
Automated Knowledge Base Construction (2019) Conference paper

Scalable Rule Learning in Probabilistic Knowledge Bases

Arcchit Jain arcchit.jain@cs.kuleuven.be
KU Leuven

Tal Friedman tal@cs.ucla.edu
University of California, Los Angeles

Ondřej Kuželka ondrej.kuzelka@cs.kuleuven.be
KU Leuven

Guy Van den Broeck guyvdb@cs.ucla.edu
University of California, Los Angeles

Luc De Raedt luc.deraedt@cs.kuleuven.be

KU Leuven

Abstract

Knowledge Bases (KBs) are becoming increasingly large, sparse and probabilistic.
These KBs are typically used to perform query inferences and rule mining. But their
efficacy is only as high as their completeness. Efficiently utilizing incomplete KBs remains
a major challenge as the current KB completion techniques either do not take into account
the inherent uncertainty associated with each KB tuple or do not scale to large KBs.

Probabilistic rule learning not only considers the probability of every KB tuple but also
tackles the problem of KB completion in an explainable way. For any given probabilistic
KB, it learns probabilistic first-order rules from its relations to identify interesting patterns.
But, the current probabilistic rule learning techniques perform grounding to do probabilistic
inference for evaluation of candidate rules. It does not scale well to large KBs as the time
complexity of inference using grounding is exponential over the size of the KB. In this
paper, we present SafeLearner– a scalable solution to probabilistic KB completion that
performs probabilistic rule learning using lifted probabilistic inference – as faster approach
instead of grounding.

We compared SafeLearner to the State-of-the-art probabilistic rule learner ProbFOIL+

and to its deterministic contemporary AMIE+ on standard probabilistic KBs of NELL
(Never-Ending Language Learner) and Yago. Our results demonstrate that SafeLearner
scales as good as AMIE+ when learning simple rules and is also significantly faster than
ProbFOIL+.

1. Introduction

There is an increasing tendency to construct knowledge bases and knowledge graphs by
machine learning methods. As a result, knowledge bases are often incomplete and also
uncertain. To cope with uncertainty, one often resorts to probabilistic databases and logics
[Van den Broeck and Suciu, 2017, De Raedt et al., 2016], which take into account the prob-
ability of the tuples in the querying process. The most widely used probabilistic database
semantics is based on the tuple-independent probabilistic databases model, which assumes
that every tuple in every table of the database is independent of one another

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

To cope with incomplete knowledge bases, various researchers have used machine learn-
ing techniques to learn a set of rules that can be used to infer new tuples from the existing
ones, thereby completing the knowledge base [Betteridge et al., 2009]. This traditional
relational rule learning setting [Quinlan, 1990] has been extended to probabilistic logics
and databases by De Raedt et al. [2015]. However, the ProbFOIL approach of De Raedt
et al. suffers from one key limitation: It does not scale well to large databases due to the
grounding step, which results in an intractable probabilistic inference problem. The key
contribution of this paper is the introduction of the SafeLearner system which performs
two major tasks. 1) It uses lifted inference to avoid the grounding step and to improve
scaling. 2) It enhances a highly efficient rule generation system, AMIE+ [Galárraga et al.,
2015] to obtain deterministic candidate rules which are then made probabilistic using lifted
inference.

This paper is organized as follows. We introduce the background for this paper in
Section 2. We define, in Section 3, the problem of learning a set of probabilistic rules.
Sections 4 and 5 outline the idea behind the working of SafeLearner. Section 6 proposes
the algorithm for SafeLearner. In Section 7, we present an experimental evaluation in the
context of the NELL knowledge base [Betteridge et al., 2009]. An overview of related work
can be found in Section 8. Section 9 discusses future research directions and concludes.

2. Background

The notation used and definitions introduced in this section are largely adapted from the
work of Ceylan et al. [2016]. Throughout the paper, σ denotes a relational vocabulary,
consisting of a finite set of predicates or relations R, and a finite set of constants or en-
tities C. The Herbrand Base of σ is the set of all ground atoms, called σ-atoms, of the
form R(c1, ..., cn) with R ∈ R and ci ∈ C (that is, all tuples that can be constructed from
R and C). A σ-interpretation is a truth value assignment to all the σ-atoms, often repre-
sented as a set containing all the σ-atoms mapped to True. A relational database can be
seen as a σ-interpretation [Abiteboul et al., 1995]. Here, database relations correspond to
predicates and database tuples correspond to σ-atoms. The σ-atoms that are true in the
σ-interpretation are those that are listed in the database tables.

2.1 Queries

In databases (represented as σ-interpretations), query answering can be formalized as fol-
lows. A query is a first-order logic formula Q(x1, x2, . . . , xk) with free variables x1, x2, . . . ,
xk. The task of answering the query translates to finding the set of all substitutions [x1/t1,
x2/t2, . . . , xk/tk] such that ω |= Q[x1/t1, x2/t2, . . . , xk/tk]. The answer to a query Q w.r.t.
a database ω is denoted as Ans(Q,ω).

Example 1 Consider the database consisting of Tables 1, 2 and 3 and the query Q1(x) =
location(x,mit) ∧ coauthor(x, fred). Then the answer to the query Q consists of the fol-
lowing substitutions: [x/alice] and [x/dave]. In general, queries may also contain vari-
ables bound by existential or universal quantifiers. For instance, if we have the query
Q2(z) = ∃x, y. location(z, x) ∧ coauthor(z, y), which asks for researchers from the database

Scalable Rule Learning in Probabilistic Knowledge Bases

researcher paper P
bob plp 0.9
carl plp 0.6
greg plp 0.7
ian db 0.9

harry db 0.8

Table 1: author/2

researcher university P
edwin harvard 1.0
fred harvard 0.9
alice mit 0.6
dave mit 0.7

Table 2: location/2

researcher researcher P
alice edwin 0.2
alice fred 0.3
bob carl 0.4
bob greg 0.5
bob harry 0.6
bob ian 0.7
carl greg 0.8
carl harry 0.9
carl ian 0.8
dave edwin 0.7
dave fred 0.6

edwin fred 0.5
greg harry 0.4
greg ian 0.3
ian ian 0.2

Table 3: coauthor/2

that are located at some university and are coauthors with someone, then the answer con-
sists of the substitutions [z/edwin], [z/alice] and [z/dave].

A Boolean query is a query with fully quantified variables. A conjunctive query (CQ)
is a negation-free first-order logic conjunction with all variables either free or bound by an
existential quantifier. A union of conjunctive queries (UCQ) is a disjunction of conjunctive
queries. We mainly work with UCQs in this paper.

Conjunctive queries may also be expressed using Prolog notation [Clocksin and Mellish,
1981]. For instance, the rule R(z) :– location(z, x), coauthor(z, y). represents the query Q2

from Example 1. Here, R(z) is called head of the rule1 and location(z, x), coauthor(z, y)
is called the body. The rule is understood as defining tuples of a new table R that, in
this case, contains all tuples [t] where [z/t] ∈ Ans(∃x, y. location(z, x) ∧ coauthor(z, y), ω).
Thus, variables not occurring in the head of the rule correspond to existentially quantified
variables in the respective conjunctive query. In Prolog notation, UCQs are represented as
a collection of rules with the same relation in the head. For a given set of rules representing
a UCQ, we denote prediction set as the union of its respective answer sets.

2.2 Probabilistic Databases (PDBs)

A database D is said to be a PDB if its every tuple has an assigned probability value.
Mathematically, A PDB D, for a vocabulary σ, is a finite set of tuples of the form 〈t, p〉,
where t is a σ-atom and p ∈ [0, 1]. Moreover, if 〈t, p〉 ∈ D and 〈t, q〉 ∈ D, then p = q. Each
PDB for the vocabulary σ induces a unique probability distribution over σ-interpretations ω:

PD(ω) =
∏
t∈ω

PD(t)
∏
t/∈ω

(1− PD(t)), (1)

1. The choice for the relation R (/∈ R) was arbitrary here.

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

where

PD(t) =

{
p if 〈t, p〉 ∈ D
0 otherwise.

Example 2 Tables 1, 2 and 3 form a PDB with 3 relations: coauthor/2, author/2 and
location/2.

Furthermore, the probability of any Boolean query Q w.r.t. a PDB D is

PD(Q) =
∑
ω|=Q

PD(ω). (2)

Example 3 For the Boolean query Q3 = coauthor(bob, carl) we can read off the probability
PD(Q3) = 0.4 directly from Table 3. On the other hand, the probability of query Q4 =
∃x. coauthor(bob, x)∧ coauthor(carl, x) cannot be read directly from any table and requires
probabilistic inference. Directly using Equation 2, we get PD(Q4) = 0.879. Intuitively, Q3

asked about the probability that bob and carl are co-authors, whereas Q4 asked about the
probability that bob and carl have a common co-author.

2.3 Lifted Inference

A query plan is a sequence of database operations (namely join, projection, union, selec-
tion and difference) that are executed to do exact probabilistic inference for a query [Van
den Broeck and Suciu, 2017]. Extensional query plans are query plans under the tuple-
independence assumption. Extensional query plans can be used to compute probabilities
of queries over probabilistic databases. However, not all queries have an extensional query
plan that can be used to compute their probabilities correctly. Those for which such a
correct extensional query plan exists are called safe queries. Hence, safe queries can be
evaluated in time polynomial in the size of the database (data complexity). In general, for
every UCQ, the complexity of evaluating it on a probabilistic database is either PTIME
(safe queries) or #P-complete in the size of the database [Dalvi and Suciu, 2012]. The
algorithms with PTIME data complexity are also called lifted inference algorithms. In this
work, we exploit the lifted inference algorithm of LiftOR which is an extension of the LiftR

algorithm [Gribkoff et al., 2014]. The LiftOR algorithm exploits the structure of a query and
uses a divide and conquer approach to calculate its probability.

2.4 Probabilistic Rules

When we have a probabilistic database and a collection of Prolog rules defining a relation
R, the relation R becomes a random variable.2 The relation R does no longer have to
be representable as a tuple-independent table, though. Additionally, one may enlarge the
set of probability distributions over tuples of R that can be modelled by Prolog rules by
introducing auxiliary probabilistic tables, not originally present in the database and using
them in the rules. In this way, one can think of Prolog rules as a model of a distribution

2. Here we use the term “random variable” in a broad sense; similarly as we may have matrix-valued
random variables, we may also have random variables that represent database relations.

Scalable Rule Learning in Probabilistic Knowledge Bases

rather than only as a way to query a pre-existing probabilistic database. This is illustrated
by the next example.

Example 4 As an example, let us consider again the database that is listed in Tables 1, 2
and 3 and a rule R(x, y) :– coauthor(x, y). Suppose that we introduce a new probabilistic
relation A(x, y) with all possible σ-atoms A(t1, t2) having the same probability p and replace
the original rule by R(x, y) :– coauthor(x, y),A(x, y). By changing the parameter p we can
now decrease the probabilities of the σ-atoms R(t1, t2).

We use the following notation as syntactic sugar for probabilistic rules. We write
p :: R(x, y) :– coauthor(x, y) to denote R(x, y) :– coauthor(x, y),AR,i(x, y) where we set
PD[AR,i(t1, t2)] = p for all tuples (t1, t2) and where i is an identifier of the respective
rule. For rules with variables appearing in the body but not in the head, such as p ::
R(x, y) :– author(x, z), author(y, z), the auxiliary relation’s arguments range only over the
variables in the head; that is for the considered rule we would have R(x, y) :– author(x, z),
author(y, z), AR,i(x, y). This restriction is necessary in order to keep the resulting rules sim-
ple enough so that lifted inference could still be used, i.e. we want to avoid the introduction
of rule’s probabilistic weights to result in creating unsafe queries from safe ones. Moreover,
since we will only be querying probability of individual (ground) tuples, it will be possible
to create the relation AR,i(x, y) always on the fly to contain just one tuple.

As mentioned above, relations defined using probabilistic rules do not have to be tuple-
independent. Since the main intended application of the present work is to be able to fill
in missing probabilistic tuples into tuple-independent probabilistic databases, we introduce
the following operation, denoted Ind(R), which produces a tuple-independent relation R′

from a given relation R by simply assigning marginal probabilities to the individual tuples.
We may notice that when R is defined using probabilistic rules and deterministic relations,
i.e. relations where every tuple has probability either 0 or 1, then R = Ind(R). This can
also be seen as materializing views to tuple-independent tables.

3. Problem Specification

We aim to learn probabilistic rules from a given PDB D and a target relation, target. We
call E the set of the tuples, of target, present in D. We could interpret the set of these
probabilistic training examples E as defining a distribution over deterministic training sets
in the same way as a probabilistic database represents a distribution over deterministic
databases. Then, given a probabilistic database, during training we search for a collection
of probabilistic rules so that we would obtain a good model for the data.

Example 5 Consider a set of examples for a relation supervisor: E = {〈[greg, carl], 0.8〉,
〈[edwin, fred], 0.4〉} for the database from Tables 1, 2, 3. The task is then to find rules that
define the relation supervisor using the relations author, location and coauthor. For instance,
one such, not particularly optimal, model could be 0.1 :: supervisor(x, y) :– coauthor(x, y).

What we will call a good model, depends on the context (in the next section, we consider
different loss functions which could lead to different ways to score the learned probabilistic
models). Moreover, what is deemed a good model also depends on the assumptions about
the way the training tuples were obtained and on what we assume about the tuples that

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

are not present in the set of training examples. We now describe the problem Statement
formally as follows.

Given: PDB D, a target relation target

Find: A set of probabilistic rules called H = {h1, h2, . . . , hn} with target in the head of
each rule such that cross entropy loss (cf. Equation 3) is minimum over all target tuples inD.

SafeLearner addresses the above Stated problem heuristically using two main components.
1) A structure learning component that generates candidate rules — a larger set of rules
that subsumes H. 2) A parameter learning component that optimizes weights of these rules
thus effectively also performing selection of these rules as a result. We present each of these
components in Sections 4 and 5 respectively before explaining the algorithm of SafeLearner
in Section 6.

4. Structure Learning

Most relations of KBs have binary relations and we restrict ourselves to it. In order to learn
structure in this specified problem setting, we learn deterministic candidate rules. This
method of structure learning without considering the parameters pH is simpler than the case
when the structure and parameters are learned jointly. But this method is followed keeping
in mind that the parameters are tuned later. We use AMIE+ for generating candidate rules.
It is a highly efficient rule generation system for mining deterministic rules from KBs. It
uses a language bias (constraints on the form of mined rules) to mine the rules from a
vast search space. Compared with a naive support-based confidence score [Agrawal et al.,
1993], it uses a more involved scoring function. By confidence, we refer to the confidence
score used by AMIE+, throughout the rest of the paper. A rule is output when it satisfies
some properties [Galárraga et al., 2015], its confidence score surpasses a specified confidence
threshold, and improves over the confidence scores of all its parents.

4.1 Generating Candidate Rules

Since AMIE+ expects deterministic input, we have to first generate a deterministic database
from the given probabilistic database and the given training set. This may be achieved ei-
ther directly by sampling from the database or by keeping only tuples that have probabilities
over some threshold. The rationale behind this simple approach is as follows. Let us suppose
that the training data was generated by directly sampling from a model consisting of a prob-
abilistic database together with some probabilistic rules. Suppose that the rules contained
the rule 0.7 :: author(a, p) :– author(b, p), supervisor(a, b). We may then reasonably expect
that a deterministic rule learner, such as AMIE+, will be able to find the respective deter-
ministic rule since its confidence should be on average at least 0.7 on datasets sampled form
the data-generating model. At least on a heuristic level, this justifies using a deterministic
rule learner for finding candidate rules. Ideally, this intermediate deterministic step wanes
the predictive performance in comparison to the case where candidates could be obtained
on the probabilistic tuples [De Raedt et al., 2015] but this slight decrease in performance is
compensated by the improvement in the scalability provided by AMIE+. Unless specified
otherwise by the user, SafeLearner uses AMIE+ restricted to rules with two atoms in the

Scalable Rule Learning in Probabilistic Knowledge Bases

body. Then, the algorithm selects k rules with highest confidence as the candidates, where
k is a parameter of the algorithm, and checks if the resulting rule set correspond to a safe
UCQ. If the UCQ is not safe, it removes the minimal number of lowest-confidence candidate
rules that make the resulting UCQ safe. Finally, we add a rule for the target relation that
has an empty body. Whenever this rule has non-zero probabilistic weight, all the possible
tuples will have non-zero probability (this turns out to be important for avoiding infinite
cross entropy scores).

5. Parameter Learning

Since we are learning a distribution over databases, the natural choice is to measure the
likelihood of the model consisting of the learned rules given the training data. However, our
training datasets are also probabilistic themselves. Thus, we need to measure how ‘close’
the learned distributions are to the distributions of the training data. This is typically
measured by the KL divergence. Another way to look at this problem is by asking what
the likelihood would be given the data sampled from the training distribution. This is an
expectation of likelihood, or cross entropy, which turns out, is equivalent to KL divergence
(up to a constant) when we assume both independence of the tuples and independence of
the predictions (i.e. we replace the target relation R by its materialization R′ = Ind(R)).
This can be seen as follows. First, let us assume that the training examples are complete,
that is, the training set E contains all possible tuples ti and their respective probabilities
pi. Then, we can write the expected log-likelihood of the model given the training examples
as follows. Let T be the set of all possible tuples. For every i ∈ {1, . . . , |T|}, let Ti be a
Bernoulli random variable corresponding to the i-th training example 〈ti, pi〉 ∈ E such that
P [Ti = 1] = pi. Next let qi denote the probability assigned by the model to the tuple ti.
Then we may write the expected log-likelihood as

E

log

∏
ti∈T

q
1(Ti=1)
i · (1− qi)1(Ti=0)

 =
∑

〈ti,pi〉∈E

(pi log qi + (1− pi) log (1− qi)) (3)

where the expectation is over the samples of the probabilistic database (here represented
by the variables Ti). This is the same as cross entropy, except for the sign. Hence, what we
need to minimize is indeed cross entropy.

5.1 Estimating Losses from Incomplete Training Data

Naturally, in most realistic cases, access to probabilities of all the possible tuples is limited.
We introduce two distinct settings that lead to a different way of treating tuples that are
outside the training set.

5.1.1 Learning Models for the Whole Database

In the first setting, we assume that our goal is to learn a probabilistic model for the whole
database. Since most domains will be sparse, we may assume that a majority of the tuples
(over elements of the given domain) will have some very small probability γtarget, possibly
zero. When estimating the loss of a set of rules Q (here represented as a UCQ), we need

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

to split the possible target tuples (Cartesian product of sets of constants of all the entities
constituting the target) into three categories:

1. target tuples contained in the training set, also denoted by the set of examples E.

2. possible target tuples outside E that lie in the answer of Q′ (i.e. in Ans(Q′)), where
Q′ contains all the rules in Q with non-empty bodies. These are all the target tuples
outside E that have at least one grounded proof in the training data. In other words,
these tuples can be inferred from the training data by the rules in Q′.

3. the remaining possible target tuples. These tuples are neither present in the training
data nor can these be inferred from the training data by the rules in Q′.

The estimate of the loss is then obtained as the sum of estimates of these three losses.
Estimating the first and second component of the loss is straightforward. To speed it up,
we estimate the second component only on a sample of the tuples of the second category (as
there may often be significantly more tuples in this category than in the first one). Similarly,
it is not difficult to estimate the third component of the loss because it only depends on
the probability of the rule with empty body and all tuples in this third category have the
same estimated probability.

We will denote by E, E2, E3 the sets of sampled tuples for categories 1, 2 and 3,
respectively. The weights of tuples in E2 and E3 are calculated corresponding to the inverse
of the subsampling ratio. For example, if we sample 5000 tuples out of a possible set of
100000, we assign a weight of 20 to each of the sampled tuples. Tuples in E2 are assigned
a weight w2 and tuples in E3 are assigned w3.

5.1.2 Learning Models for Subsets of Database

In the second setting, which is closer to the setting considered in De Raedt et al. [2015],
we assume that our task is not to obtain a good model for the whole database. Instead,
we assume that there is a distribution that generates probabilistic tuples for which we,
then, need to predict the probability with which these tuples hold. It is important to
stress that the distribution that generates the tuples is not the distribution that we need
to model. As emphasized by De Raedt et al. [2015], one may also see this setting as a
probabilistic extension of the PAC-learning framework [Valiant, 1984], and, in particular,
of its probabilistic extension [Kearns and Schapire, 1994]. It emerges that, in this setting,
we can ignore tuples that are not in the training set. An instance where this setting is
natural is, for example, automatic construction of knowledge bases from text or other non-
structured source where we need to learn rules to estimate probability with which the tuples
suggested by the construction process really hold. In contrast to the previous setting, we
do not use the rules to predict anything about any ‘new’ tuples.

5.2 Probabilistic Inference and Weight Learning

To our best knowledge, Slimshot [Gribkoff and Suciu, 2016] was the first lifted inference
engine developed in 2016 that also performed approximate probabilistic inference for unsafe
queries using sampling. We used its latest version [Gribkoff, 2017] with the LiftOR algorithm
and extended it so that it could not only do numeric exact inference for safe queries but

Scalable Rule Learning in Probabilistic Knowledge Bases

could also do it in a symbolic setting. In our implementation, it returns the probability of
a query (constructed from H) as a closed-form function of the rule probabilities.

Once we have a set of candidate rules H, we need to learn its rule weights pH . For this,
we first need to predict probabilities of all target tuples with respect to H and compute the
loss. We begin this process by converting H into a UCQ Q. But, before calling Slimshot
for lifted inference on the whole query, we first break down the query to independent sub-
queries such that no variable is common in more than one sub-query. Then, we perform
inference separately over it and later unify the sub-queries to get the desired result.

5.3 Initialization of rule weights (pH)

SafeLearner initializes the probabilistic weights of the rules and sets them equal to their
confidences estimated from the training data. The confidence of a rule is an empirical
estimate of the conditional probability of the rule’s head being true given its body is true. In
other words, for any rule hi in H, its probability phi

is initialized as the classical conditional
probability of P(head = True|body = True).

phi
=
|Prediction set of rule hi ∩E|
|Prediction set of rule hi |

Lastly, we perform Stochastic Gradient Descent (SGD) to optimize the rule weights.

6. SafeLearner

In this section, we describe the SafeLearner system that tackles the problem Statement
defined in the preceding section. As its input, SafeLearner obtains a probabilistic database
and a target relation and returns a set of probabilistic rules for the target relation. Safe-
Learner learns only safe rules for which inference has polynomial-time data complexity. It
consists of two main components: a structure learning component that generates candidate
rules and a parameter learning component that optimizes weights of these rules (and as a
result also effectively performs selection of these rules).

6.1 Algorithm

Algorithm 1 outlines the working of SafeLearner3. Similar to ProbFOIL, the algorithm takes
input a PDB D and a target relation as a Problog file. The input file could also specify the
type constraints among the relations, if any. Also, the choice of the loss function (which is
cross-entropy by default) could be given as a parameter. Once D is parsed from the input
file, all the tuples are separated with their probabilities and are given as input to AMIE+
(cf. 4.1). In line 3, the deterministic rules that are output by AMIE+ are searched for type
consistency and are put together as H — a hypothesis of deterministic candidate rules.
Further, in lines 4 - 5, we initialize the probability phi

(cf. 5.3) for every candidate rule hi.
Once the probabilities are embedded in the rules, we now have H as a set of probabilistic
candidate rules. To make our learned rules extensible to all the possible target tuples, we
sample more target tuples in line 6 as explained in 5.1.1. In line 7, we formulate a UCQ

3. Full paper with appendices, and SafeLearner code is available at https://github.com/arcchitjain/

SafeLearner/tree/AKBC19

https://github.com/arcchitjain/SafeLearner/tree/AKBC19
https://github.com/arcchitjain/SafeLearner/tree/AKBC19

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

Algorithm 1 SafeLearner – Main Algorithm
1: Input: PDB D, target
2: E := Set of all target tuples in D
3: H := Set of all the type consistent and significant (deterministic) rules from AMIE+ using D

with target in head
4: Initialize probability phi

for each rule hi in H
5: Embed rule probabilities pH = {ph1

, ph2
, . . . , phn

} in H
6: Sample target tuples in E2 and E3 and compute their respective sampling weights w2 and w3

7: Q := QueryConstructor(H) . Q is safe
8: for i in range(0, MaxIterations) do
9: Randomly select an example e from all the target examples E ∪ E2 ∪ E3

10: y := ProbabilityPredictor(Q, e) . y is a function of pH
11: if e ∈ E then
12: x := actual probability of e from E
13: Compute cross-entropy loss for e using x, y with sampling weight := 1
14: else if e ∈ E2 then
15: Compute cross-entropy loss for e using x := 0 and y with sampling weight := w2

16: else if e ∈ E3 then
17: Compute cross-entropy loss for e using x := 0 and y with sampling weight := w3

18: Get gradient of cross-entropy loss at current pH
19: Update pH
20: Remove rules with insignificant rule weights from H
21: return H

Algorithm 2 QueryConstructor – Constructs query from a hypothesis H of rules
1: Q := “”
2: for (target, body) in H do . Read a new rule with target as head
3: if Q = “” then
4: Q′ := body
5: else
6: Q′ := Q +“ ∨ ” + body . Add body as a disjunction to existing Q

7: try
8: p := SlimShot(Q′) . SlimShot returns an error if a query is unsafe
9: Q = Q′ . Update Q to Q′ as Q′ is a safe query

10: catch Unsafe Query Error . SlimShot throws this error if input query is unsafe
11: continue . Don’t include this rule’s body as it makes Q unsafe
12: end try

13: return Q

Q from all the probabilistic candidate rules in H (cf. Algorithm 2) Lines 8 - 19 are the
heart of this algorithm which use SGD on the loss function, to learn the rule probabilities
pH . In line 10, for every randomly selected example e, a closed-form function is generated
w.r.t Q that evaluates to the predicted probability of e for every specified values of pH (cf.
Algorithm 3 and Appendix D) . Lastly, in line 20, we prune H by removing any rule from
it whose probability has diminished very close to 0 (below a predefined tolerance value).

System Architecture SafeLearner is written in Python 2.7 and it relies on Postgres 9.4
as its underlying database management system. It also requires Java for running AMIE+.

Scalable Rule Learning in Probabilistic Knowledge Bases

Algorithm 3 ProbabilityPredictor – Predicts probability of a UCQ Q for an example e
1: Input: Query Q, Example e
2: Instantiate the head variables in Q w.r.t. the constants in e
3: if Number of disjuncts in Q = 1 then . Q cannot be disintegrated to smaller sub-queries
4: return SlimShot(Q) . Return the probability of the full query Q
5: else
6: DisjunctList := list of all the disjuncts of Q
7: Merge different disjuncts in DisjunctList using disjunctions if they have a common relation
8: prob := 1.0
9: for SubQuery in DisjunctList do

10: p = SlimShot(SubQuery) . Predict probability of SubQuery for e
11: prob = prob ∗ (1− p) . Unify the probabilities of all the sub-queries

12: return 1− prob

7. Experiments

We empirically address the following two crucial questions experimentally: 1. How does
SafeLearner compare against related baselines? 2. How well does SafeLearner scale-up?

7.1 How does SafeLearner compare against related baselines?

Dataset: Just like De Raedt et al. [2015], we use the sports subset of NELL KB.4 For the
850th iteration, it comprises of 8840 probabilistic tuples for the 8 relations mentioned in
Appendix A. For a newer iteration (1110), it contains 14234 tuples for the same 8 relations.

Experimental Setup: We investigate the prediction of target tuples from other relations.
This is motivated by the problem of predicting tuples that are missing from the database.
Here, we aim to learn a set of rules that could be used to predict target from the other
relations. For learning the rules, we select the same iteration of NELL that was used by
De Raedt et al. [2015] for ProbFOIL+ (850). For testing, we use the latest iteration (1110)
that was available at the time of this experiment. For the correct validation of models, we
removed all the tuples from the test data which were present in the training data.

Baselines: The baselines we compare SafeLearner to are the following:

1. ProbFOIL+: We use the probabilistic rules learned on the NELL knowledge base
that were reported by De Raedt et al. [2015]. We were not able to run ProbFOIL+ in
the same way as SafeLearner because ProbFOIL+ does not scale to large databases.
This is mostly because ProbFOIL+ does not use lifted inference.5

The remaining two baselines use the same sets of deterministic rules obtained using AMIE+:

2. Deterministic rules: For this baseline, all rules are used with weights set to 1.
The rationale for this baseline is to find out to what extent the probabilistic weights
influence the predictions on unseen data. We note that even when the rules are

4. NELL KB is available at http://rtw.ml.cmu.edu/rtw

5. On the other hand, this also means that ProbFOIL+ can in theory find more complex rule sets as it does
not have to restrict itself to rule sets that result in safe (i.e. liftable) queries.

http://rtw.ml.cmu.edu/rtw

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

deterministic, the other tuples in the database are often still probabilistic. Hence,
even with deterministic rules, one needs to rely on probabilistic inference.

3. Probabilistic rules with confidence scores as probabilistic weights: Although,
in general, the probabilistic weights of rules are not equal to the conditional probabil-
ities of the head being true given the body is true (i.e. confidence scores), we want to
assess how much worse the probabilistic predictions will be if we set the probabilistic
weights equal to confidence scores estimated on the training data. This baseline is
labeled as ‘SafeLearner - without learning’.

Hyper-parameters: For our experiments, we set the minimum confidence threshold to
= 10−5. The sample size of both E1 and E2 were specified to be equal to E. SGD was run
with 104 iterations with learning rate parameter = 10−5.

Results: We measured cross entropy (cf. Figure 1) and precision-recall (PR) curves (cf.
Figure 2) on the test set. For cross entropy, the best results were consistently obtained
by SafeLearner which means that the models obtained by SafeLearner were able to provide
best estimates of probabilities of the unseen test-set tuples. This is not surprising given that
SafeLearner is the only one of the evaluated baseline methods that optimizes a loss function
that is a proper scoring rule. Interestingly, the differences were much smaller for the PR
curves. This suggests that, at least on our datasets, obtaining ranking of tuples based on
predicted probabilities, but not the actual probabilities, can be quite reliably done already
by models that are not very precise when it comes to predicting the actual probabilities.

35
6,

37
8

37,991

16,660

1,
63

3,
62

6

46,306

25,283

7,590

36,157

24,391

35,309

14,937

7,354

35,689

14,526

7,335
4,666

1,736
6,139

0

10000

20000

30000

40000

50000
AthletePlaysForTeam AthletePlaysSport AthletePlaysInLeague TeamPlaysSport TeamPlaysInLeague

C
ro

ss
 E

nt
ro

py

ProbFOIL+ Deterministic Rules from AMIE+ SafeLearner - without Learning SafeLearner - with Learning

Figure 1: SafeLearner has better cross entropy than its baselines

7.2 How well does SafeLearner scale-up?

Datasets: This question attempts to test and stretch the limits of SafeLearner by mea-
suring its scalability. We emperically show that SafeLearner scales on the latest iteration
of full database of NELL (iteration:1115) with 233,000 tuples and 426 relations. It can also
scale up to the standard subset of Yago 2.4 6 with 948,000 tuples and 33 relations. (For

6. Yago is available at http://yago-knowledge.org/

http://yago-knowledge.org/

Scalable Rule Learning in Probabilistic Knowledge Bases

0.0 0.2 0.4 0.6 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

AthletePlaysForTeam

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

Pr
ec

is
io

n

AthletePlaysSport

0.00 0.25 0.50 0.75 1.00
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

AthletePlaysInLeague

ProbFOIL +

Deterministic Rules from AMIE+
SafeLearner - without learning
SafeLearner - with learning

0.0 0.2 0.4 0.6 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

TeamPlaysSport

0.05 0.10 0.15
Recall

0.0

0.2

0.4

0.6

0.8

Pr
ec

is
io

n

TeamPlaysInLeague

Figure 2: Precision-Recall Curves for 5 relations in NELL Sports Dataset

Yago 2.4, the confidence in the collection of a relation was considered to be the probability
of all the tuples of that relation.)

KB target relation
No. of target No. of rules

Runtime
tuples learned

NELL AthletePlaysForTeam 1687 3 1 hour 11 minutes
NELL AthletePlaysSport 1959 5 2 hours 8 minutes
NELL AthletePlaysInLeague 1310 5 1 hour 34 minutes
NELL TeamPlaysSport 355 5 5 hours 16 minutes
NELL TeamPlaysInLeague 1354 5 3 hours 1 minute
YAGO IsCitizenOf 14554 4 2 hours 25 minutes

Table 4: SafeLearner is able to scale-up to large scale KBs

Results: From Table 4, it can be easily seen that although SafeLearner suffers in runtime
when it learns more rules, it is able to scale to more than 14000 target tuples (in case of
Yago:IsCitizenOf) in relatively lesser time as it learns fewer rules. It would also depend upon
how complex the learned rules are. The actual rules learned by SafeLearner are mentioned
in the Appendix B. To resolve this trade-off between runtime and number of rules, we could
also specify the maximum number of rules to learn as part of the input parameters.

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

8. Related Work and Discussion

The work presented in this paper advances the works [De Raedt et al., 2015, Dylla and
Theobald, 2016] that also studied learning in the probabilistic database setting.7 But com-
pared with these previous works, we rely on lifted inference, which allows our approach to
scale to much larger databases. Both of the previous approaches only use tuples from a
given training set but do not take into account the behavior of the model on tuples not
in the training set. This is problematic because, unless the training set is really large,
these previous methods do not distinguish models that predict too many false positives (i.e.
models that give too high probability to too many tuples outside the training set). This
becomes an issue especially in sparse domains (and most real domains are indeed sparse).

Our work is also closely related to the literature on learning from knowledge bases such
as NELL within statistical relational learning (SRL), including works that use Markov logic
networks [Schoenmackers et al., 2010], Bayesian logic programs [Raghavan et al., 2012] and
stochastic logic programs [Lao et al., 2011, Wang et al., 2014]. A disadvantage of many of
these methods is that the learned parameters of the models can not be interpreted easily,
which is particularly an issue for Markov logic networks where the weight of a rule cannot
be understood in isolation from the rest of the rules. In contrast, the learned weights of
probabilistic rules in our work, and also in the other works relying on probabilistic databases
[De Raedt et al., 2015, Dylla and Theobald, 2016], have a clear probabilistic interpretation.

Parameter Learning with Different Losses Cross entropy is not the only loss function
that may be considered for learning the parameters of probabilistic rules. Here, we discuss
two additional loss functions that have already been used for the same or similar tasks in the
literature: squared loss [Dylla and Theobald, 2016] and a probabilistic extension of accuracy
[De Raedt et al., 2015]. Whereas cross entropy and squared loss belong among so-called
proper scoring rules [Gneiting and Raftery, 2007] and, thus, reward estimates of probabilities
that match the true probability, this is not the case for probabilistic accuracy. Moreover,
each of these functions also relies on additional assumptions such as mutual independence of
the examples’ probabilities as well as mutual independence of the predictions, although this
is not mentioned explicitly in the respective works [Dylla and Theobald, 2016, De Raedt
et al., 2015]. Below, we briefly discuss squared loss and probabilistic accuracy.

Squared Loss (Brier Score) As before, let pi denote the probability of the i-th example
and qi the probability of the respective prediction. Then, the squared loss, which is a proper
scoring rule, is: Lsq = 1

|E|
∑
〈ti,pi〉∈E pi(1−qi)

2+(1−pi)q2i . Minimizing Lsq is also equivalent

to minimizing the loss L′sq = 1
E

∑
〈ti,pi〉∈E (pi − qi)2 which was among others used in [Dylla

and Theobald, 2016] for learning probabilities of tuples in PDBs.

Probabilistic Accuracy De Raedt et al. (2015) define probabilistic extension of accu-
racy and other measures of predictive quality such as precision and recall. Their version of
probabilistic accuracy is Accprob = 1− 1

|E|
∑
〈ti,pi〉∈E |pi − qi| . Unlike the other two discussed

loss functions, probabilistic accuracy is not a proper scoring rule as the next example illus-

7. Strictly speaking, the work [De Raedt et al., 2015] was framed within the probabilistic logic programming
setting. However, probabilistic logic programming systems, such as Problog [Fierens et al., 2015], can
be seen as generalizations of probabilistic databases.

Scalable Rule Learning in Probabilistic Knowledge Bases

trates, however, it has other convenient properties (cf. De Raedt et al. [2015] for details).

Example 6 Let the set of domain elements in the database be C = {alice, bob, eve}. Next,
let E = {〈[alice], 0〉, 〈[bob], 1〉, 〈[eve], 1〉} be the set of training examples for the relation
smokes and let us have the rule p :: smokes(X) :– true. Then, maximizing probabilistic
accuracy on E yields p = 1, whereas optimizing both cross entropy and squared loss would
yield p = 2/3, which is the probability that a randomly selected person in C smokes.

9. Conclusions

We proposed a probabilistic rule learning system, named SafeLearner, that supports lifted
inference. It first performs structure learning by mining independent deterministic can-
didate rules using AMIE+ and later executes joint parameter learning over all the rule
probabilities. SafeLearner extends ProbFOIL+ by using lifted probabilistic inference (in-
stead of using grounding). Therefore, it scales better than ProbFOIL+. In comparison with
AMIE+, it is able to jointly learn probabilistic rules over a probabilistic KB unlike AMIE+
which only learns independent deterministic rules (with confidences) over a deterministic
KB. We experimentally show that SafeLearner scales as good as AMIE+ when learning
simple rules. Trying to learn complex rules leads to unsafe queries which are not suitable
for lifted inference. But lifted inference helps SafeLearner in outperforming ProbFOIL+

which does not scale to NELL Sports Database without the help of a declarative bias.
A few limitations of SafeLearner are as follows: 1) It cannot learn complex rules that

translate to an unsafe query. 2) It cannot use rules within the background theory. 3) It can-
not learn rules on PDB with numeric data (without assuming them as discrete constants).

The main contributions of SafeLearner are presented as follows. Firstly, it accomplishes
probabilistic rule learning using a novel inference setting as it is the first approach that
uses lifted inference for KB completion. Secondly, unlike ProbFOIL+, SafeLearner scales
well on the full database of NELL with 233,000 tuples and 426 relations as well as on the
standard subset of Yago 2.4 with 948,000 tuples and 33 relations. Thirdly, SafeLearner is
faster than ProbFOIL+ because of the following three factors: 1) it disintegrates longer
complex queries to smaller simpler ones, 2) it caches the structure of queries before doing
inference and 3) it uses lifted inference to infer on those simple queries. The first two factors
of query disintegration and memoization are discussed in Appendix D in further detail.

In future, this work could be advanced further to eliminate its shortcomings. In partic-
ular, a prominent direction of advancement would be to extend probabilistic rule learning
to open-world setting of which the LiftOR algorithm [Ceylan et al., 2016] is capable.

Acknowledgements

The authors express their sincere regards to Anton Dries and Sebastijan Dumanc̆ić for their
invaluable input, and the reviewers for their useful suggestions. This work has received
funding from the European Research Council under the European Union’s Horizon 2020
research and innovation programme (#694980 SYNTH: Synthesising Inductive Data Mod-
els), from the various grants of Research Foundation - Flanders, NSF grants #IIS-1657613,
#IIS-1633857, #CCF-1837129, NEC Research, and a gift from Intel.

Jain, Friedman, Kuželka, Van den Broeck, & De Raedt

References

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the logical
level. Addison-Wesley Longman Publishing Co., Inc., 1995.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, Washington, DC, USA, May 26-28, 1993.,
pages 207–216, 1993. doi: 10.1145/170035.170072. URL http://doi.acm.org/10.1145/

170035.170072.

Justin Betteridge, Andrew Carlson, Sue Ann Hong, Estevam R. Hruschka Jr., Edith L. M.
Law, Tom M. Mitchell, and Sophie H. Wang. Toward never ending language learning. In
Learning by Reading and Learning to Read, Papers from the 2009 AAAI Spring Sympo-
sium, Technical Report SS-09-07, Stanford, California, USA, March 23-25, 2009, pages 1–
2, 2009. URL http://www.aaai.org/Library/Symposia/Spring/2009/ss09-07-001.

php.

İsmail İlkan Ceylan, Adnan Darwiche, and Guy Van den Broeck. Open-world probabilistic
databases. In Principles of Knowledge Representation and Reasoning: Proceedings of the
Fifteenth International Conference, KR 2016, pages 339–348, 2016.

W. F. Clocksin and Chris Mellish. Programming in Prolog. Springer, 1981. ISBN
0387110461. URL http://www.worldcat.org/oclc/07811708.

Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of con-
junctive queries. Journal of the ACM (JACM), 59(6):30, 2012.

Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and Mathias Verbeke. In-
ducing probabilistic relational rules from probabilistic examples. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
pages 1835–1843, 2015.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical Rela-
tional Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2016.

Sebastijan Dumancic, Alberto Garćıa-Durán, and Mathias Niepert. On embeddings as
an alternative paradigm for relational learning. CoRR, abs/1806.11391, 2018. URL
http://arxiv.org/abs/1806.11391.

Maximilian Dylla and Martin Theobald. Learning tuple probabilities. CoRR,
abs/1609.05103, 2016. URL http://arxiv.org/abs/1609.05103.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann,
Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic
logic programs using weighted boolean formulas. Theory and Practice of Logic Program-
ming, 15(3):358–401, 2015.

http://doi.acm.org/10.1145/170035.170072
http://doi.acm.org/10.1145/170035.170072
http://www.aaai.org/Library/Symposia/Spring/2009/ss09-07-001.php
http://www.aaai.org/Library/Symposia/Spring/2009/ss09-07-001.php
http://www.worldcat.org/oclc/07811708
http://arxiv.org/abs/1806.11391
http://arxiv.org/abs/1609.05103

Scalable Rule Learning in Probabilistic Knowledge Bases

Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining
in ontological knowledge bases with AMIE+. VLDB J., 24(6):707–730, 2015. doi: 10.
1007/s00778-015-0394-1. URL https://doi.org/10.1007/s00778-015-0394-1.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association, 102(477):359–378, 2007.

Eric Gribkoff. Safesample. https://github.com/UCLA-StarAI/slimshot, 2017.

Eric Gribkoff and Dan Suciu. Slimshot: In-database probabilistic inference for knowledge
bases. PVLDB, 9(7):552–563, 2016. doi: 10.14778/2904483.2904487. URL http://www.

vldb.org/pvldb/vol9/p552-gribkoff.pdf.

Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. Understanding the complexity of
lifted inference and asymmetric weighted model counting. In Proceedings of the Thirtieth
Conference on Uncertainty in Artificial Intelligence, UAI 2014, pages 280–289, 2014.

Michael J Kearns and Robert E Schapire. Efficient distribution-free learning of probabilistic
concepts. Journal of Computer and System Sciences, 48(3):464–497, 1994.

Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning in a
large scale knowledge base. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 529–539. Association for Computational Linguistics,
2011.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

Sindhu Raghavan, Raymond J Mooney, and Hyeonseo Ku. Learning to read between the
lines using bayesian logic programs. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1, pages 349–358. As-
sociation for Computational Linguistics, 2012.

Stefan Schoenmackers, Jesse Davis, Oren Etzioni, and Daniel S. Weld. Learning first-order
horn clauses from web text. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2010, 9-11 October 2010, MIT Stata Center,
Massachusetts, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages
1088–1098, 2010.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

Guy Van den Broeck and Dan Suciu. Query processing on probabilistic data: A survey.
Foundations and Trends in Databases, 7(3-4):197–341, 2017. URL https://doi.org/

10.1561/1900000052.

William Yang Wang, Kathryn Mazaitis, and William W Cohen. Structure learning via
parameter learning. In Proceedings of the 23rd ACM International Conference on Con-
ference on Information and Knowledge Management, pages 1199–1208. ACM, 2014.

https://doi.org/10.1007/s00778-015-0394-1
https://github.com/UCLA-StarAI/slimshot
http://www.vldb.org/pvldb/vol9/p552-gribkoff.pdf
http://www.vldb.org/pvldb/vol9/p552-gribkoff.pdf
https://doi.org/10.1561/1900000052
https://doi.org/10.1561/1900000052

	Introduction
	Background
	Queries
	Probabilistic Databases (PDBs)
	Lifted Inference
	Probabilistic Rules

	Problem Specification
	Structure Learning
	Generating Candidate Rules

	Parameter Learning
	Estimating Losses from Incomplete Training Data
	Learning Models for the Whole Database
	Learning Models for Subsets of Database

	Probabilistic Inference and Weight Learning
	Initialization of rule weights (pH)

	SafeLearner
	Algorithm

	Experiments
	How does SafeLearner compare against related baselines?
	How well does SafeLearner scale-up?

	Related Work and Discussion
	Conclusions
	NELL Sports Dataset at 850th iteration
	Rules learned in Experiment 2
	How well does ProbFOIL+ scale-up in comparison to SafeLearner?
	How much does different components of SafeLearner boost its runtime?
	For KB completion, how does the Statistical Relational Learning (SRL) based approach of SafeLearner compare against Knowledge Graph Embeddings (KGE) based approaches?

