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ABSTRACT

Good representations facilitate transfer learning and few-shot learning. Motivated
by theories of language and communication that explain why communities with
large number of speakers have, on average, simpler languages with more regu-
larity, we cast the representation learning problem in terms of learning to com-
municate. Our starting point sees traditional autoencoders as a single encoder
with a fixed decoder partner that must learn to communicate. Generalizing from
there, we introduce community-based autoencoders in which multiple encoders
and decoders collectively learn representations by being randomly paired up on
successive training iterations. Our experiments show that increasing community
sizes reduce idiosyncrasies in the learned codes, resulting in more invariant repre-
sentations with increased reusability and structure.

1 INTRODUCTION

The importance of representation learning lies in two dimensions. First and foremost, representation
learning is a crucial building block of a neural model being trained to perform well on a particular
task, i.e., representation learning that induces the “right” manifold structure can lead to models that
generalize better, and even extrapolate. Another property of representation learning, and arguably
the most important one, is that it can facilitate transfer of knowledge across different tasks , es-
sential for transfer learning and few-shot learning among others (Bengio et al., 2013). With this
second point in mind, we can define good representations as the ones that are reusable, induce the
abstractions that capture the “right” type of invariances and can allow for generalizing very quickly
to a new task. Significant efforts have been made to learn representations with these properties; one
frequently explored direction involves trying to learn disentangled representations (Schmidhuber,
1992; Kingma & Welling, 2013; Higgins et al., 2016; van den Oord et al., 2017)), while others focus
on general regularization methods (Srivastava et al., 2014; Vincent et al., 2010). In this work, we
take a different approach to representation learning, inspired by successful abstraction mechanisms
found in nature, to wit human language and communication.

Human languages and their properties are greatly affected by the size of their linguistic commu-
nity (Reali et al., 2018; Wray & Grace, 2007; Trudgill, 2011; Lupyan & Dale, 2010). Small linguistic
communities of speakers tend to develop more structurally complex languages, while larger com-
munities give rise to simpler languages (Dryer & Haspelmath, 2013). Moreover, we even observe
structural simplification as the effective number of speakers grows, as in the example of English lan-
guage (McWhorter, 2002). A similar relation between number of speakers and linguistic complexity
can also be observed during linguistic communication. Speakers, aiming at maximizing communica-
tion effectiveness, adapt and shape their conceptualizations to account for the needs of their specific
partners, a phenomenon often termed in dialogue research as partner specificity (Brennan & Hanna,
2009). As such, speakers form conceptual pacts with their listeners (Brennan & Clark, 1996), and
in some extreme cases, these pacts are so ad-hoc and idiosyncratic that overhearers cannot follow
the discussion (Schober & Clark, 1989)!

But how are all these linguistic situations related to representation learning? We start by drawing
an analogy between language and representations induced by the traditional and extensively used
framework of autonencoders (AE). In the traditional AE set-up, there is a fixed pair of a single en-
coder and a single decoder that are trained to maximize a reconstruction loss. However, encoders and
decoders co-adapt to one another, yielding idiosyncratic representations. The encoders spend repre-
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sentational capacity modeling any kind of information about the data that could allow the decoder to
successfully reconstruct the input; as long as the encoder and the decoder agree on a representation
protocol, this information need not be abstract or systematic. This has a negative impact on the
reusability of the representations, something that afterall is a key objective of representation learn-
ing. Evidence of this co-adaption is found in the above-mentioned efforts targeting generalization.
The human language analogy of the traditional AE setup would be an extreme version of the con-
ceptual pact experiments from Schober & Clark (1989), where two people never communicate with
anybody else: the resulting language would be very hard to understand for any outsider.

In this work we test whether removing this co-adaptation between encoders and decoders can yield
better generalization, much as dropout removes co-adaptation between activations and thereby yields
better generalization in general neural networks. We hypothesize that machines that communicate
not with a specific partner but with a multitude of partners, will shape the representations they
communicate to be simpler in nature. We introduce a simple framework that we term community-
based autoencoders (CbAEs), in which there exist multiple encoders and decoders, and at every
training iteration one of each is randomly sampled to perform a traditional autoencoder (AE) training
step. Given that the identity of the decoder is not revealed to the encoder during the encoding of
the input, the induced representation should be such that all decoders can use it to successfully
reconstruct the input. A similar argument holds for the decoder, which at reconstruction time does
not have access to the identity of the encoder. We conjecture that this process will reduce the level
of idiosyncrasy, resulting in representations that are invariant to the diverse encoders and decoders.

We apply CbAEs to two standard computer vision datasets and probe their representations along
two axes; their reusability and their structural properties. We find that in contrast to representations
induced within a traditional AE framework 1) the CbAE-induced representations encode abstract
information that is more easily extracted and re-used for a different task 2) CbAE representations
provide an interface that is easier to learn for new users 3) and the underlying topology of the CbAE
representations is more aligned to human perceptual data that are disentangled and structured.

2 COMMUNITY-BASED AUTOENCODERS

Background One of the simplest and most widely used ways to do representation learning is to
train an autoencoder, i.e., encode the input x, usually in a lower-dimensional representation, z =
e(x, θ) using some parameters θ, then use the z representation to decode back the input x′ = d(z, φ)
through another set of parameters φ. θ and φ are trained by minimizing a reconstruction loss, e.g.,:

L(x,x′) = ||x− x′||2 = ||x− d(e(x, θ), φ)||2 (1)

The resulting latent vector z is then treated as the induced representation of the input data, and is
often re-used for other problems, such as supervised learning or reinforcement learning. Because
this approach is very general and can be applied to any data set, it holds the promise of being able
to leverage existing unlabelled data, in order to then quickly solve other problems, using much less
data and/or computation. However, the loss in Eq. 1 has an important flaw: it does not directly
incentivize the formation of latents that have all the properties of good representations, such as
appropriate abstraction and reusability. As a result, significant amounts of research effort have been
dedicated to finding a better loss (Vincent et al. (2010), Kingma et al. (2014), inter alia).

Our method The CbAE framework (see Figure 1) is inspired by the hypothesis that the size of
a linguistic community has a causal effect on the structural properties of its language. Unlike the
traditional autoencoder framework, which uses a single encoder paired with a single decoder, the
CbAE set-up involves a community of Kenc encoders and Kdec decoders.1 As such, we are not
dealing with a single autoencoder, but rather a collection of Kenc ×Kdec autoencoders. No single
encoder and decoder are associated with one another, but rather the community of encoders are
associated with the community of decoders and all combinations may be used together. Importantly,
while the network architectures can be (and in fact in this work are) identical across a community
(i.e., all encoders and decoders have the same number and organization of units and weights) there
is no weight-sharing among members of the community.

1For simplicity, in our experiments, we use Kenc = Kdec.

2



Under review as a conference paper at ICLR 2019

Figure 1: Left: for each iteration, a randomly selected encoder-decoder pair is used. Right: in
expectation, all encoders are trained with all decoders, and vice versa.

Training procedure At each training step, given a data point x, we form an autoencoder by ran-
domly sampling an encoder and a decoder from the respective communities. Then, we perform a
traditional autoencoding step where we minimize the mean-squared (L2) loss between the input x
and its decoding (see Eq. 1 and Algorithm 1). Trivially, the traditional autoencoder training protocol
can be recovered by setting Kenc = Kdec = 1.

Algorithm 1 Community-based autoencoders
initialize encoders E = {e0, ..., eKenc}
initialize decoders D = {e0, ..., eKdec

}
for each iteration i do

sample input data xi

sample encoder ei from E
zi ← ei(xi)
sample decoder di from D
x′i ← di(zi)
Li ← L(x′i,xi) . see Eq. 1
optimize ei and di with respect to Li

end for

There are two main reasons why we think this will have a positive effect on the quality of the repre-
sentations. First, given that the chosen encoder ei for iteration i does not have a priori information
about the identity of the chosen decoder di, and given that there are a number of decoders all with
different weights, the encoder should produce a latent zi that is potentially decodable by all differ-
ent decoders. Similarly, given that each decoder di receives over its training lifetime latents from
a number of different encoders, the decoder should learn to decode representations produced by all
encoders. We hypothesize that this training regime will produce latents that are less prone to have
idiosyncrasies rooted in the co-adaptation between a particular pair of encoder and decoder.

Relation to dropout The CbAE setup is reminiscent of dropout (Srivastava et al., 2014): The
entire community can be viewed as one much larger and highly parallel model, from which at each
iteration a selection of weights (corresponding to one specific community member) is chosen. How-
ever, a crucial difference is that here, the choice of weights happens in a very correlated way; it is not
a random set of weights, but one of Kenc or Kdec non-overlapping subsets that is selected at each
training step. As a consequence, the weights in one community member (e.g. an encoder) will be
much slower to adjust (if at all) to those in the rest of the community, and a higher degree of diversity
is maintained. There is some mutual adjustment, of course, but it is a second-order effect: encoder
ei and encoder ej will only get information about each other’s encoding through the gradients of
decoders that have learned to decode them.

The curse of co-adaptation The goal of our method is to avoid co-adaptation between the en-
coder and decoder. However, due to their flexibility, neural networks are in principle capable of
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co-adapting to several partner modules at once. As a consequence, the encoders can avoid con-
vergence and still learn to produce latents from which the decoders can successfully reconstruct
the input by capitalizing on encoder-specific information. Intuitively, we can think of this as the
encoder essentially “signing” the latents with their unique ID. We test whether this indeed mani-
fests in the setup by training a linear classifier whose task is to identify the encoder from the latent
representation: pe(z) = exp(wT

e z)/
∑

e′ exp(w
T
e′z).

Community size
2 4 8 16

Chance 0.5 0.75 0.875 0.938
No entropy loss 0.3 0.48 0.47 0.28
With entropy loss 0.52 0.764 0.875 0.937

Table 1: Encoder identification error rate on MNIST.

As Table 1 shows, the encoder classifiers
perform significantly better than chance in
spite of having to keep up with shifting
representations, indicating that pairwise
co-adaptation does indeed happen to some
extent for all community sizes. The non-
monotonous behaviour seen on the row la-
belled without entropy loss is due to the
two competing effects. As the community
size grows, the encoder identification task
becomes harder (hence the lower chance), and the error rate naturally increases. However, larger
communities also lead to slower rates of representation shift for every individual encoder, making it
easier for the encoder classifier to keep up with their changing representation.

A similar phenomenon of co-adaptation is often encountered in domain-adaption neural frameworks.
To alleviate this, adversarial losses or gradient reversal layers (Ganin et al., 2016) are introduced to
penalize representations from retaining domain-specific information. Here, in order to counteract the
all-to-all pairwise co-adaptation effect, we add a simple adversarial loss forcing the encoders to be
indistinguishable for the encoder classifier while keeping the encoder classifier itself fixed. In partic-
ular, the extra loss term is the negative entropy of the classifier, Lentropy(z) =

∑
e pe(z) log pe(z).

Training of CbAE We use MNIST and CIFAR-100, with community sizes of 1, 2, 4, 8 and 16.
The batch size is fixed at 128 throughout all experiments. We use the Adam optimizer with a learning
rate of 10−4. The encoders are straightforward convolutional neural networks of VGG-flavour, with
depths of 6 (MNIST) and 10 (CIFAR-100) layers respectively. For the details we refer the reader to
the Appendix. The decoders implement the corresponding transpose convolutions.

Figure 2: The reconstruction error per pixel on MNIST (left) and CIFAR-100 (right).

Having to respond to more communication partners makes the job of the individual encoders and
decoders harder. This effect is seen in the reconstruction loss (see Figure 2, where an increase in
community size leads to a penalty in the reconstruction error even when correcting for the amount of
training data seen by each community member. Note that this is not necessarily limiting when con-
sidering the desired properties of the representation, since the pixel-loss is merely a self-supervision
signal: some pixel-level information is lost, but ultimately pixel-level information is not the true
goal of the representation learning exercise, as discussed in Section 1. The interesting question is
however: given the capacity of the latents, are we trading-off reconstruction performance for other
more relevant properties such us reusability or structure? The experiments presented in section 3
aim at answering precisely this question.

4



Under review as a conference paper at ICLR 2019

3 ASSESSING THE QUALITY OF REPRESENTATIONS

In the previous section we introduced the CbAE set-up and found that the reconstruction loss in-
creases as the community size grows. However, the reconstruction loss in this setup is just a learning
signal for representation learning, rather than the end goal. Ultimately, we are interested in good
representations that could allow for generalization, knowledge transfer and reusability. In this sec-
tion, having trained the CbAEs, we devise a number of parametric (Section 3.1) and non-parametric
(Section 3.2) evaluation methods that probe the representations for exactly these properties.

3.1 PARAMETRIC PROBE TASKS

3.1.1 TASKS AND METRIC

Training new encoders and decoders Human languages have the property that the more regular
and systematic they are, the easier they are for learners to acquire. We examine whether the latent
interface found by the CbAE setup has the same property, i.e., is easier to learn for new users. To
do so, we train newly initialized encoders and decoders. The hypothesis is that if the CbAE-trained
encoders and decoders have learned to encode information in the representation in a systematic way,
rather than in an ad-hoc and idiosyncratic way, this would result in the new, untrained, encoders and
decoders being able to learn the representation with less effort, which we define operationally as
better sample complexity (see below). This evaluation task is illustrated in the two leftmost panels
of Figure 3.

Transferring representations to a new task Next, we investigate the transfer capabilities of the
representations to a different task; we freeze the CbAE encoders, perform supervised learning on
image classification by training linear classifiers and evaluate their sample complexity. The hypoth-
esis is that the CbAE framework induces abstract representations of the input data that would allow
a simple linear classifier to achieve a better sample complexity.

Figure 3: Set-up for assessing the quality of the representations. Purple boxes represent trainable
evaluation modules; blue boxes represent trained encoders and decoders that are kept fixed during
the evaluation training. Left: linear classifiers; centre: new encoders; right: new decoders.

Experimental setup In these probe tasks, only the newly initialized evaluation modules (new
encoders, new decoders, and linear classifiers) are trained, and the encoders and decoders trained
in the CbAE setup are frozen. The tasks share the same basic set-up: all frozen members of the
community of encoders or decoders are coupled individually to an evaluation module, which is
trained to perform best-response to their pre-trained partner.

For the new encoders and decoders, we use the same architecture as for the CbAE-trained ones. We
use the Adam optimizer with a learning rate of 10−4. For the linear classifiers, we fit a linear layer,
followed by a softmax, on the latents of each CbAE-trained encoder. We use the Adam optimizer
with a learning rate of 10−3 and optimize the cross-entropy between the predicted label ŷ and the
actual label y. We use a minibatch size of 128 throughout all experiments.

Sample complexity gain For every parametric probe task, we first record the average performance
achieved by all modules trained with a given community after a given number of training iterations.
We then obtain the number of training iterations needed for the traditional AE (i.e., community
size 1) to reach the same performance, and compute the ratio of these two training durations as the
sample complexity gain.
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The above formulation takes the following form in more mathematical notation: Given a learning
curve L(i) which maps an iteration i to an obtained result L(i), we define the inverse learning curve:

Linv(L′) = min
s.t.L(i)≤L′

i (2)

The inverse learning curve returns the first iteration at which the result dropped below the argument
L′. Equipped with this function, the sample complexity gain of curve L at iteration i relative to
curve Lbaseline is straightforward to compute:

SCG(L, i, Lbaseline) =
i

Linv
baseline(L(i))

− 1 (3)

If the two curves L and Lbaseline are identical, Linv
baseline(L(i)) = i, and SCG(L, i, Lbaseline) = 0

as expected. A negative sample complexity gain indicates that L reaches the value L(i) at a later
iteration than Lbaseline, i.e. Linv

baseline(L(i)) < i.

3.1.2 PARAMETRIC PROBE RESULTS

Transferring representations to a new task After training the image classifier, we evaluate its
performance on the test set. Figure 4 shows the sample complexity gain relative to the traditional
AE case Overall, we find that classifiers trained on the latents learned by larger communities learn
faster. For example, the leftmost bar on the MNIST plot shows that a classifier trained on the latents
from community of size 2 needs 8 iterations to reach a performance that takes almost twice (1.6
times) as many iterations for a classifier trained on the latents from a classical AE. Moreover, the
MNIST plot clearly shows that larger communities lead to faster classifier learning. As the classifier
training progresses, the gains relative to the classical AE become smaller; this suggests that there
is might still be some co-adaption, which however is significantly delayed by the introduction of
the community. This positive effect of the community is also clear since the largest community
is still speeding up relative to the classical AE after 32 iterations. In the case of CIFAR-100, we
observe similar sample complexity gains, but the community size effect appears to be reversed. We
attribute this to the larger model used (and needed) for this data set, which presents a significantly
more complex task both for autoencoders and for classifiers. This larger model in turn requires
more CbAE iterations for the communities to learn to represent the data at all, with each community
member only seeing 1/K of the CbAE iterations (K being the community size).

Figure 4: The sample complexity gain relative to the traditional AE setup when training a linear
classifier, on MNIST (left) and CIFAR-100 (right).

Training new encoders and decoders Figure 5 shows the results for training new decoders on
MNIST and CIFAR-100. The new decoders learn faster with encoders trained in larger communities.
Moreover, we observe that although there are large sample complexity gains over the baseline, in
absolute numbers these gains are smaller than the ones obtained in the previous transfer task. While
the image classification task requires a CbAE encoder to have produced a representation capturing a
certain level of abstraction, training a new decoder requires the CbAE encoder to represent precise
information about the data. The fact that CbAEs are better in the former than the latter suggests that
their representations are more abstract in nature. Evidently, we are ready to accept this trade-off; as
discussed in the introduction, abstraction is the holy grail of representation learning.

Figure 6 shows the results for training new encoders on MNIST and CIFAR-100. The new encoders
learn faster with decoders trained in larger communities, and display roughly the same sample com-
plexity gain pattern as the new decoders, albeit with slightly better absolute numbers. To understand
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Figure 5: The sample complexity gain relative to the traditional AE setup when training new de-
coders, on MNIST (left) and CIFAR-100 (right), while training new encoders.

this, we note that there is an asymmetry between encoders and decoders, in that the decoders can
learn to decode a large hypervolume in latent space into roughly the same image, encompassing
the encodings of all individual encoders. A new encoder then only has to learn to encode an image
somewhere into that hypervolume to get a reasonable reconstruction error. A new decoder, how-
ever, has to learn best-response to a specific encoder, which essentially involves more adaptation to
residual idiosyncrasies and can therefore be a more difficult task.

Figure 6: The sample complexity gain relative to the traditional AE setup when training new en-
coders, on MNIST (left) and CIFAR-100 (right), while training new encoders.

Comparison to other regularization mechanisms We have performed the same probe analy-
ses presented in sections 3.1.1 and 3.1.2 on the representations learned by a traditional AE setup
enhanced with (neuron-level) dropout, and found no gains relative to the dropout-free setting. Ex-
ploring variations on dropout that interpolate between large expected overlaps between subsets (the
traditional implementation) and fully mutually exclusive subsets (our method) is an interesting di-
rection of future work. Moreover, all our models are trained with batch normalization, indicating
that the gains we find are orthogonal to the specific regularization advantages it provides.

3.2 NON-PARAMETRIC PROBE TASK: LATENT SPACE STRUCTURAL ANALYSIS

Finally, we ask the question of to what degree the speaker-invariance bias imposed by the CbAE
framework induces abstract representations that share the same underlying structure with human
perceptual data.2 As a proxy of human perceptual data, we use the Visual Attributes for Con-
cepts Dataset (VisA) of Silberer et al. (2013), which contains human-generated per-concept at-
tribute annotations for concrete concepts (e.g., cat, chair, cat) spanning across different cat-
egories (e.g., mammals, furniture, vehicles), annotated with general visual attributes (e.g.,
has whiskers, has seat). Table 2 presents some examples of the conceptual representations
found in VisA. As we can see, concepts representations are structured and disentangled. Therefore,
achieving high similarity with these would indicate that the CbAE-induced representations encode
similar conceptual abstract information. Most importantly, this is an independent task and requires
no additional training of parameters.

2We note that this experiment is only conducted for CIFAR-100 as this dataset contains categories for
common nouns (e.g., cat, dog, chair) for which we can meaningfully probe humans for perceptual similarity
(as opposed to the numerical categories found in MNIST).
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Representation Similarity Analysis For measuring the similarities between the human percep-
tual data and the CbAE-induced representations, we perform Representational Similarity Analysis
(RSA) in the two topologies, a method popular in neuroscience (Kriegeskorte et al., 2008). For each
community configuration, we sample 5,000 images and encode them with all encoders. Following
that, for each encoder-specific set of latents, we apply concept-based late fusion, meaning that we
average in a single latent all latents belonging to the same concept, to arrive to 68 concept-based
representations. We then compute two sets of pairwise similarities of the 68 concepts, i.e., one set
using their concept-based CbAE-induced latent representations and one set the concept-based VisA
attribute representations. With these two lists of cosine similarities in hand, the RSA between the
two topologies is taken as the Spearman correlation of these two lists of similarities. Given that RSA
is a second-order similarity, we are not asking the question of how similar (say in terms of cosine)
the two spaces are, but rather how similar their topology is, i.e., whether points that are nearby in
the latent space are also nearby in the VisA space.

Results Table 3 summarizes our results. For each community configuration we report the mean
RSA performance (obtained by averaging the RSA scores produced by the different encoders) and
the maximum performance. To account for the potential confounder caused by the different ini-
tializations in the CbAE, we compare the results with the best result found from same number of
independent AE. We observe that the mean similarity increases with the size of the population, con-
firming the hypothesis that CbAE produce on average abstract representations that to some degree
reflect the topology of the highly structured and disentangled human data.
Moreover, we observe even higher gains when looking at the best RSA value within a CbAE; train-
ing an encoder within a community of diverse partners can lead to more abstract and structured
representations than training a diverse set of independent encoders each with a fixed decoder part-
ner. This result rejects an alternative hypothesis; the gains cannot by explained just by increasing
the diversity of the initializations, it is the community training of these diverse models that leads to
increases performance.

Finally, while the largest CbAE (i.e., community size 16) has higher RSA similarity than the base-
line, it shows the smallest gains, a pattern consistent with the the rest of the parametric probe results
of CIFAR-100. We attribute this to the fact that this community had the smallest number of iterations
per member, and had therefore not had the opportunity to learn to represent the data well yet.

cat chair car
has whiskers 1 0 0
has seat 0 1 1

made of metal 0 0 1
has legs 1 1 0

Table 2: Examples of conceptual representa-
tions in the VisA dataset.

Community size mean ρ max ρ
1 0.341 0.314
2 0.355 0.382
4 0.372 0.389
8 0.401 0.423
16 0.352 0.369

Table 3: Perceptual similarity between
CbAE-induced and VisA representations.

4 DISCUSSION

We have presented Community-based AutoEncoders, a framework in which multiple encoders and
decoders collectively learn representations by being randomly paired up on successive training iter-
ations, encouraging a similar lack of co-adaptation that dropout does at the activation level, at model
level. Analogous to the structural simplicity found in languages with many speakers, we find that
the latent representations induced in this scheme are easier to use and more structured. This result
is philosophically interesting in that it suggests that the community size effects found in human lan-
guages are general properties of any representation learning system, opening avenues to potential
synergies between representation learning linguistics.

The price for obtaining these representations is the increase in computational requirements, which
is linear in the community size. Due to the reusability of the resulting representations, this cost
may be amortized over a number of applications trained on top of the encoders. Furthermore, the
community-based training procedure is highly parallelizable, since only the latents and correspond-
ing backpropagated errors need to be sent between the encoders and decoders.

8



Under review as a conference paper at ICLR 2019

APPENDIX

CNN ARCHITECTURES USED

Kernel size Stride Channels
3x3 2 64
3x3 2 64
3x3 2 128
3x3 2 128
3x3 2 256
3x3 2 256

Table 4: The CNN architecture used in the MNIST experiments.

Kernel size Stride Channels
3x3 1 32
5x5 2 64
3x3 1 64
5x5 2 128
3x3 1 128
5x5 2 256
3x3 1 256
5x5 2 512
3x3 1 512
2x2 2 512

Table 5: The CNN architecture used in the CIFAR-100 experiments.
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