gfixed
r−1 with fixed weights and a small trainable network ToFilter. α is a weight increasing linearly

from 0 to 1 proportional to the number of seen images during growing. F̂read starts as an all-zero
filter, is adjusted by a trainable ToFilter at the growing stages and eventually increased to all ones.

As illustrated in Figure 3, given the outputs from the read module, Îobsr and Îobsr−1, we can generate
the corresponding completed images, Isynr and the up-sampled Isynr−1 respectively, and the write filter
Fwrite. Then, to generate the final completed image at stage r, we also introduce a write module,

Îsynr =write(Isynr , Isynr−1, F̂write) (9)

=(Isynr · α+ Isynr−1 · (1− α))� (1−Mr) + (F̂write � Isynr + (1− F̂write)� Isynr−1)�Mr,

where F̂write = β ·Fwrite +γ and Fwrite is predicted from the last feature maps. At a low resolution,
both the read and write module exploit more on the low-frequency information, but gradually move
to exploit higher-frequency information when resolution increases under the guidance of minimizing
the objective function (Eqn. 10). Fread and Fwrite can be discarded when the growing process is
done. A testing image only needs to go through one generator that is independent of FAM (blue
flow in Figure 3). This is more efficient than the Laplacian GAN (Denton et al., 2015) that requires
feeding a testing sample to a cascade of generators, and uses multiple discriminators in training.

3.2.2 LOSS FUNCTIONS

Beside extending the original adversarial loss function, we design three new loss functions to enforce
sharp image completion.

Adversarial Loss Given an uncorrupted image Igt, its attribute vector A, a mask M , landmarks L,
and the corresponding corrupted image Iobs we define the loss by, ladv(Igt,M,L, Iobs, A|G,D) =
log (1−Dcls(I

syn, L) + logDcls(I
gt, L), where Isyn = G(Iobs,M,L,A)).
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Figure 4: Comparison with Context Encoder (CE) on high-resolution face completion. While increasing
resolution, CE generated more distorted images while our method produced sharper faces with more details.

Attribute Loss Similar to the InfoGAN models (Chen et al., 2016; Choi et al., 2017), for the attribute
prediction head classifier in the discriminator, we define the attribute loss based on cross-entropy
between the predicted attribute vector, Âreal = Dattr(Ireal, L) and Âobs = Dattr(Iobs, L) and
the corresponding targets, A for both a real uncorrupted image and a synthesized image. We have,
lattr(Igt, A,M, Iobs|G,D) = CrossEntropy(A, Âgt) + CrossEntropy(A, Âobs).

Reconstruction Loss Since our method generates the entire completed face rather than only the
target region, we define a wighted reconstruction loss lrec to preserve both the target region and the
context region, which is defined as, lrec(Igt,M,L, Iobs, A|G) = ‖κ �M � Idiff‖1 + ‖(1 − κ) �
(1−M)� Idiff‖1, where Idiff = Igt − Isyn and κ is the trade-off parameter.

Feature Loss In additional to the reconstruction loss in terms of pixel values, we also encourage
the synthesized image to have a similar feature representation (Johnson et al., 2016) based on a
pre-trained deep neural network φ. Let φj be the activations of the jth layer of φ, the feature loss
is defined by, lfeat(Igt,M,L, Iobs, A|φ,G) = ‖φj(Igt) − φj(Isyn))‖22. In our experiments, φj is
the relu2_2 layer of a 16-layer VGG network (Simonyan & Zisserman, 2014) pre-trained on the
ImageNet dataset (Russakovsky et al., 2015).

Boundary Loss To make the generator learn to blend the synthesized target region with the original
context region seamlessly, we further define a close-up reconstruction loss along the boundary of the
mask. Similar to (Yeh et al., 2017), we first create a weighted kernel w based on the mask image M .
w is computed by blurring the mask boundary in M with a mean filter so that the pixels closer to
the mask boundary are assigned larger weights. The kernel size of the mean filters is seven in our
experiments. We have, lbdy(Igt,M,L, Iobs, A|G) = ‖w � (Igt − Isyn)‖1.
Our model is trained end-to-end by integrating the expected loss of the different loss functions defined
above under the minimax game setting. We have,

min
G

max
D
Ladv(G,D) + λ1Lattr(G,D) + λ2Lrec(G) + λ3Lfeat(G,φ) + λ4Lbdy(G). (10)

Where λi’s are trade-off parameters between different loss terms.

Training without Multiple Controllable Attributes. To that end, since it is a special case of the
proposed formulation stated above, we can simply remove the components involving attributes such
as the attribute loss in a straightforward way. The resulting system still enjoys end-to-end learning.

4 EXPERIMENTS

Datasets and Experiment Settings We used the CelebA-HQ (Karras et al., 2017) dataset for evalua-
tion. It contains 30,000 aligned face images at 1024× 1024 resolution. The dataset is split randomly
while ensuring there is no identity overlap between test/training sets: 3,009 images for testing,
and 26,991 for training. There were two types of masks: center and random. The center mask was a
square region in the middle of the image with a side length of half the size of the image. The random
masks, generated in a similar way to previous methods (Iizuka et al., 2017; Yu et al., 2018), were
rectangular regions with random width-to-height ratios, sizes and locations covering about 5% to 25%
of the original images. Hyper-parameters used for training are listed in the supplemental materials.

Quality Comparison with the Context Encoder Our method was compared with the Context
Encoder (CE) (Pathak et al., 2016) on high-resolution face completion. Since the original networks
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of CE were designed for 128× 128 images, we used a naive approach to fit it to different resolutions.
One, two, and three convolutional layers were added to the encoder, decoder and discriminator for
256 × 256, 512 × 512 and 1024 × 1024 networks respectively. The result (Figure 4) shows that,
when the resolution increased, our method learned details incrementally and synthesized sharper
faces, while CE generated poorer images with more distortions.

Table 1: The quantitative comparison between our method and state-of-the-art methods
Method Resolution L1 (%) L2 (%) PSNR

GL (Iizuka et al., 2017) 128× 128 9.34 1.75 18.22
Ours 128× 128 7.8 1.42 19.15

CTX (Yu et al., 2018) 256× 256 8.53 1.75 18.41
Ours 256× 256 7.05 1.21 19.97

Quantitative Comparison with State-of-the-art Methods As noted in literatures (Yeh et al., 2017;
Yu et al., 2018), reconstruction metrics such as mean L1, L2 errors and peak signal-to-noise ratio
(RSNR) that are commonly used are not good quantitative evaluation metrics for inpainting methods
since image completion aims at completing missing regions with plausible content rather than
reconstructing it. As a reference, we show the comparison between our method and state-of-the-
art models at their reported resolutions respectively: 128 × 128 for GL with center masks (using
implementation of (Yu et al., 2018)) and 256× 256 for CTX with random masks (Table 1).

Semantic Completion We first trained a high-resolution (1024 × 1024) model with center masks
(examples shown in Figure 5) to test whether our model is capable of learning high-level semantics
and structures of faces and synthesize large missing regions. The second model was trained with
random masks, but was able to handle arbitrary (e.g. irregular hand-drawn) shapes of masks. The
result (Figure 5) shows that our model was able to capture the anatomical structures of faces and
generate content that is consistent with the holistic semantics.

Attribute Controller Unlike previous image completion techniques (Iizuka et al., 2017; Yeh et al.,
2017; Li et al., 2017; Yang et al., 2016; Pathak et al., 2016; Yu et al., 2018) that generate only
random plausible content, our network completes faces with structurally meaningful content whose
appearances and expressions are controllable. Existing approaches (Mirza & Osindero, 2014; Choi
et al., 2017; Kaneko et al., 2017) can only control facial expressions roughly (e.g. smiling or not
smiling). In contrast, our model is able to control subtle expressions. In the experiment, the face
appearance was conditioned on a “Male” attribute and we used landmarks from source actors to
control the synthesized expressions (Figure 5). This 512× 512 model was trained from scratch. The
example demonstrates the potential application of our method in face reenactment (Li et al., 2012;
Garrido et al., 2014; Thies et al., 2016).

Computation Time Our model, once trained, is able to complete a face image with a single forward
pass, resulting in much higher efficiency. We tested our model with a Titan Xp GPU by processing
3000 1024 × 1024 images with 512 × 512 holes. The mean completion time is 0.54 second per
image. Unlike our model, existing CNN-based high-resolution in-painting approaches often need
much longer time to process an image. For instance, it took about 1 min for the model of Yang et
al. (Yang et al., 2016) to complete a 512× 512 image with a Titan X GPU.

User Study We compared our method with CTX (Yu et al., 2018), which is the state-of-the-art
CNN-based face completion approach capable of completing face images at 256× 256 resolution,
with a pilot user study at 256 × 256 resolution with random masks. 27 subjects (15 male and 12
female participants, with ages from 22 to 32) were volunteered to participate.

There were four sessions of pairwise A/B tests. Each time, a user was shown two images and asked
choose the more realistic one. In the first session, two images completed from the same image by
different methods were chosen. In session two to four, a real image and a corresponding synthesized
image were shown. In the first session, time was unlimited. In session two to four, images were
on display for 250ms, 1000ms, 4000ms respectively. The result (Figure 6) shows that there were
significantly more images generated by our method being favored by the viewers. Overall, our
approach generated sharper images with more details and fewer distortions.

Limitations Though our method has low inference time, the training time is long due to the progres-
sive growing of networks. In our experiment, it took about three weeks to train a 1024× 1024 model
on a Titan Xp GPU. Additionally, by carefully zooming in our results, we find that our high-resolution
model fails to learn low-level skin textures, such as furrows and sweat holes. Moreover, the model
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Figure 5: Sample results of our approach. The left two groups are completion results with center and
irregular hand-drawn masks at 1024× 1024. For each group, from left to right columns: cropped,
synthesized and real images. The third group shows the performance of the attribute controller, in
which the first and third row are corrupted images and source actors whose facial landmarks are used
to control the expressions of synthesized faces (row two and four). The right most two columns are
conditioned on the “Male” attribute while column two and three are with “Not Male”. The leftmost
column depends on their ground-truth landmarks and attributes.

Figure 6: Comparisons on the naturalness: ours and CTX (Yu et al., 2018). The leftmost bar chart
shows the average percentage that the images generated by our method look more natural than CTX.
The second bar chart shows the percentage that a synthesized image is considered more realistic than
a ground-truth (GT) one with displaying time of 250ms, 1000ms and 4000ms. The right figure shows
samples used in the user study. The first group comes from session one while group two and three are
both from session four (the 4000ms session). The preferred images are marked with red boxes.

Figure 7: Some failure cases of our approach.

could generate distorted content while removing large parts (e.g. hats) or synthesize some plausible
but unnatural faces (Figure 7). Furthermore, For facial expression transfer, our method requires that
the head poses of the source and target faces are similar. These issues are left for future work.

5 CONCLUSION

We propose a progressive GAN with frequency-oriented attentive modules (FAM) for high-resolution
and fast face completion, which learns face structures from coarse to fine guided by the FAM.
By consolidating information across all scales, our model not only outperforms state-of-the-art
methods by generating sharper images in low resolution, but is also able to synthesize faces in higher
resolutions than existing techniques. A conditional version of our model allows users to control
the properties of generated images explicitly with attribute vectors and landmarks. Our system is
designed in an end-to-end manner, in that it learns to generate completed faces directly and more
efficiently.
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Figure 8: Ablation Study. First row: cropped images; Second row: results from a model that is
trained with only regular L1 loss (unweighted) and Ladv. The vanishing gradient problem prevents
the networks from making progress when the synthesized content is still blurry. Third row: the
training process is stabilized by adopting the progressive training methodology and a set of designed
loss functions. However, the already-learned structures can be distorted while the network is growing
(e.g. first column); Fourth row, FAM helps prevent the coarse structures from being altered while
encouraging the model to attend to regions with rich details. For instance, the eyes are sharper, more
vivid and realistic when the model is trained with FAM; Fifth row: the ground-truth samples.

A APPENDIX

A.1 ABLATION STUDY

The encoder-decoder structure has been widely used in image completion networks (Pathak et al.,
2016; Iizuka et al., 2017; Li et al., 2017). However, the encoding process is a lossy compression,
which makes it difficult to reconstruct the original contextual regions. Additionally, since much
contextual information is lost during the encoding process, it is also difficult for the encoder to
reconstruct content that perfectly match the context. UNet adds skip connections between the
mirrored layers of the encoder and decoder, consolidating information from all previous layers, rather
than depending on only the latent code. Therefore, UNet can be used to generate a completed image
conditioned on the corrupted input. Unfortunately, if UNet is applied to image completion networks
directly, it will be much easier for the generator to reconstruct the context than the content, resulting in
inconsistent colors and textures along boundaries, which often causes the vanishing gradient problem
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Figure 9: High-resolution face completion results with center masks. All images are resized from
1024× 1024. For each group, from left to right: cropped, synthesized, and real images.

where both the generator and discriminator stop learning when the synthesized content is still blurry
(Figure 8).

We try to solve this problem from two aspects. First, we adopt the method of training GANs
progressively. Our model starts at a low resolution, so that it is difficult for the discriminator to
capture the inconsistency between content and context regions. When the network grows, since the
lower-resolution is already trained, the inconsistency between context and content regions is reduced.
Second, we design the boundary loss and weighted reconstruction loss, which encourage the network
focus more on synthesizing the boundary and content regions respectively. The feature loss also helps
stabilizing the training by encouraging the synthesized images to have similar high-level features to
real samples. These two improvements have improved the performance significantly.

The image quality is further enhanced by incorporating FAM. First, the reader and writer act as
band-pass filters that minimize the influence of high-frequency noise on low-level network parameters,
and thus avoiding distorting the already-learned global structures. Second, FAM is predicted from the
facial semantics so that it encourages the model to focus on learning features in regions with richer
details. For instance, the eyes synthesized by models trained with FAM are much sharper, more vivid
and realistic.

This ablation study was run at 256× 256 to provide an intuitive illustration of the impact of different
components of our method. Since the training of high-resolution models was very time consuming, a
more thorough ablation study is left for future work.

A.2 HIGH-RESOLUTION COMPLETION RESULTS

More high resolution face completion results with various mask types are demonstrated in Figure 9
and Figure 10. Additionally, Figure 11 and Figure 12 represent two ways to control expressions
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Figure 10: High-resolution face completion results with random and hand-drawn masks. All images
are resized from 1024 × 1024. For each group, from left to right: cropped, synthesized, and real
images.

and appearances. In the first example (Figure 11), we use a two-dimensional attribute vector
[“Smiling”, “Male”] without landmarks as inputs. In the second one, an attribute [“Male”] is used
with landmarks extracted from source actors (Figure 12). The results show that both methods can
control the expressions and appearances explicitly. But more subtle expressions can be controlled
with landmarks. Moreover, we present more examples of attention filters during growing process in
Figure 13.

A.3 TRAINING DETAILS

The progressive training process is illustrated in Figure 14. At a resolution lower than 1024×1024, the
input face images, masks, landmarks and real images are all down-sampled with average pooling to fit
the given scale. One of the major challenges of generating high resolution images is the limitation of
Graphics Processing Unit (GPU) memory. Most completion networks use Batch Normalization (Ioffe
& Szegedy, 2015) to avoid covariate shift. However, with the limited GPU memory, only a small
number of batch sizes are supported at high resolution, resulting in low quality of generated images.
We use the Instance Normalization (Ulyanov et al., 2016), similar to Zhu et al. (Zhu et al., 2017), and
update D with a history of completed images instead of the latest generated one (Shrivastava et al.,
2016) to stabilize training.

At the growing stage, new layers are added for both D and G and these layers are faded in with
current networks smoothly. After the fade-in process, the network is trained on more images for
stabilization. We used 300K, and 150K training images for resolution [8 × 8 to 256 × 256] and
[512×512, 1024×1024] respectively at growing stage, and 600K, 430K images for 4×4 and [8×8
to 1024× 1024] at stabilizing stage respectively.
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Figure 11: Face completion results with attribute controller. In this example, only attribute vectors
([“Smiling”, “Male”]) are used to control the properties of generated images. The facial expressions
are controlled with the latent variables, rather than landmarks. From column two to five, the attributes
are: [0, 0], [0, 1], [1, 0], [1, 1]. “1” denotes an attribute is turned on, otherwise not.
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Figure 12: Face completion results with attribute controller. Attribute “Male” is used to control the
appearances (“Male” for column two and three; “Not Male” for column four and five). Landmarks
from source actors (row one and three) are used to control expressions of synthesized images (row
tow and four). The leftmost column shows cropped images and faces generated with ground-truth
attributes and landmarks.
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Figure 13: More examples of the attentive read/write filters while the resolution grows from 8× 8 to
1024× 1024. The leftmost column are cropped images while the rightmost are synthesized images.

In the experiments, the reconstruction trade-off parameter was set to κ = 0.7 to focus more on the
target region. To balance the effects of different objective functions, we used λattr = 2, λrec = 500,
λfeat = 8, and λbdy = 5000. The Adam solver (Kingma & Ba, 2014) was employed with a learning
rate of 0.0001.

A.4 NETWORK STRUCTURE

The generator G in our model is implemented by a U-shape network architecture consisting of the
first component Genc transforming the observed image and its mask to a latent vector and the second
componentGcompl transforming the concatenated vector (latent and attribute) to the completed image.
There are residual connections between layers in Genc and the counterpart in Gcompl similar in the
spirit to the U-Net (Ronneberger et al., 2015) and the Hourglass network (Newell et al., 2016) to
consolidate information across multiple scales. Figure 15 illustrates the two structures of a layer in
the generator for training without and with attributes respectively, which are adapted from the U-Net
and Hourglass network.

Every convolutional layer (Conv) is followed by an Instance Normalization (InsNorm) and a
LeakyReLU layer, except that the Conv before the latent vector (i.e. the second Conv layer in
Table 2) is not followed by an InsNorm. Additionally, the there are no InsNorms or LeakyReLUs after
the last Convs of both Dcls and Dattr. All Convs used in the residual block of the skip connections
of our conditional model have a kernel size of three and a stride of one.

Since we use Instance Normalization rather than Batch Normalization, the batch size is not an
important hyper-parameter. Technically, for faster computation, we use as large a batch size as
possible so long as it does not exceed the GPU memory limit.

Tables 2 and 4 demonstrate the architecture of the components of the generator G while Tables 5
shows the components of the discriminator D. In Table 5, depending on the operation of the skip
connection (Skip), the number of filters is either doubled (for a concatenation operation) or remains
the same (for an addition operation).
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Figure 14: The progressive training process of our approach. The training of the completion network
(or the “generator” G) and the discriminator D starts at low resolution (4 × 4). Higher layers are
added to both G and D progressively to increase the resolution of the synthesized images. The
r x r cubes in the figure represent convolutional layers that handle resolution r. For the conditional

version, attribute labels Aobs are concatenated to the latent vectors. The discriminator D splits into
two branches in the final layers: Dcls that classifies if an input image is real, and Dattr that predicts
attribute vectors. Note that XG and XD are both a set of inputs as defined in the paper. We use
images in this Figure as a simplified illustration.

Figure 15: Illustrations of a single layer of our architecture. There are skip connections between
mirrored encoder and decoder layers. Left: the structure of the completion network; the skip
connection is a copy-and-concatenate operation. This structure helps preserve the identity information
between the synthesized images and real faces, resulting in little deformation. Right: the structure
of the conditional completion network; residual connections are added to the encoder, and the skip
connections are residual blocks instead of direct concatenation. The attributes of the synthesized
contents can be manipulated more easily with this structure. Each blue rectangle represents a set of
Convolutional, Instance Normalization and Leaky Rectified Linear Unit (LeakyReLU) (Maas et al.,
2013) layers.
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Table 2: Top: the Encoding component of generator Genc; Bottom: Latent Layer. N is the length
of an attribute vector. The attribute concatenation operation (AttrConcat) is only activated for our
conditional model.

Type Kernel Stride Output Shape
Input Image - - 4× 1024× 1024
Conv 1× 1 1× 1 16× 1024× 1024
Conv 3× 3 1× 1 32× 1024× 1024
Conv 3× 3 1× 1 32× 1024× 1024
Downsample - - 32× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Downsample - - 64× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Downsample - - 128× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Downsample - - 256× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Downsample - - 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Downsample - - 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Downsample - - 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Downsample - - 512× 4 × 4

Type Kernel Stride Output Shape
Conv 3× 3 1× 1 512× 4 × 4
Conv 4× 4 1× 1 512× 1 × 1
AttrConcat optional - 512(+N)× 1 × 1
Conv 4× 4 1× 1 512× 4 × 4
Conv 3× 3 1× 1 512× 4 × 4
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Table 3: The completion component of generator Gcompl. Depending on the particular operation of
the skip connection (Skip), the number of filters is either doubled (for concatenation operations) or
remains the same (for addition operations). In practice, Gcompl output a feature map that can be used
to generate a RGB image (with ToRGB layers) or predict a read/write Filter (with ToFilter layers, see
Table 4).

Type Kernel Stride Output Shape
Upsample - - 512× 8 × 8
Skip - - 1024 (512)× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Upsample - - 512× 16 × 16
Skip - - 1024 (512)× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Upsample - - 512× 32 × 32
Skip - - 1024 (512)× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Upsample - - 512× 64 × 64
Skip - - 1024 (512)× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Upsample - - 512× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Skip - - 512 (256)× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Upsample - - 256× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Skip - - 256 (128)× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Upsample - - 128× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Skip - - 128 (64)× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Upsample - - 64× 1024 × 1024
Conv 3× 3 1× 1 32× 1024 × 1024
Skip - - 64 (32)× 1024 × 1024

Table 4: Left: The ToRGB layers that convert feature maps to RGB images. Right: ToFilter layers
that predict a read/write filter from feature maps.

Conv 3× 3 1× 1 32× 1024 × 1024
Conv 3× 3 1× 1 32× 1024 × 1024
Conv 1× 1 1× 1 3× 1024 × 1024

Conv 3× 3 1× 1 64× 1024 × 1024
Conv 3× 3 1× 1 64× 1024 × 1024
Conv 1× 1 1× 1 1× 1024 × 1024
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Table 5: Top: Feature Network F(·) computes a feature map for an input image, which is later used
by Dcls and Dattr; Middle: The real/fake head classifier Dcls; Bottom: The attribute network Dattr.
N is the length of an attribute vector. This network is only activated for the conditional model.

Type Kernel Stride Output Shape
Input Image - - 3× 1024× 1024
Conv 1× 1 1× 1 16× 1024× 1024
Conv 3× 3 1× 1 16× 1024× 1024
Conv 3× 3 1× 1 32× 1024× 1024
Downsample - - 32× 512 × 512
Conv 3× 3 1× 1 32× 512 × 512
Conv 3× 3 1× 1 64× 512 × 512
Downsample - - 64× 256 × 256
Conv 3× 3 1× 1 64× 256 × 256
Conv 3× 3 1× 1 128× 256 × 256
Downsample - - 128× 128 × 128
Conv 3× 3 1× 1 128× 128 × 128
Conv 3× 3 1× 1 256× 128 × 128
Downsample - - 256× 64 × 64
Conv 3× 3 1× 1 256× 64 × 64
Conv 3× 3 1× 1 512× 64 × 64
Downsample - - 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Conv 3× 3 1× 1 512× 32 × 32
Downsample - - 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Conv 3× 3 1× 1 512× 16 × 16
Downsample - - 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Conv 3× 3 1× 1 512× 8 × 8
Downsample - - 512× 4 × 4

Type Kernel Stride Output Shape
Conv 3× 3 1× 1 512× 4 × 4
Conv 4× 4 1× 1 1× 1 × 1

Type Kernel Stride Output Shape
Conv 3× 3 1× 1 512× 4 × 4
Conv 4× 4 1× 1 N × 1 × 1
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