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ABSTRACT

This paper presents noise type/position classification of various impact noises gen-
erated in a building which is a serious conflict issue in apartment complexes. For
this study, a collection of floor impact noise dataset is recorded with a single mi-
crophone. Noise types/positions are selected based on a report by the Floor Man-
agement Center under Korea Environmental Corporation. Using a convolutional
neural networks based classifier, the impact noise signals converted to log-scaled
Mel-spectrograms are classified into noise types or positions. Also, our model is
evaluated on a standard environmental sound dataset ESC-50 to show extensibility
on environmental sound classification.

1 INTRODUCTION

Some conflicts between residents originated from incorrect source localization by human hearing.
Also, correctly identifying noise types/locations is the first step for the noise reduction. Therefore,
noise type/position classification is a technique required to identify impact noise.

Various impact noises such as footstep and hammer hitting in a living space incur annoyance to
residents (Park et al., 2016). Chronic noise in a living space is a significant threat to resident’s
health (Park et al., 2017; Miedema, 2004). In some case, impact noise arises conflict between res-
idents. Since more than 60 % of the residential buildings in Korea are apartment housings (Shin
et al., 2015), the conflict has become serious social issue (Lee & Haan, 2011; Park et al., 2016). In
2012, the Korea government established the Floor Noise Management Center under Korea Environ-
ment Corporation affiliated with the Ministry of Environment (Floor-Noise-Management-Center,
2012) for impact noise identification and conflict mediation. The center has handled 119,500 civil
complaints of impact noise over 6 years (Floor-Noise-Management-Center, 2018).

There are several related works on noise reduction (Choi et al., 2004; Lee et al., 2014), annoyance
measurement (Park et al., 2016), and noise measurement (Jeon et al., 2006; Park et al., 2017). How-
ever, impact noise classification is studied only in our previous work (Anonymous-authors, 2018).
Our previous work studies classification of the impact noises using a convolutional neural networks
(CNN) based model. Our model classifies impact noise recordings into labeled categories. It shows
extensibility of CNN to impact noise classification. But, our model is evaluated on the limited data
generated on limited positions. And, the labels of dataset are categorized into noise type-position
combined form.

In order to improve our previous work, this study expands the previous work as follows. First,
1, 000 impact noise data is newly gathered on 10 more positions in the building. The new data is
set as test set to validate robustness of our model. Second, the classification problem is divided into
following two problems: noise type classification problem and position classification problem. This
form is considered as more adequate problem definition. Also, the number of samples per category
is increased which is expected to improve performance of our model. Third, our model is validated
on a standard environment sound dataset. This validation can show the extensibility of our model to
other problems.

We expect that this work can contribute to other fields. Expected fields are noise type/position
classification in a very complex structure, and environmental sound classification.
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2 IMPACT NOISE DATASET

Since a dataset for noise type/position classification of impact noise does not exist, we built an
impact noise dataset in our past work (Anonymous-authors, 2018). It is composed of audio clips
of impact noise recorded by a smartphone microphone (Samsung Galaxy S6). In this work, we
gathered impact noise data on 10 more postions (19 locations in total) in the building to expand the
dataset.

We planned dataset collection based on a report by the Floor-Noise-Management-Center (2018).
In the report, from 2012 to 2018, the center received 119,550 complaints from victims suffering
from impact noise. The center visited 28.1% of the victims to identify impact noise. 79.4% of the
complaints were caused by the upper floor residents and 16.3% of the complaints were by the lower
floor residents. Identified noise types are listed in the following order: footstep (71.0%), hammer-
ing (3.9%), furniture (3.3%), home appliances (vacuum cleaner, laundry machine, and television)
(3.3%), door (2.0%) and so on. Unidentified or unrecorded sources account for 10.1% of the to-
tal. Based on these results in the report, we focused on generation of impact noise on the upper
floor(3F) and the lower floor(1F). In addition to them, impact noises on the 2F(the middle floor) are
also recorded to check whether our model can distinguish the noise generated on this floor from the
noises on the other floors. Also, top four noise types which occupy 81.5% of the identified noise
types are selected.

Figure 1 illustrates noise(source)/receiver positions in the building for impact noise generation. 9
solid circles are selected (noise) positions for training and validation of a model. 10 circles in grid
pattern are (noise) positions not for training a model but for checking the limitation of the model.
Five noise types are selected to cover the top four noise types: a medicine ball dropped from 1.2 m
of height hitting the floor (MB), a hammer dropped from 1.2 m of height hitting the floor (HD),
hitting the floor with a hammer (HH), dragging a chair on the floor (CD), and a vacuum cleaner
(VC). Generating real footstep noise many times on every source position is challenging work.
Furthermore, it could hurt a person who generates the noise. Thus, usually, an impact ball (2.5 kg,
185 mm) or a bang machine (7.3 kg) is used to produce low frequency noise of footstep noise (Jeon
et al., 2006). Instead of using them, a medicine ball (2.0 kg, 200 mm) is used to produce the low
frequency noise. Since a laundry machine and a television are hard to transport and install at the
noise location, only vacuum cleaner is used to generate noise. VC is generated only on 2F because
vacuum cleaner noise on the upper floor and the lower floor are barely audible at the receiver position
in the building. Sampling frequency and sample duration are set as 44,100 Hz and approximately
5 s, respectively.

Table 1 is summary of the finalized impact noise dataset. It contains 2,950 floor impact noises in
total and they can be classified into 59 categories. Each category contains 50 recordings of floor
impact noise.

Figure 1: Noise(source)/receiver positions for generation of impact noise dataset.
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Table 1: Summary of the impact noise dataset (*The first row indicates X direction)
0m 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 12m

MB 50 50 50 50 50 50 50 50 50 50 50 50 50
HD 50 - - - - - 50 - - - - - 50
HH 50 50 50 50 50 50 50 50 50 50 50 50 503F

CD 50 - - - - - 50 - - - - - 50
MB 50 - - - - - 50 - - - - - 50
HD 50 - - - - - 50 - - - - - 50
HH 50 - - - - - 50 - - - - - 50
CD 50 - - - - - 50 - - - - - 50

2F

VC 50 - - - - - 50 - - - - - 50
MB 50 - - - - - 50 - - - - - 50
HD 50 - - - - - 50 - - - - - 50
HH 50 - - - - - 50 - - - - - 501F

CD 50 - - - - - 50 - - - - - 50

3 LEARNING IMPACT NOISE

In this section, we explain our noise type/position classifier for impact noise generated in a build-
ing. In Section 3.1, applications of CNN(convolutional neural networks) in audio area are briefly
reviewed. Noise type and position classifications are presented in details in Section 3.2.1 and Sec-
tion 3.2.2, respectively. In Section 3.3, our method is applied to classification of other standard
environment sound dataset (ESC-50) to examine that our method can be extended to environmental
sound classification problems.

3.1 CONVOLUTIONAL NEURAL NETWORKS IN AUDIO DOMAIN

CNN is well known for its remarkable performance than those of conventional machine learning
techniques in visual recognition tasks. CNN is also widely used in audio domain, such as environ-
mental sound classification (Piczak, 2015a; Salamon & Bello, 2017; Tokozume & Harada, 2017)
and music classification (Dieleman & Schrauwen, 2014; Lee & Nam, 2017; Lee et al., 2018). In-
put features of their models are time-frequency patch or raw waveform instead of using RGB color
space image. But, their design pattern is fundamentally same with that used in visual recognition
task which is composed of convolutional layers, pooling layers, and fully connected layers.

There are several works which employ a model for visual recognition task to audio domain. Hershey
et al. (2017) showed state-of-the-art models for visual recognition perform well on audio event clas-
sification. Amiriparian et al. (2017) employed VGG19 and AlexNet for snore sound classification.
Ren et al. (2018) employed VGG16 for phonocardiogram classification.

Usually, a CNN based model contains a large number of learnable parameters and its performance
is limited if dataset is small (Oquab et al., 2014). In such a situation, transfer learning, known
as a technique to improve the model performance, can be introduced (Van Den Oord et al., 2014;
Oquab et al., 2014; Marmanis et al., 2016; Soekhoe et al., 2016). The technique trains parameters
of networks on a training data in source task. In target task, the parameters are transferred and fine-
tuned on a target data. Pre-training of parameters in source task offers efficient learning because the
parameters are pre-initialized in the source task (Soekhoe et al., 2016). Amiriparian et al. (2017)
and Ren et al. (2018) pre-trained their models on ImageNet dataset and transferred the parameters
to models in target tasks. Although these studies are visual knowledge transfer, the models perform
well in audio domain.

3.2 CONVOLUTIONAL IMPACT NOISE NETWORKS

VGG16 by Simonyan & Zisserman (2014) is selected for this study instead of designing a new
network architecture. There are several reasons why we select the model as a baseline model in this
study. First, the model performs well in audio domain. In particular, the performance difference
between the state-of-the-art model is not large(at most 0.024 area under curve) in (Hershey et al.,
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Figure 2: Transferring pre-trained parameters. C and FC represent convolutional layer and fully
connected layer, respectively (Oquab et al., 2014).

2017). Second, its pre-trained parameters are accessible on Visual Geometry Group (VGG) website
and managed by the group.

Figure 2 illustrates the model used for this study. The impact noise dataset contains smaller samples
per category than a very large scale dataset. Therefore, this shortage of the dataset can limit perfor-
mance of our model for classification of noise type/position. In order to overcome the limitation,
pre-trained parameters by Simonyan & Zisserman (2014) on ImageNet are transferred to VGG16.
An adaption layer which reduces output dimension to the number of categories is added and all the
parameters of the model are fine-tuned on noise types or positions of the impact noises. We named
the model as VGG16-PRE.

All the impact noise signals are converted to log-scaled Mel-spectrograms using LibROSA(version
0.5.1) (McFee et al., 2015). Size of the log-scaled Mel-spectrogram is fixed to 224×224 by VGG16
whose input dimension is 224× 224× 3. Log-scaled Mel-spectrogram is obtained by the following
steps. s with time duration of 3 s is extracted from each recording in the dataset. The time duration
covers almost of floor impact noise duration. Event start in the metadata is referred for finding an
initial location of each recording. S is squared magnitude of short time Fourier transform of s using
2, 048 point fast Fourier transform (FFT), window size of 591, and hop size of 591. The window size
offers high time resolution of the time-frequency patch avoiding overlapping for the given input size
and the time duration. FS gives a Mel-spectrogram M , where F is a Mel-filter bank. Frequency
range of the Mel-filterbank is set as 0 − 22, 050 Hz. The Mel-spectrogram is converted to a log-
scaled Mel-spectrogram P = 10 logM/Mm, where Mm is the maximum element of M . Since
VGG16-PRE has 3 input channels, P is supplied to all the channels.

3.2.1 NOISE TYPE CLASSIFICATION

The impact noises are labeled into 5 noise types: MB, HD, HH, CD, and VC. Dimension of the
adaptation layer (FCa) is set as 5 and the pre-trained parameters are transferred to VGG16-PRE.
L2-regularization is applied to the last layer with penalty value of 0.01. VGG16-PRE is fine-tuned
on the impact noises whose number of recordings are not written italics in Table 1. We named this
dataset as TV-set(training and validation set). The others are not used for the fine-tuning but purely
used for testing the fine-tuned model. Since they are generated out of the positions used for fine-
tuning, it can be used for testing the robustness of noise type classification. We named this dataset
as TS-set(test set).

VGG16-PRE is evaluated using 5-fold cross validation. Usually, it is used for evaluating a model
when a dataset is small. Also, every model fine-tuned on k-th fold of TV-set is tested against TS-
set. The fine-tuning minimizes cross-entropy loss with logits using mini-batch gradient descent with
learning rate of 0.001 and mini-batch size of 30. The global mean value of the input channel is
changed to the mean of the training data. The parameters of VGG16-PRE are not frozen for all the
layers. A softmax classifier is employed. A model with the highest validation accuracy is saved
during 30 epochs of training on each fold. Validation accuracy on each fold of TV-set and test
accuracy on TS-set are measured, respectively.
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3.2.2 POSITION CLASSIFICATION

The impact noises in TV-set are labeled into 9 positions depending on their impact positions: 1F00m,
1F06m, 1F12m, 2F00m, 2F06m, 2F12m, 3F00m, 3F06m, and 3F12m, where the first two characters
represents floor and the followings are distance from the receiver position in X direction. One
unique point of position classification is that TS-set is composed of impact noises generated out of
the 9 positions used for fine-tuning. So, it is an interesting point that to observe classification of
TS-set into the 9 positions by a model fine-tuned on TV-set.

For fine-tuning a model, dimension of the adaptation layer (FCa) is set as 9 and the pre-trained
parameters are transferred to VGG16-PRE. The later steps including optimization and evaluation
methods are same with those in Section 3.2.1 except performance measurement on TS-set.

We suggest a performance test for position classification on TS-set as follows. Figure 3 illustrates
noise(source) positions on 3F where the impact noises are generated. Intuitively, two dashed lines
can divide the positions into three groups. These two dashed lines are assumed as virtual boundaries.
The impact noises generated on 3F3m and 3F9m are excluded in performance measurement because
they are on the boundaries. True label of an impact noise in TS-set is assumed as the closest position
in TV-set. For example, true label of an impact noise whose source position is 3F8m is assumed as
3F6m. Finally, test accuracy is measured using the assumed labels.

Figure 3: Source positions on 3F.

3.3 VALIDATION ON A STANDARD ENVIRONMENTAL SOUND DATASET

The impact noise can be considered as environmental sound. In this section, VGG16-PRE is evalu-
ated on a standard environmental sound dataset ESC-50 (Piczak, 2015b). Actually, this evaluation
is out of scope for impact noise identification. However, through the evaluation, VGG16-PRE can
be verified on a standard sound dataset. Also, robustness and extensibility of VGG16-PRE to envi-
ronmental sound classification can be shown.

ESC-50 is composed of 50 categories and each category contains 40 environmental sounds. ESC-
50 is pre-arranged into five folds for fair performance comparison. Time duration and sampling
frequency of each audio clip are 5 s and 44, 100 Hz, respectively. They are converted to log-scaled
Mel-spectrograms by the method in Section 3.2. Window size and hop size are set as 985 in order
to use all time range of audio clip avoiding overlapping.

VGG16-PRE is fine-tuned on each fold for 10 epochs. Mini-batch size and learning rate are set as
30 and 0.001, respectively. Also, validation accuracy is measured.

4 RESULTS AND DISCUSSIONS

4.1 NOISE TYPE CLASSIFICATION RESULTS

Table 2 shows accuracies of the noise type classifier on TV-set and TS-set. The first column of
the table represents dataset. The first row of the table represents noise types of the impact noises.
Validation accuracy on TV-set is measured as 99.7 %. Test accuracy on the TS-set is measured
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as 99.2 %. Since the classifier is trained only on the TV-set, test accuracy can be lower than the
validation accuracy.

One notable result is, for noise type classification, VGG16-PRE shows robustness on position
change. As shown in Table 1, impact positions used for generating the TS-set are out of those
used for TV-set generation, but the accuracy difference between the validation accuracy and test
accuracy is 0.5 %.

Table 2: Accuracy of noise type classifier on TV-set and TS-set
MB HD HH CD VC

TV-set 0.998 0.989 0.998 1.000 1.000
TS-set 0.992 - 0.992 - -

4.2 POSITION CLASSIFICATION RESULTS

Table 3 shows validation accuracy of the position classifier on TV-set. The first row of the table
represents the 9 positions used for generating the TV-set. The second row shows the corresponding
validation accuracies to the 9 positions. Average of the accuracies is 94.1 %. When the accuracies
are divided into 3 groups by floor, then validation accuracy on 1F is lower than that on 3F.

Table 3: Validation accuracy of source position classifier on TV-set
1F00m 1F06m 1F12m 2F00m 2F06m 2F12m 3F00m 3F06m 3F12m
0.900 0.875 0.940 1.000 0.956 0.976 0.940 0.915 0.970

Table 4 shows test accuracy of the position classifier on TS-set, where the first row represents the
true labels assumed in Section 3.2.2. The second row of the table shows the corresponding test
accuracies to the assumed true labels. Average of the accuracies is 69.6 %. Since positions of the
impact noises in TS-set are different from those in TV-set, the test accuracy can be lower than the
validation accuracy. If the position classification is changed to floor classification, then the test
accuracy is raised to 98.8 %.

Table 4: Test accuracy of position classification on TS-set
3F00m 3F06m 3F12m
0.816 0.556 0.854

Figure 4 shows confusion matrices drawn with the validation and the test results. The confusion
matrix at the left is drawn with the validation results. In the confusion matrix, the followings are
observed. Most of the errors are the misclassifications to neighboring positions on the same floor.
Especially, impact noises at X = 6 m are classified to the nearby locations. It is also observed in
Table 3.

The confusion matrix at the right is drawn with the test results. The true labels are separately
represented into two noise types: HH and MB, in order to observe the position classification to
noise types. The predicted labels are the true labels assumed in Section 3.2.2. The dotted lines
indicate a subset of the 9 positions used for training the model. When test accuracy is separately
calculated depending on noise type, test accuracies are 74.1 % for HH and 65.0 % for MB.

4.3 VALIDATION RESULTS ON A STANDARD ENVIRONMENT SOUND DATASET

On ESC-50 repository, evaluation results of other models designed for environmental sound classi-
fication are reported (Piczak, 2015a). Table 5 shows validation accuracies of our model on ESC-50
and the top-ranked models on ESC-50 repository. Our model shows 12.3 % higher validation accu-
racy than the best model Sailor et al. (2017). This experimental result supports that visual knowledge
transfer can be effective to environmental sound classification.
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Figure 4: (Left) Confusion matrix drawn with the validation results. (Right) Confusion matrix drawn
with the test results.

Table 5: Validation accuracy of models on ESC-50
Model Validation accuracy

VGG16-PRE 0.988
ConvRBM (Sailor et al., 2017) 0.865
EnvNet-v2 (Tokozume et al., 2017) 0.849
CNN pre-trained on AudioSet (Kumar et al., 2017) 0.835

Figure 5 shows confusions of VGG16-PRE on ESC-50. In the confusion matrix, confusions be-
tween ESC-50 categories can be observed. Also, validation accuracy to each category can be ob-
served. The most confusing category is engine. The categories of ESC-50 can be loosely rear-
ranged into 5 major categories: Animals, Natural soundscapes & water sounds, Human/non-speech
sounds, Interior/domestic sounds, and Exterior/urban noises. The most confusing major category
is Exterior/urban noises (validation accuracy is 97.6 %).

5 CONCLUSIONS

In this study, a convolutional neural networks based model is proposed for noise type/position clas-
sification of impact noise. An impact noise dataset is built for evaluation of our model. The dataset
is built based on a report by the Floor Management Center. The dataset is divided into a training-
validation set and a test set. The models for noise type and position classifications are separately
designed, but their architectures are fundamentally same except the dimension of the adaptation lay-
ers. VGG16 with an adaptation layer is employed for the tasks instead of designing a new model.
Since the impact noise dataset is small, parameters of VGG16 pre-trained on ImageNet are trans-
ferred to a model. All the parameters of the model are fine-tuned on noise types or positions. The
model shows 99.7 % of validation accuracy and 99.2 % of test accuracy for noise type classifica-
tion. For position classification, the model shows 94.1 % of validation accuracy and test accuracy of
69.6 %. If the position classification is changed to floor classification, then test accuracy is improved
to 98.8 %.

The model used for impact noise identification is evaluated on the ESC-50 to compare the evaluation
results with other state-of-the-art results. Validation accuracy of the model on ESC-50 is 98.8 %. It
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Figure 5: Confusions of VGG16-PRE on ESC-50.

is the best accuracy ever reported on ESC-50 repository. The result shows potential of the method
to environmental sound classification as well as impact noise classification.

Future works include impact noise generation at other buildings and apartment houses, and evalua-
tion of the model on another standard environmental sound dataset.
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