
Under review as a conference paper at ICLR 2017

SEQUENCE TO SEQUENCE TRANSDUCTION WITH
HARD MONOTONIC ATTENTION

Roee Aharoni & Yoav Goldberg
Computer Science Department
Bar-Ilan University
Ramat-Gan, Israel
{roee.aharoni,yoav.goldberg}@gmail.com

ABSTRACT

We present a supervised sequence to sequence transduction model with a hard
attention mechanism which combines the more traditional statistical alignment
methods with the power of recurrent neural networks. We evaluate the model on
the task of morphological inflection generation and show that it provides state of
the art results in various setups compared to the previous neural and non-neural
approaches. Eventually we present an analysis of the learned representations for
both hard and soft attention models, shedding light on the features such models
extract in order to solve the task.

1 INTRODUCTION

Neural sequence to sequence transduction became a prominent approach to natural language pro-
cessing tasks like morphological inflection generation (Faruqui et al., 2016) and automatic summa-
rization (Rush et al., 2015) among others. A common way to improve the vanilla encoder-decoder
framework for sequence to sequence tasks is the (soft) attention mechanism (Bahdanau et al., 2014)
which enables the decoder to attend at specific elements in the encoded sequence, overcoming the
issues in encoding very long sequences to a single vector.

It was also shown that the attention mechanism effectively learns an alignment between the input
and the output sequences which is naturally found in the data, and practically learns this alignment
to attend at the relevant elements of the input. However, in many NLP tasks like automatic translit-
eration or morphological inflection generation, the data is roughly monotonically aligned – meaning
the ability of the soft attention model to attend at the entire input sequence may be sub-optimal for
such tasks, while also requiring a relatively large amount of training examples which is not always
available (especially for morphologically rich, low resource languages).

There have been several works on neural sequence transduction with monotonic assumptions. One
approach is to train an alignment-aware RNN-based transducer which is composed of two indepen-
dent RNN’s – one over the input sequence and one over the output sequence. The output distribution
is computed by feeding a pair of aligned RNN states through an MLP, where the alignment is de-
fined by null symbols in the output (Graves, 2012) or by a parameterized transition probability (Yu
et al., 2016). In both cases training is performed by marginalizing over all possible alignments using
a forward-backward procedure. This approach lacks an attention mechanism, as a dependency be-
tween the input and output RNN’s would make the inference intractable. Other related approaches
employ modifications to the soft-attention mechanism, like attending on a fixed sized window over
the input sequence (Jaitly et al., 2015) or ”smoothing” and ”sharpening” the soft-attention weight
distribution in different manners (Chorowski et al., 2015). These works are motivated by the need to
attend over the very long input sequences found in speech recognition. We suggest that for shorter
input sequences like the characters of a word in natural language, a simple, hard attention mecha-
nism over the elements of a bi-directional encoder may be sufficient.

More traditional approaches to monotonic sequence transduction in the NLP literature were hand-
engineered finite state transducers (FST) (Koskenniemi, 1983; Kaplan & Kay, 1994) which relied
on expert knowledge, or weighted finite state transducers (Mohri et al., 1997; Eisner, 2002) which
combined expert knowledge with data-driven parameter tuning. While the FST approaches may

1

Under review as a conference paper at ICLR 2017

work well even on small datasets due to their engineered structure, it may be cumbersome to use
them while conditioning on the entire output history as it requires a very large set of states, resulting
in a model conditioning only on the last predicted output symbol (Rastogi et al., 2016).

We propose a model which handles the above issues by directly modeling a monotonic alignment
between the input and output sequences which is used to perform hard attention. The model consists
of an encoder-decoder neural network with a dedicated control mechanism: in each step, the decoder
is fed with a single attended input state and either writes a symbol to the output sequence or advances
the attention pointer to the next input state from the bi-directionally encoded sequence, as described
visually in Figure 1.

This modeling suits the natural monotonic alignment between the input and output very well, as
the network learns to attend at the relevant inputs before writing the output which they are aligned
to. A bi-directional encoder together with the hard attention mechanism enables to condition on the
entire input sequence, as each element in the input is represented using a concatenation of a forward
LSTM and a backward LSTM over the input sequence. Since each element representation is aware
of the entire context, non-monotone relations are also captured, which is important in tasks where
segments in the output sequence are a result of long range dependencies in the input sequence. The
recurrent nature of the decoder, together with a dedicated feedback connection that passes the last
prediction to the next decoder step explicitly, enables the model to also condition on the entire output
history at each prediction step. The hard attention mechanism allows the network to jointly align
and transduce while using a focused representation at each step, rather then the weighted sum of
representations used in the soft attention model. A simple training procedure using independently
learned alignments enables training the network with correct alignments from the first gradient-
based update, using a convenient cross-entropy loss.

To evaluate our model, we perform extensive experiments on three previously studied datasets for the
morphological inflection generation task, which involves generating a target word (e.g. “härtestem”,
the German word for “hardest”), given a source word (e.g. “hart”, the German word for “hard”) and
the morpho-syntactic attributes of the target (POS=adjective, gender=masculine, type=superlative
etc.). Several studies showed that inflection generation is beneficial for phrase-based machine trans-
lation (Chahuneau et al., 2013) and more recently for neural machine translation (Garcı́a-Martı́nez
et al., 2016). We show that while our model is on par or better than the previous neural and non-
neural state-of-the-art models on the task, it is also performing significantly better for very small
training sets, being the first neural model to surpass the performance of a weighted FST model with
latent variables specifically tailored for the task (Dreyer et al., 2008). Finally, we analyze and com-
pare our model and the soft attention model, showing how they function very similarly with respect
to the alignments and representations they learn, in spite of our model being much simpler.

2 THE HARD ATTENTION MODEL

2.1 MOTIVATION

We would like to transduce the input sequence, x1:n ∈ Σ∗x into the output sequence, y1:m ∈ Σ∗y ,
where Σx and Σy are the input and output vocabularies, respectively. Imagine a machine with read-
only, random access to the encoding of the input sequence, and a single pointer that determines the
current read location. We can then model the sequence transduction as a series of write operations
and pointer movement operations. In the case where the alignment between the sequences is mono-
tonic, the pointer movement can be controlled by a single “move one step forward” operation (step)
which we add to the output vocabulary. We implement this behavior using an encoder-decoder neu-
ral network, with a control mechanism which determines in each step of the decoder whether it is
time to predict an output symbol or promote the attention pointer the next element of the encoded
input.

2.2 MODEL DEFINITION

In prediction time, we seek the output sequence y1:m ∈ Σ∗y , for which:

y1:m = arg max
y′

p(y′|x1:n, f) (1)

2

Under review as a conference paper at ICLR 2017

Where: x ∈ Σ∗x is the input sequence and: f = {f1, ..., fm} is a set of features influencing the
transduction task (for example, in the inflection generation task these would be the desired morpho-
syntactic features of the output sequence). Since we want our model to force a monotonic alignment
between the input and the output, we instead look for a sequence of actions: s1:q ∈ Σ∗s , where:
Σs = Σy ∪{step}. This sequence is the step/write action sequence required to go from x1:n to y1:m
according to the monotonic alignment between them. In this case we define:

s1:q = arg max
s′

p(s′|x1:n, f) = arg max
s′

∏
s′i∈s′

p(s′i|s′0...s′i−1, x1:n, f) (2)

We can then estimate this using a neural network:

s1:q = arg max
s′

NN(x1:n, f,Θ) (3)

Where the network’s parameters Θ are learned using a set of training examples. We will now
describe the network architecture.

Figure 1: The hard attention network architecture. A round tip expresses concatenation of the
inputs it receives. The attention is promoted to the next input element once a step action is
predicted.

2.3 NETWORK ARCHITECTURE

Notation We use bold letters for vectors and matrices. We treat LSTM as a parameterized function
LSTMθ(x1...xn) mapping a sequence of input vectors x1...xn to a an output vector hn.

Encoder For every element in the input sequence: x1:n = x1...xn, we take the corresponding
embedding: ex1 ...exn , where: exi ∈ RE . These embeddings are parameters of the model which
will be learned during training. We then feed the embeddings into a bi-directional LSTM encoder
(Graves & Schmidhuber, 2005) which results in a sequence of vectors: x1:n = x1...xn, where each
vector: xi = [LSTMforward(ex1

, ex2
, ...exi

),LSTMbackward(exn
, exn−1

...exi
)] ∈ R2H is a

concatenation of the forward LSTM and the backward LSTM outputs when fed with exi
.

Decoder Once the input sequence is encoded, we feed the decoder RNN, LSTMdec, with three
inputs at each step:

1. The current attended input, xa ∈ R2H , initialized with the first element of the encoded
sequence, x1.

2. A set of feature embeddings that influence the generation process, concatenated to a single
vector: f = [f1...fm] ∈ RF ·m.

3. yi−1 ∈ RE , which is the embedding of the predicted output symbol in the previous decoder
step.

Those three inputs are concatenated into a single vector zi = [xa, f ,yi−1] ∈ R2H+F ·m+E , which
is fed into the decoder, providing the decoder output vector: LSTMdec(z1...zi) ∈ RH . Finally, to

3

Under review as a conference paper at ICLR 2017

model the distribution over the possible actions, we project the decoder output to a vector of |Σŷ|
elements, followed by a softmax layer:

p(si = cj) = softmax j(R · LSTMdec(z1...zi) + b) (4)

Control Mechanism When the most probable action is step, the attention is promoted so xa con-
tains the next encoded input representation to be used in the next step of the decoder. This process
is demonstrated visually in Figure 1.

2.4 TRAINING THE MODEL

For every example: (x1:n, y1:m, f) in the training data, we should produce a sequence of step and
write actions s1:q to be predicted by the decoder, which is dependent on the alignment between
the input and the output – the network must attend at all the input elements aligned to an output
element before writing it. While recent work in sequence transduction advocate jointly training the
alignment and the decoding (Bahdanau et al., 2014; Yu et al., 2016), we instead show that in our
case it is worthwhile to decouple these stages and learn the hard alignment before hand, using it to
guide the training of the encoder-decoder network and enabling the use of correct alignments for
the attention mechanism from the beginning of the network training process. For that purpose, we
first run a character level alignment process on the training data. We use the character alignment
model of Sudoh et al. (2013) which is based on a Chinese Restaurant Process which weights single
alignments (character-to-character) in proportion to how many times such an alignment has been
seen elsewhere out of all possible alignments. Specifically, we use the implementation provided by
the organizers of the SIGMORPHON2016 shared task.1 Once we have the character level alignment
per input-output sequence pair in the training set, we deterministically infer the sequence of actions
s1:q that results in the desired output by attending at all the input elements aligned to an output
element (using the step action) before writing it. We then train the network to predict this sequence
of actions by using a conventional cross entropy loss function per example:

L(x1:n, y1:m, f,Θ) = −
∑

sj∈s1:q

log softmax j(R · LSTMdec(z1...zi) + b) (5)

3 EXPERIMENTS

We perform extensive experiments with three previously studied morphological inflection generation
datasets to evaluate our hard attention model in various settings. In all experiments we report the
results of the best performing neural and non-neural baselines which were previously published
on those datasets to our knowledge. The implementation details for the models are available in the
supplementary material section of this paper. The source code for the models is available on github.2

CELEX In order to examine if our model fits the task, we first evaluate it on a very small dataset
to see if it avoids the tendency to overfit on few training examples. For this purpose we report exact
match accuracy on the German inflection generation dataset compiled by Dreyer et al. (2008) from
the CELEX database (Baayen et al., 1993). The dataset includes only 500 training examples for each
of the four inflection types: 13SIA→13SKE, 2PIE→13PKE, 2PKE→z, and rP→pA which we refer
to as 13SIA, 2PIE, 2PKE and rP, respectively.3 We compare our model to three competitive baselines
that reported results on this dataset: the Morphological Encoder-Decoder (MED) of Kann & Schütze
(2016b) which is based on the soft-attention model of Bahdanau et al. (2014), the neural-weighted
FST of Rastogi et al. (2016) which uses stacked bi-directional LSTM’s to weigh its arcs (WFST),
and the model of Dreyer et al. (2008) which uses a weighted FST with latent-variables structured
particularly for morphological string transduction tasks (LAT). Following previous reports on this
dataset, we use the same data splits as Dreyer et al. (2008), dividing the data for each inflection type
into five folds, each consisting of 500 training, 1000 development and 1000 test examples. We train
a separate model for each fold and report exact match accuracy, averaged over the five folds.

1https://github.com/ryancotterell/sigmorphon2016
2https://github.com/roeeaharoni/morphological-reinflection
3The acronyms stand for: 13SIA=1st/3rd person, singular, indefinite, past;13SKE=1st/3rd person, subjunc-

tive, present; 2PIE=2nd person, plural, indefinite, present;13PKE=1st/3rd person, plural, subjunctive, present;
2PKE=2nd person, plural, subjunctive, present; z=infinitive; rP=imperative, plural; pA=past participle.

4

https://github.com/ryancotterell/sigmorphon2016
https://github.com/roeeaharoni/morphological-reinflection

Under review as a conference paper at ICLR 2017

Wiktionary To neutralize the negative effect of very small training sets on the performance of
the different learning approaches, we also evaluate our model on the dataset created by Durrett &
DeNero (2013), which contains up to 360k training examples per language. It was built by extract-
ing Finnish, German and Spanish inflection tables from Wiktionary, used in order to evaluate their
system based on string alignments and a semi-CRF sequence classifier with linguistically inspired
features. We also used the expansion made by Nicolai et al. (2015) to include French and Dutch
inflections as well. Their system also performs an align-and-transduce approach, extracting rules
from the aligned training set and applying them in inference time with a proprietary character se-
quence classifier. In addition to those systems we also compare to the results of the recent neural
approaches of Faruqui et al. (2016), which did not use an attention mechanism, and Yu et al. (2016),
which coupled the alignment and transduction tasks, requiring a beam search decoding procedure.

SIGMORPHON As different languages show different morphological phenomena, we also ex-
periment with how our model copes with this variety using the morphological inflection dataset
from the SIGMORPHON2016 shared task (Cotterell et al., 2016). Here the training data consists
of ten languages, with five morphological system types (detailed in Table 3): Russian (RU), Ger-
man (DE), Spanish (ES), Georgian (GE), Finnish (FI), Turkish (TU), Arabic (AR), Navajo (NA),
Hungarian (HU) and Maltese (MA) with roughly 12,800 training and 1600 development examples
per language. We compare our model to two soft attention baselines on this dataset: MED (Kann &
Schütze, 2016a), which was the best participating system in the shared task, and our implementation
of the global (soft) attention model presented by Luong et al. (2015).

4 RESULTS

Table 1: Results over the CELEX dataset

13SIA 2PIE 2PKE rP Avg.
MED 83.9 95 87.6 84 87.62
WFST 86.8 94.8 87.9 81.1 87.65
LAT 87.5 93.4 87.4 84.9 88.3
Hard 85.8 95.1 89.5 87.2 89.44

On the low resource setting (CELEX), our model significantly outperforms both the recent neural
models of Kann & Schütze (2016b) and Rastogi et al. (2016) and the morphologically aware latent
variable model of Dreyer et al. (2008), as detailed in Table 1. It is also, to our knowledge, the first
model that surpassed in overall accuracy the latent variable model on this dataset. We explain our
advantage over the soft attention model by the ability of the hard attention control mechanism to
harness the monotonic alignments found in the data, while also conditioning on the entire output
history which wasn’t available in the FST models. Figure 2 plots the train-set and dev-set accuracies
of the soft and hard attention models as a function of the training epoch. While both models perform
similarly on the train-set (with the soft attention model fitting it slightly faster), the hard attention
model performs significantly better on the dev-set. This shows the soft attention model’s tendency
to overfit on the small dataset, as it has significantly more parameters and modeling power and is
not enforcing the monotonic assumption of the hard attention model.

Table 2: Results over the Wiktionary datasets

DE-N DE-V ES-V FI-NA FI-V FR-V NL-V Avg.
DDN13 88.31 94.76 99.61 92.14 97.23 98.80 90.50 94.47
NCK15 88.6 97.50 99.80 93.00 98.10 99.20 96.10 96.04
FTND16 88.12 97.72 99.81 95.44 97.81 98.82 96.71 96.34
YBB16 87.5 92.11 99.52 95.48 98.10 98.65 95.90 95.32
Hard 88.87 97.35 99.79 95.75 98.07 99.04 97.03 96.55

On the large training set experiments (Wiktionary), our model is the best performing model on
German verbs, Finnish nouns/adjectives and Dutch verbs, resulting in the highest reported average
accuracy across all the inflection types when compared to the four previous neural and non-neural
state of the art baselines, as detailed in Table 2. This shows the robustness of our model also with
large amounts of training examples, and the advantage the hard attention mechanism provides over
the encoder-decoder approach of Faruqui et al. (2016) which does not employ an attention mech-

5

Under review as a conference paper at ICLR 2017

anism. Our model is also significantly more accurate than the model of Yu et al. (2016), showing
the advantage in using independently learned alignments to guide the network’s attention from the
beginning of the training process.

Table 3: Results over the SIGMORPHON 2016 morphological inflection dataset. The
text above each language lists the morphological phenomena it includes: circ.=circumfixing,
agg.=agglutinative, v.h.=vowel harmony, c.h.=consonant harmony

suffixing+stem changes circ. suffixing+agg.+v.h. c.h. templatic
RU DE ES GE FI TU HU NA AR MA Avg.

MED 91.46 95.8 98.84 98.5 95.47 98.93 96.8 91.48 99.3 88.99 95.56
Soft 92.18 96.51 98.88 98.88 96.99 99.37 97.01 95.41 99.3 88.86 96.34
Hard 92.21 96.58 98.92 98.12 95.91 97.99 96.25 93.01 98.77 88.32 95.61

As can be seen in Table 3, on the SIGMORPHON 2016 dataset our model performs better than both
soft-attention baselines for the suffixing+stem-change languages (Russian, German and Spanish)
and is slightly less accurate than our implementation of the soft attention model on the rest of the
languages, which is now the best performing model on this dataset to our knowledge.

We explain this by looking at the languages from a linguistic typology point of view, as detailed
in Cotterell et al. (2016). Since Russian, German and Spanish employ a suffixing morphology
with internal stem changes, they are more suitable for monotonic alignment as the transformations
they need to model are the addition of suffixes and changing characters in the stem. The rest of
the languages in the dataset employ more context sensitive morphological phenomena like vowel
harmony and consonant harmony, which require to model long range dependencies in the input
sequence which better suits the soft attention mechanism. While our implementation of the soft
attention model and MED are very similar model-wise, we hypothesize that our soft attention results
are better due to the fact that we trained the model for 100 epochs and picked the best performing
model on the development set, while the MED system was trained for a fixed amount of 20 epochs
(although trained on both train and development data).

0 20 40

0

0.5

1

epoch

ac
cu

ra
cy soft-train

hard-train
soft-dev
hard-dev

Figure 2: Learning curves for the soft and
hard attention models on the first fold of the
CELEX dataset

Figure 3: A comparison of the alignments
as predicted by the soft attention (left) and
the hard attention (right) models on examples
from the CELEX dataset.

5 ANALYSIS

5.1 COMPARISON OF LEARNED ALIGNMENTS

In order to see if the alignments our model predict fit the monotonic alignment structure found in
the data, and are they more suitable for the task when compared to the alignments found by the soft
attention model, we examined alignment predictions of the two models from the CELEX dataset,
depicted in Figure 3. First, we notice the alignments found by the soft attention model are also
monotonic, encouraging our modeling approach for the task. We also notice how our model learns to
handle morphological phenomena like deletion, as can be seen on the right part of Figure 3, showing

6

Under review as a conference paper at ICLR 2017

the alignments for the inflection: legte→lege. This inflection requires the model to delete the fourth
character of the input sequence. We can see the model learned to delete by reading and writing
each character until it reaches the t character, which is deleted by performing two consecutive step
operations. Another notable morphological transformation is the one-to-many alignment, found on
the example in the left: flog→fliege, where the model needs to transform a character in the input,
o, to two characters in the output, ie. We can see the model learns to do this by performing two
consecutive write operations after the step operation of the relevant character to be replaced. We also
notice that in this case, the soft attention model performs a slightly different alignment by aligning
the character i to o and the character g to the sequence eg, which is not the expected alignment in
this case from a linguistic point of view.

5.2 LEARNED REPRESENTATIONS ANALYSIS

Figure 4: SVD dimension reduction to
2D of 500 character representations in
context from the encoder, for both the
soft attention (top) and the hard atten-
tion (bottom) models. Colors indicate
which character is encoded.

Figure 5: SVD dimension reduction to
2D of 500 character representations in
context from the encoder, for both the
soft attention (top) and hard attention
(bottom) models. Colors indicate the lo-
cation of the character.

When witnessing the success of the hard and soft attention models in sequence to sequence trans-
duction, the following questions arise: how does the models manage to learn monotonic alignments?
perhaps the network learns to encode the sequential position as part of its encoding of an input el-
ement? In an attempt to answer those questions, we performed the following analysis. We took
500 continuous character representations in context from each model, where every representation
is a vector in R200 which is the output of the bi-LSTM encoder of the model. Every vector of this
form carries information of a specific character with its context. We perform dimension reduction
to reduce those two sets of vectors, each set in: R500×200 into: R500×2 using SVD. We then plot the
2D character-in-context representations and color them in two ways. First, we color the 2D repre-
sentations by the characters they represent, where we have different color for each character in the
alphabet (Figure 4). In the second plot we color the representations by the location of the character
they represent in the input sequence: here blue implies the character is closer to the beginning of the
sequence and red implies it is closer to the end (Figure 5).

7

Under review as a conference paper at ICLR 2017

We can see that while both models tend to cluster similar character representations together (Figure
4), the hard attention model tends to have more dense character clusters. This is explained by look-
ing at the location information in Figure 5: while both models encode the positional information to
some extent, this information is much more pronounced in the soft-attention mechanism, where the
X dimension correlates very strongly with the position information. It seems that the soft-attention
mechanism encourages the encoder to encode positional information in its representation. In con-
trast, our hard-attention model has other means of obtaining the position information in the decoder
using the step actions, and indeed does not encode it as strongly in the continuous representations.
This behavior allows it to perform well even with fewer examples, as the location information is
represented in the network training phase implicitly using the step actions.

6 RELATED WORK

Previous works on neural sequence transduction include the RNN Transducer (Graves, 2012) which
uses two independent RNN’s over monotonically aligned sequences to compute a probability over
the possible output symbols in each step, including a null symbol. The model by Yu et al. (2016)
improves this approach by replacing the null symbol with a learned transition probability. Both
models are trained using a forward-backward approach, marginalizing over all possible alignments.
Our model differs from the above by learning the alignments independently, which enables a depen-
dency between the encoder and decoder - the hard attention mechanism. This provided improved
results while also greatly simplifying the model training, enabling learning through simple cross-
entropy loss. Jaitly et al. (2015) proposed the Neural Transducer model for online speech recogni-
tion, which is also trained on external alignments, similarly to our approach. They divide the input
into blocks of a constant size and perform soft attention separately on each block when predicting
the output symbols. Lu et al. (2016) used a combination of an RNN encoder together with a CRF
layer to model the dependencies in the output sequence. A line of work on attention based speech
recognition Chorowski et al. (2015); Bahdanau et al. (2016) proposed two relevant improvements to
the vanilla attention mechanism: The first adds location awareness by using the previous attention
weights when computing the next ones, and the second prevents the model from attending on too
many or too few inputs using ”sharpening” and ”smoothing” techniques on the soft-attention weight
distributions.

For the morphological inflection task, previous approaches usually make use of manually con-
structed Finite State Transducers (Koskenniemi, 1983; Kaplan & Kay, 1994), which require expert
knowledge, or machine learning methods (Yarowsky & Wicentowski, 2000; Dreyer & Eisner, 2011;
Durrett & DeNero, 2013; Hulden et al., 2014; Ahlberg et al., 2015; Nicolai et al., 2015) with spe-
cific assumptions about the set of possible processes that are needed to create the output sequence,
requiring feature engineering. More recently, Faruqui et al. (2016) used encoder-decoder neural net-
works for the task, encoding the input sequence into a vector and decoding it one character at a time
into the output sequence. Kann & Schütze (2016a;b) explored the soft attention model proposed for
machine translation (Bahdanau et al., 2014) which gave the best results in the SIGMORPHON 2016
shared task (Cotterell et al., 2016). Another notable contribution is the work on weighting finite
state transducers with neural context (Rastogi et al., 2016). There, the arcs of an FST are scored
by optimizing a global loss function over all the possible paths in the state graph while modeling
contextual features with bi-directional LSTM’s.

7 CONCLUSION

We presented the hard attention model for sequence to sequence transduction of monotonically
aligned sequences and evaluated it on the well-studied task of morphological inflection generation.
The model employs an explicit alignment model learned independently in training time which is
used to teach a neural network to perform both alignment and transduction when decoding with a
hard attention mechanism. We showed that our model performs better or on par with more complex
soft attention and neural transduction models on various morphological inflection datasets, forming
a new state of the art on the CELEX dataset and the Wiktionary dataset and outperforming the best
system in the SIGMORPHON2016 inflection generation task. Future work may include experiment-
ing with different external alignment methods, or applying the model to other tasks which require a
monotonic align-and-transduce approach like abstractive summarization or transliteration.

8

Under review as a conference paper at ICLR 2017

REFERENCES

Malin Ahlberg, Markus Forsberg, and Mans Hulden. Paradigm classification in supervised learning
of morphology. In NAACL HLT 2015, pp. 1024–1029, 2015.

R Harald Baayen, Richard Piepenbrock, and Rijn van H. The {CELEX} lexical data base on {CD-
ROM}. 1993.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Yoshua Bengio, et al. End-to-end attention-
based large vocabulary speech recognition. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4945–4949, 2016.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and Chris Dyer. Translating into morphologically
rich languages with synthetic phrases. In EMNLP, pp. 1677–1687, 2013.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. In Advances in Neural Information Processing
Systems 28, pp. 577–585. 2015.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, and Mans
Hulden. The SIGMORPHON 2016 shared task—morphological reinflection. In Proceedings of
the 2016 Meeting of SIGMORPHON, August 2016.

Markus Dreyer and Jason Eisner. Discovering morphological paradigms from plain text using a
dirichlet process mixture model. In EMNLP, pp. 616–627, 2011.

Markus Dreyer, Jason R Smith, and Jason Eisner. Latent-variable modeling of string transductions
with finite-state methods. In Proceedings of the conference on empirical methods in natural
language processing, pp. 1080–1089, 2008.

Greg Durrett and John DeNero. Supervised learning of complete morphological paradigms. In
NAACL HLT 2013, pp. 1185–1195, 2013.

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In Proceedings of the
40th annual meeting on Association for Computational Linguistics, pp. 1–8, 2002.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. Morphological inflection gener-
ation using character sequence to sequence learning. In NAACL HLT 2016, 2016.

Mercedes Garcı́a-Martı́nez, Loı̈c Barrault, and Fethi Bougares. Factored neural machine translation.
arXiv preprint arXiv:1609.04621, 2016.

A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012.

Mans Hulden, Markus Forsberg, and Malin Ahlberg. Semi-supervised learning of morphological
paradigms and lexicons. In EACL, pp. 569–578, 2014.

Navdeep Jaitly, David Sussillo, Quoc V Le, Oriol Vinyals, Ilya Sutskever, and Samy Bengio. A
neural transducer. arXiv preprint arXiv:1511.04868, 2015.

Katharina Kann and Hinrich Schütze. Single-model encoder-decoder with explicit morphological
representation for reinflection. In ACL, August 2016a.

Katharina Kann and Hinrich Schütze. Med: The lmu system for the sigmorphon 2016 shared task
on morphological reinflection. 2016b.

Ronald M. Kaplan and Martin Kay. Regular models of phonological rule systems. Computational
Linguistics, 20(3):331–378, 1994.

9

Under review as a conference paper at ICLR 2017

Kimmo Koskenniemi. Two-level morphology: A general computational model of word-form recog-
nition and production. Technical report, 1983.

Liang Lu, Lingpeng Kong, Chris Dyer, Noah A Smith, and Steve Renals. Segmental recurrent neural
networks for end-to-end speech recognition. arXiv preprint arXiv:1603.00223, 2016.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Mehryar Mohri, Fernando Pereira, and Michael Riley. A rational design for a weighted finite-state
transducer library. In International Workshop on Implementing Automata, pp. 144–158, 1997.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak. Inflection generation as discriminative string
transduction. In NAACL HLT 2015, pp. 922–931, 2015.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. Weighting finite-state transductions with
neural context. In Proc. of NAACL, 2016.

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

Katsuhito Sudoh, Shinsuke Mori, and Masaaki Nagata. Noise-aware character alignment for boot-
strapping statistical machine transliteration from bilingual corpora. In EMNLP 2013, pp. 204–
209, 2013.

David Yarowsky and Richard Wicentowski. Minimally supervised morphological analysis by mul-
timodal alignment. In ACL, 2000.

Lei Yu, Jan Buys, and Phil Blunsom. Online segment to segment neural transduction. arXiv preprint
arXiv:1609.08194, 2016.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

SUPPLEMENTARY MATERIAL

TRAINING DETAILS, IMPLEMENTATION AND HYPER PARAMETERS

To train our models, we used the train portion of the datasets as-is and evaluated the model which
performed best on the development portion of the dataset, without conducting any specific pre-
processing steps on the data. We train the models for a maximum of 100 epochs over the training
set. To avoid long training time, we trained the model for 20 epochs for datasets larger than 50k
examples, and for 5 epochs for datasets larger than 200k examples. The models were implemented
using the python bindings of the dynet toolkit.4 We trained the network by optimizing the expected
output sequence likelihood using cross-entropy loss as mentioned in equation 5. For optimization
we used ADADELTA (Zeiler, 2012) without regularization. We updated the weights after every
example. We used the dynet toolkit implementation of an LSTM network with two layers, each
having 100 entries in both the encoder and decoder. The character embeddings were also vectors
with 100 entries for the CELEX experiments, and with 300 entries for the SIGMORPHON and
Wiktionary experiments. The morpho-syntactic attribute embeddings were vectors of 20 entries in
all experiments. We did not use beam search while decoding for both the hard and soft attention
models as it is significantly slower and did not show clear improvement in previous experiments
we conducted. In all experiments, for both the hard and soft attention models, we report results
using an ensemble of 5 models with different random initializations by using majority voting on the
final sequences the models predicted, as reported in Kann & Schütze (2016b). This was done to
perform fair comparison to the models of Kann & Schütze (2016b;a); Faruqui et al. (2016) which
also performed a similar ensembling technique.

4https://github.com/clab/dynet

10

https://github.com/clab/dynet

	Introduction
	The Hard Attention Model
	Motivation
	Model Definition
	Network Architecture
	Training the Model

	Experiments
	Results
	Analysis
	Comparison of Learned Alignments
	Learned Representations Analysis

	Related Work
	Conclusion

