
Published as a conference paper at ICLR 2019

TREE-STRUCTURED RECURRENT SWITCHING LINEAR
DYNAMICAL SYSTEMS FOR MULTI-SCALE MODELING

Josue Nassar
Department of Electrical & Computer Engineering
Stony Brook University
Stony Brook, NY 11794
josue.nassar@stonybrook.edu

Scott W. Linderman
Department of Statistics
Columbia University
New York, NY 10027
scott.linderman@columbia.edu

Mónica F. Bugallo
Department of Electrical & Computer Engineering
Stony Brook University
Stony Brook, NY, 11794
monica.bugallo@stonybrook.edu

Il Memming Park
Department of Neurobiology and Behavior
Stony Brook University
Stony Brook, NY, 11794
memming.park@stonybrook.edu

ABSTRACT

Many real-world systems studied are governed by complex, nonlinear dynamics. By
modeling these dynamics, we can gain insight into how these systems work, make
predictions about how they will behave, and develop strategies for controlling them.
While there are many methods for modeling nonlinear dynamical systems, existing
techniques face a trade off between offering interpretable descriptions and making
accurate predictions. Here, we develop a class of models that aims to achieve
both simultaneously, smoothly interpolating between simple descriptions and more
complex, yet also more accurate models1. Our probabilistic model achieves this
multi-scale property through a hierarchy of locally linear dynamics that jointly
approximate global nonlinear dynamics. We call it the tree-structured recurrent
switching linear dynamical system. To fit this model, we present a fully-Bayesian
sampling procedure using Pólya-Gamma data augmentation to allow for fast and
conjugate Gibbs sampling. Through a variety of synthetic and real examples, we
show how these models outperform existing methods in both interpretability and
predictive capability.

1 INTRODUCTION

Complex systems can often be described at multiple levels of abstraction. A computer program can be
characterized by the list of functions it calls, the sequence of statements it executes, or the assembly
instructions it sends to the microprocessor. As we zoom in, we gain an increasingly nuanced view of
the system and its dynamics. The same is true of many natural systems. For example, brain activity
can be described in terms of high-level psychological states or via detailed ion channel activations;
different tasks demand different levels of granularity. One of our principal aims as scientists is to
identify appropriate levels of abstraction for complex natural phenomena and to discover the dynamics
that govern how these systems behave at each level of resolution.

Modern machine learning offers a powerful toolkit to aid in modeling the dynamics of complex
systems. Bayesian state space models and inference algorithms enable posterior inference of the latent
states of a system and the parameters that govern their dynamics (Särkkä, 2013; Barber et al., 2011;
Doucet et al., 2001). In recent years, this toolkit has been expanded to incorporate increasingly flexible
components like Gaussian processes (Frigola et al., 2014) and neural networks (Chung et al., 2015;
Johnson et al., 2016; Gao et al., 2016; Krishnan et al., 2017) into probabilistic time series models. In

1This work was supported by National Science Foundation (NSF IIS-1734910, CCF-1617986, HRD-1612689)
and National Institute of Health (NIH R01EB026946). SWL was supported by the Simons Collaboration on the
Global Brain (SCGB-418011).

1

Published as a conference paper at ICLR 2019

neuroscience, sequential autoencoders offer highly accurate models of brain activity (Pandarinath
et al., 2018). However, while these methods offer state of the art predictive models, their dynamics
are specified at only the most granular resolution, leaving the practitioner to tease out higher level
structure post hoc.

Here we propose a probabilistic generative model that provides a multi-scale view of the dynamics
through a hierarchical architecture. We call it the tree-structured recurrent switching linear dynamical
system, or TrSLDS. The model builds on the recurrent SLDS (Linderman et al., 2017) to approximate
latent nonlinear dynamics through a hierarchy of locally linear dynamics. Once fit, the TrSLDS can
be queried at different levels of the hierarchy to obtain dynamical descriptions at multiple levels
of resolution. As we proceed down the tree, we obtain higher fidelity, yet increasingly complex,
descriptions. Thus, depth offers a simple knob for trading off interpretability and flexibility. The
key contributions are two-fold2: first, we introduce a new form of tree-structured stick breaking for
multinomial models that strictly generalizes the sequential stick breaking of the original rSLDS,
while still permitting Pólya-gamma data augmentation (Polson et al., 2013) for efficient posterior
inference; second, we develop a hierarchical prior that links dynamics parameters across levels of
the tree, thereby providing descriptions that vary smoothly with depth. The paper is organized as
follows. Section 2 provides background material on switching linear dynamical systems and their
recurrent variants. Section 3 presents our tree-structured model and Section 4 derives an efficient fully-
Bayesian inference algorithm for the latent states and dynamics parameters. Finally, in Section 5 we
show how our model yields multi-scale dynamics descriptions for synthetic data from two standard
nonlinear dynamical systems—the Lorenz attractor and the FitzHugh-Nagumo model of nonlinear
oscillation—as well as for a real dataset of neural responses to visual stimuli in a macaque monkey.

2 BACKGROUND

Let xt ∈ Rdx and yt ∈ Rdy denote the latent state and the observation of the system at time t
respectively. The system can be described using a state-space model:

xt = f(xt−1, wt; Θ), wt ∼ Fw (state dynamics) (1)
yt = g(xt, vt; Ψ), vt ∼ Fv (observation) (2)

where Θ denotes the dynamics parameters, Ψ denotes the emission (observation) parameters, and
wt and vt are the state and observation noises respectively. For simplicity, we restrict ourselves to
systems of the form:

xt = f(xt−1; Θ) + wt, wt ∼ N (0, Q), (3)

If the state space model is completely specified then recursive Bayesian inference can be applied to
obtain an estimate of the latent states using the posterior p (x0:T |y1:T) (Doucet et al., 2001). However
in many applications, the parametric form of the state space model is unknown. While there exist
methods that perform smoothing to obtain an estimate of x0:T (Barber, 2006; Fox et al., 2009; Djuric
& Bugallo, 2006), we are often interested in not only obtaining an estimate of the continuous latent
states but also in learning the dynamics f(·; Θ) that govern the dynamics of the system.

In the simplest case, we can take a parametric approach to solving this joint state-parameter estimation
problem. When f(·; Θ) and g(·; Ψ) are assumed to be linear functions, the posterior distribution
over latent states is available in closed-form and the parameters can be learned via expectation-
maximization. On the other hand, we have nonparametric methods that use Gaussian processes and
neural networks to learn highly nonlinear dynamics and observations where the joint estimation is
untractable and approximations are necessarily imployed (Zhao & Park, 2016; 2018; Frigola et al.,
2014; Sussillo et al., 2016). Switching linear dynamical systems (SLDS) (Ackerson & Fu, 1970;
Chang & Athans, 1978; Hamilton, 1990; Ghahramani & Hinton, 1996; Murphy, 1998) balance
between these two extremes, approximating the dynamics by stochastically transitioning between a
small number of linear regimes.

2Source code is available at https://github.com/catniplab/tree_structured_rslds

2

https://github.com/catniplab/tree_structured_rslds

Published as a conference paper at ICLR 2019

(sequential) stick breaking tree-structured stick breaking

Figure 1: State probability allocation through stick-breaking in standard rSLDS and the TrSLDS.

2.1 SWITCHING LINEAR DYNAMICAL SYSTEMS

SLDS approximate nonlinear dynamics by switching between a discrete set of linear regimes. An
additional discrete latent state zt ∈ {1, . . . ,K} determines the linear dynamics at time t,

xt = xt−1 +Aztxt−1 + bzt + wt, wt ∼ N (0, Qzt) (4)

where Ak, Qk ∈ Rdx×dx and bk ∈ Rdx for k = 1, . . . ,K. Typically, zt is endowed with Markovian
dynamics, Pr(zt|zt−1 = k) = πk. The conditionally linear dynamics allow for fast and efficient
learning of the model and can utilize the learning tools developed for linear systems (Haykin, 2001).
While SLDS can estimate the continuous latent states x0:T , the assumption of Markovian dynamics
for the discrete latent states severely limits their generative capacity.

2.2 RECURRENT SWITCHING LINEAR DYNAMICAL SYSTEMS

Recurrent switching linear dynamical systems (rSLDS) (Linderman et al., 2017), also known as
augmented SLDS (Barber, 2006), are an extension of SLDS where the transition density of the
discrete latent state depends on the previous location in the continuous latent space

zt|xt−1, {R, r} ∼ πSB (νt) , (5)
νt = Rxt−1 + r, (6)

where R ∈ RK−1×dx and r ∈ RK−1 represents hyperplanes. πSB : RK−1 → [0, 1]K maps from
the reals to the probability simplex via stick-breaking:

πSB(ν) =
(
π
(1)
SB(ν), · · · , π(K)

SB (ν)
)
, π

(k)
SB = σ(νk)

∏
j<k

σ (−νj) , (7)

for k = 1, . . . ,K−1 and π(K)
SB =

∏K−1
k=1 σ (−νk) where νk is the kth component of of ν and

σ(ν) = (1 + e−ν)−1 is the logistic function (Fig. 1). By including this recurrence in the transition
density of zt, the rSLDS partitions the latent space into K sections, where each section follows its
own linear dynamics. It is through this combination of locally linear dynamical systems that the
rSLDS approximates eq. (3); the partitioning of the space allows for a more interpretable visualization
of the underlying dynamics.

Recurrent SLDS can be learned efficiently and in a fully Bayesian manner, and experiments empiri-
cally show that they are adept in modeling the underlying generative process in many cases. However,
the stick breaking process used to partition the space poses problems for inference due to its depen-
dence on the permutation of the discrete states {1, · · · ,K} (Linderman et al., 2017).

3 TREE-STRUCUTRED RECURRENT SWITCHING LINEAR DYNAMICAL
SYSTEMS

Building upon the rSLDS, we propose the tree-structured recurrent switching linear dynamical system
(TrSLDS). Rather than sequentially partitioning the latent space using stick breaking, we use a tree-
structured stick breaking procedure (Adams et al., 2010) to partition the space.

3

Published as a conference paper at ICLR 2019

Let T denote a tree structure with a finite set of nodes {ε, 1, · · · , N}. Each node n has a parent
node denoted by par(n) with the exception of the root node, ε, which has no parent. For simplicity,
we initially restrict our scope to balanced binary trees where every internal node n is the parent of
two children, left(n) and right(n). Let child(n) = {left(n), right(n)} denote the set of children
for internal node n. Let Z ⊆ T denote the set of leaf nodes, which have no children. Let depth(n)
denote the depth of a node n in the tree, with depth(ε) = 0.

At time instant t, the discrete latent state zt is chosen by starting at the root node and traversing down
the tree until one of theK leaf nodes are reached. The traversal is done through a sequence of left/right
choices by the internal nodes. Unlike in standard regression trees where the choices are deterministic
(Lakshminarayanan, 2016), we model the choices as random variables. The traversal through the tree
can be described as a stick breaking process. We start at the root node with a unit-length stick πε = 1,
which we divide between its two children. The left child receives a fraction πleft(ε) = σ(νε) and
the right child receives the remainder πright(ε) = 1− σ(νε) such that νε ∈ R specifies the left/right
balance. This process is repeated recursively, subdividing πn into two pieces at each internal node
until we reach the leaves of the tree (Fig. 1). The stick assigned to each node is thus,

πn =

{
σ(νpar(n))

I[n=left(par(n))]
(
1− σ(νpar(n))

)I[n=right(par(n))]
πpar(n) n 6= ε,

1 n = ε.
(8)

We incorporate this into the TrSLDS by allowing νn to be a function of the continuous latent state

νn(xt−1, Rn, rn) = RTnxt−1 + rn, (9)
where the parametersRn and rn specify a linear hyperplane in the continuous latent state space. As the
continuous latent state xt−1 evolves, the left/right choices become more or less probable. This in turn
changes the probability distribution πk(xt−1,Γ, T) over the K leaf nodes, where Γ = {Rn, rn}n∈T .
In the TrSLDS, these leaf nodes correspond to the discrete latent states of the model, such that for
each leaf node k,

p (zt = k | xt−1,Γ, T) = πk(xt−1,Γ, T). (10)
In general, the tree-structured stick-breaking is not restricted to balanced binary trees. We can allow
more than two children through an ordered sequential stick-breaking at each level. In this sense,
tree-structured stick-breaking is a strict generalization of stick-breaking. We also note that similar to
rSLDS, the model can be made more flexible by introducing a dependence on the previous discrete
latent in eq. (9) but for the rest of the paper, we stick to eq. (8).

3.1 A HIERARCHICAL DYNAMICS PRIOR THAT RESPECTS THE TREE STRUCTURE

Similar to standard rSLDS, the dynamics are conditionally linear given a leaf node zt. A priori, it is
natural to expect that locally linear dynamics of nearby regions in the latent space are similar. Thus,
in the context of tree-structured stick breaking, we impose that partitions that share a common parent
should have similar dynamics. We explicitly model this by enforcing a hierarchical prior on the
dynamics that respects the tree structure.

Let {An, bn} be the dynamics parameters associated with node n. Although the locally linear
dynamics of a discrete state are specified by the leaf nodes, we introduce dynamics at the internal
nodes as well. These internal dynamics serve as a link between the leaf node dynamics via a
hierarchical prior,

vec([An, bn])| vec([Apar(n), bpar(n)]) ∼ N (vec([Apar(n), bpar(n)]),Σn), (11)

where vec(·) is the vectorization operator. The prior on the root node is
vec ([Aε, bε]) ∼ N (0,Σε) . (12)

We impose the following constraint on the covariance matrix of the prior

Σn = λdepth(n)Σε, (13)
where λ ∈ (0, 1) is a hyper parameter that dictates how "close" a parent and child are to one another.
The prior over the parameters can be written as, where the affine term and the vec(·) operator are
dropped for compactness,

p({An}n∈T) = p(Aε)
∏

i∈child(ε)

p(Ai|Aε)
∏

j∈child(i)

p(Aj |Ai) . . .
∏
z∈Z

p(Az|Apar(z)). (14)

4

Published as a conference paper at ICLR 2019

It is through this hierarchical tree-structured prior that TrSLDS obtains a multi-scale view of the
system. Parents are given the task of learning a higher level description of the dynamics over a larger
region while children are tasked with learning the nuances of the dynamics. The use of hierarchical
priors also allows for neighboring sections of latent space to share common underlying dynamics
inherited from their parent. TrSLDS can be queried at different levels, where levels deeper in the tree
provide more resolution.

TrSLDS shares some features with regression trees (Lakshminarayanan, 2016), even though regression
trees are primarily used for standard, static regression problems. The biggest differences are that our
tree-structured model has stochastic choices and the internal nodes contribute to smoothing across
partitions through the corresponding hierarchical prior.

There are other hierarchical extensions of SLDS that have been proposed in the literature. In Stan-
culescu et al. (2014), they propose adding a layer to factorized SLDS where the top-level discrete
latent variables determine the conditional distribution of zt, with no dependence on xt−1. While the
tree-structured stick-breaking used in TrSLDS is also a hierarchy of discrete latent variables, the
model proposed in Stanculescu et al. (2014) has no hierarchy of dynamics, preventing it from obtain-
ing a multi-scale view of the dynamics. In Zoeter & Heskes (2003), the authors construct a tree of
SLDSs where an SLDS with K possible discrete states is first fit. An SLDS with M discrete states is
then fit to each of the K clusters of points. This process continues iteratively, building a hierarchical
collection of SLDSs that allow for a multi-scale, low-dimensional representation of the observed data.
While similar in spirit to TrSLDS, there are key differences between the two models. First, it is through
the tree-structured prior that TrSLDS obtains a multi-scale view of the dynamics, thus we only need to
fit one instantiation of TrSLDS; in contrast, they fit a separate SLDS for each node in the tree, which
is computationally expensive. There is also no explicit probabilistic connection between the dynam-
ics of a parent and child in Zoeter & Heskes (2003). We also note that TrSLDS aims to learn a multi-
scale view of the dynamics while Zoeter & Heskes (2003) focuses on smoothing, that is, they aim to
learn a multi-scale view of the latent states corresponding to data but not suitable for forecasting.

In the next section we show an alternate view of TrSLDS which we will refer to as the residual model
in which internal nodes do contribute to the dynamics. Nevertheless, this residual model will turn out
to be equivalent to the TrSLDS.

3.2 RESIDUAL MODEL

Let {Ãn, b̃n} be the linear dynamics of node n and let path(n) = (ε, . . . , n) be the sequence of
nodes visited to arrive at node n. In contrast to TrSLDS, the dynamics for a leaf node are now
determined by all the nodes in the tree:

p(xt|xt−1, Θ̃, zt) = N (xt|xt−1 + Āztxt−1 + b̄zt , Q̃zt), (15)

Āzt =
∑

j∈path(zt)

Ãj , b̄zt =
∑

j∈path(zt)

b̃j , (16)

We model the dynamics to be independent a priori, where once again the vec(·) operator and the
affine term aren’t shown for compactness,

p({Ãn}n∈T) =
∏
n∈T

p(Ãn), p(Ãn) = N (0, Σ̃n), (17)

where Σ̃n = λ̃depth(n)Σ̃ε and λ̃ ∈ (0, 1).

The residual model offers a different perspective of TrSLDS. The covariance matrix can be seen as
representing how much of the dynamics a node is tasked with learning. The root node is given the
broadest prior because it is present in eq. (16) for all leaf nodes; thus it is given the task of learning
the global dynamics. The children then have to learn to explain the residuals of the root node. Nodes
deeper in the tree become more associated with certain regions of the space, so they are tasked with
learning more localized dynamics which is represented by the prior being more sharply centered on
0. The model ultimately learns a multi-scale view of the dynamics where the root node captures a
coarse estimate of the system while lower nodes learn a much finer grained picture. We show that
TrSLDS and residual model yield the same joint distribution (See A for the proof).
Theorem 1. TrSLDS and the residual model are equivalent if the following conditions are true:
Aε = Ãε, An =

∑
j∈path(n) Ãj , Qz = Q̃z ∀z ∈ leaves(T), Σε = Σ̃ε and λ = λ̃

5

Published as a conference paper at ICLR 2019

4 BAYESIAN INFERENCE

The linear dynamic matrices Θ, the hyperplanes Γ = {Rn, rn}n∈T \Z , the emission parameters Ψ,
the continuous latent states x0:T and the discrete latent states z1:T must be inferred from the data.
Under the Bayesian framework, this implies computing the posterior,

p (x0:T , z0:T ,Θ,Ψ,Γ|y1:T) =
p (x0:T , z1:T ,Θ,Ψ,Γ, y1:T)

p (y1:T)
. (18)

We perform fully Bayesian inference via Gibbs sampling (Brooks et al., 2011) to obtain samples
from the posterior distribution described in eq. (18). To allow for fast and closed form conditional
posteriors, we augment the model with Pólya-gamma auxiliary variables Polson et al. (2013).

4.1 PÓLYA-GAMMA AUGMENTATION

Consider a logistic regression from regressor xn ∈ Rdx to categorical distribution zn ∈ {0, 1}; the
likelihood is

p(z1:N) =

N∏
n=1

(
ex
T
nβ
)zn

1 + ex
T
nβ

. (19)

If a Gaussian prior is placed on β then the model is non-conjugate and the posterior can’t be obtained
in closed form. To circumvent this problem Polson et al. (2013) introduced a Pólya-Gamma (PG)
augmentation scheme. This augmentation scheme is based on the following integral identity(

eψ
)a

(1 + eψ)
b

= 2−beκψ
∫ ∞
0

e−
1
2ωψ

2

p(ω)dω (20)

where κ = a− b/2 and ω ∼ PG(b, 0). Setting ψ = xTβ, it is evident that the integrand is a kernel
for a Gaussian. Augmenting the model with PG axillary r.v.s {ωn}Nn=1, eq. (19) can be expressed as

p(z1:N) =

N∏
n=1

(
ex
T
nβ
)zn

1 + ex
T
nβ
∝

N∏
n=1

eκnψn
∫ ∞
0

e−
1
2ωnψ

2
np(ωn)dωn =

N∏
n=1

Eωn [e−
1
2 (ωnψ

2
n−2κnψn)].

(21)
Conditioning on ωn, the posterior of β is

p(β|ω1:N , z1:N , x1:N) ∝ p(β)

N∏
n=1

e−
1
2 (ωnψ

2
n−2κnψn) (22)

where ψn = xTnβ and κn = zn − 1
2 . It can be shown that the conditional posterior of ωn is also PG

where ωn|β, xn, zn ∼ PG(1, ψn) (Polson et al., 2013).

4.2 CONDITIONAL POSTERIORS

The structure of the model allows for closed form conditional posterior distributions that are easy to
sample from. For clarity, the conditional posterior distributions for the TrSLDS are given below:

1. The linear dynamic parameters (Ak, bk) and state variance Qk of a leaf node k are conjugate
with a Matrix Normal Inverse Wishart (MNIW) prior

p((Ak, bk), Qk|x0:T , z1:T) ∝ p((Ak, bk), Qk)

T∏
t=1

N (xt|xt−1+Aztxt−1+bzt , Qzt)
1[zt=k].

2. The linear dynamic parameters of an internal node n are conditionally Gaussian given a
Gaussian prior on (An, bn)

p((An, bn)|Θ−n) ∝ p((An, bn)|(Apar(n), bpar(n)))
∏

j∈child(n)

p((Aj , bj)|(An, bn)).

6

Published as a conference paper at ICLR 2019

3. If we assume the observation model is linear and with additive white Gaussian noise then
the emission parameters Ψ = {(C, d), S} are also conjugate with a MNIW prior

p((C, d), S|x1:T , y1:T) ∝ p((C, d), S)

T∏
t=1

N (yt|Cxt + d, S).

We can also handle Bernoulli observations through the use of Pólya-gamma augmentation.
In the interest of space, the details are explained in Section B.1 in the Appendix.

4. The choice parameters are logistic regressions which follow from the conditional posterior

p (Γ|x0:T , z1:T) ∝ p (Γ)

T∏
t=1

p (zt|xt−1,Γ) = p (Γ)

T∏
t=1

∏
n∈path(zt)\Z

(eνn,t)
1(left(n)∈path(zt))

1 + eνn,t
,

where νn,t = RTnxt−1 + rn. The likelihood is of the same form as the left hand side of
eq. (20), thus it is amenable to the PG augmentation. Let ωn,t be the auxiliary Pólya-gamma
random variable introduced at time t for an internal node n. We can express the posterior
over the hyperplane of an internal node n as:

p((Rn, rn)|x0:T , z1:T , ωn,1:T) ∝ p((Rn, rn))

T∏
t=1

N (νn,t|κn,t/ωn,t, 1/ωn,t)1(n∈path(zt)),

(23)
where κn,t = 1

21[j = left(n)]− 1
21[j = right(n)], j ∈ child(n). Augmenting the model

with Pólya-gamma random variables allows for the posterior to be conditionally Gaussian
under a Gaussian prior.

5. Conditioned on the discrete latent states, the continuous latent states are Gaussian. However,
the presence of the tree-structured recurrence potentials ψ(xt−1, zt) introduced by eq. (10)
destroys the Gaussinity of the conditional. When the model is augmented with PG random
variables ωn,t, the augmented recurrence potential, ψ(xt−1, zt, ωn,t), becomes effectively
Gaussian, allowing for the use of message passing for efficient sampling. Linderman
et al. (2017) shows how to perform message-passing using the Pólya-gamma augmented
recurrence potentials ψ(xt, zt, wn,t). In the interest of space, the details are explained in
Section B.2 in the Appendix.

6. The discrete latent variables z1:T are conditionally independent given x1:T thus

p (zt = k|x1:T ,Θ,Γ) =
p (xt|xt−1, θk) p (zt = k|xt−1,Γ)∑

l∈leaves(T) p (xt|xt−1, θl) p (zt = l|xt−1,Γ)
, k ∈ leaves(T).

7. The conditional posterior of the Pólya-Gamma random variables are also Pólya-Gamma:
ωn,t|zt, (Rn, rn), xt−1 ∼ PG(1, νn,t) .

Due to the complexity of the model, good initialization is critical for the Gibbs sampler to converge
to a mode in a reasonable number of iterations. Details of the initialization procedure are contained
in Section C in the Appendix.

5 EXPERIMENTS

We demonstrate the potential of the proposed model by testing it on a number of non-linear dynami-
cal systems. The first, FitzHugh-Nagumo, is a common nonlinear system utilized throughout neuro-
science to describe an action potential. We show that the proposed method can offer different angles
of the system. We also compare our model with other approaches and show that we can achieve
state of the art performance. We then move on to the Lorenz attractor, a chaotic nonlinear dynamical
system, and show that the proposed model can once again break down the dynamics and offer an
interesting perspective. Finally, we apply the proposed method on the data from Graf et al. (2011).

7

Published as a conference paper at ICLR 2019

true latent states root node vector �eld

2nd layer vector �eld

leaf layer vector �eld k-step prediction performance
time

prediction horizon (k-steps)

generated trajectory from leaf level

dynamics rolled over time

true vector �eld

inferred latent states

log speed

nullcline

true
2nd level
leaf level

true trajectory

starting
point

A

B

C

D

E

F

G

H

I

Figure 2: TrSLDS applied to model the FitzHugh-Nagumo nonlinear oscillator. (a) The model was
trained on 100 trajectories with random starting points. (b) The model can infer the latent trajectories.
(c) The true vector field of FHN is shown where color of the arrow represents log-speed. The two
nullclines are plotted in yellow and green. (d-f) The vector fields display the multi-scale view learned
from the model where color of the arrows dictate log-speed The background color showcases the
hierarchical partitioning learned by the model where the darker the color is, the higher the probability
of ending up in that discrete state. As we go deeper in the tree, the resolution increases which is
evident from the vector fields. (g) A deterministic trajectory from the leaf nodes (colored by most
likely leaf node) with affine transformation onto a trajectory FHN (gray). (h) Plotting w and v over
time, we see that the second level captures some of the oscillations but ultimately converges to a
fixed point. The model learned by the leaf nodes captures the limit cycle accurately. (i) Performances
compared for multi-step prediction. We see that TrSLDS outperforms rSLDS.

5.1 FITZHUGH-NAGUMO

The FitzHugh-Nagumo (FHN) model is a 2-dimensional reduction of the Hodgkin-Huxley model
which is completely described by the following system of differential equations (Izhikevich, 2007):

v̇ = v − v3

3
− w + Iext, τ ẇ = v + a− bw. (24)

We set the parameters to a = 0.7, b = 0.8, τ = 12.5, and Iext ∼ N (0.7, 0.04). We trained our
model with 100 trajectories where the starting points were sampled uniformly from [−3, 3]2. Each of
the trajectories consisted of 430 time points, where the last 30 time points of the trajectories were

used for testing. The observation model is linear and Gaussian where C =

(
2 0
0 −2

)
, d = [0.5, 0.5]

and S = 0.01I2 where In is an identity matrix of dimension n. We set the number of leaf nodes to
be 4 and ran Gibbs for 1,000 samples; the last 50 samples were kept and we choose the sample that
produced the highest log likelihood to produce Fig. 2 where the vector fields were produced using the
mode of the conditional posteriors of the dynamics.

To quantitatively measure the predictive power of TrSLDS, we compute the k-step predictive mean
squared error, MSEk, and its normalized version, R2

k, on a test set where MSEk and R2
k are defined as

MSEk =
1

T − k

T−k∑
t=0

‖yt+k − ŷt+k‖22 , R2
k = 1− (T − k)MSEk∑T−k

t=0 ‖yt+k − ȳ‖
2
2

, (25)

8

Published as a conference paper at ICLR 2019

where ȳ is the average of a trial and ŷt+k is the prediction at time t+ k which is obtained by (i) using
the the samples produced by the sampler to obtain an estimate of x̂T given y1:T , (ii) propagate x̂T for
k time steps forward to obtain x̂t+k and then (iii) obtain ŷt+k. We compare the model to LDS, SLDS
and rSLDS for k = 1, . . . , 30 over the last 30 time steps for all 100 trajectories (Fig. 2I).

5.2 LORENZ ATTRACTOR

k-step prediction performance

simulated trajectories

time

leaf level

true

2nd level

prediction horizon (k-steps)

1.0

0.5

0
300 10 20

true latent trajectories realization from level 2

inferred latent trajectories realization from leaf nodes

A

B

C

D

E

F

Figure 3: (a) The 50 trajectories used to train the model are plotted where the red "x" displays the
starting point of the trajectory. (b) The inferred latent states are shown, colored by their discrete
latent state. (c) We see that the second layer approximates the Lorenz attractor with 2 ellipsoids. A
trajectory from the Lorenz attractor starting at the same initial point is shown for comparison. (d)
Going one level lower in the tree, we see that in order to capture the nuances of the dynamics, each of
the ellipsoids must be split in half. A trajectory from the Lorenz attractor is shown for comparison.
(e) Plotting the dynamics, it is evident that the leaf nodes improve on it’s parent’s approximation. (f)
The R2

k demonstrates the predictive power of TrSLDS.

Lorenz attractors are chaotic systems whose nonlinear dynamics are defined by,

ẋ1 = σ (x2 − x1) , ẋ2 = x1(ρ− x3)− x2, ẋ3 = x1x2 − βx3.

The parameters were set to σ = 10, ρ = 28 and β = 8/3. The data consisted of 50 trajectories, each
of length of 230 where the first 200 time points are used for training and the last 30 are used for
testing. The observation model was a projection onto 10 dimensional space with Gaussian noise.We
set the number of leaf nodes to be 4 and ran Gibbs for 1,000 samples; the last 50 samples were kept
and we choose the sample that produced the highest log-likelihood to produce Fig. 3.

The butterfly shape of the Lorenz attractor lends itself to being roughly approximated by two 2-
dimensional ellipsoids; this is exactly what TrSLDS learns in the second level of the tree. As is
evident from Fig. 5B, the two ellipsoids don’t capture the nuances of the dynamics. Thus, the model
partitions each of the ellipsoids to obtain a finer description. We can see that embedding the system
with a hierarchical tree-structured prior allows for the children to build off its parent’s approximations.

5.3 NEURAL DATA

To validate the model and inference procedure, we used the neural spike train data recorded from
the primary visual cortex of an anesthetized macaque monkey collected by Graf et al. (2011). The
dataset is composed of short trials where the monkey viewed periodic temporal pattern of motions

9

Published as a conference paper at ICLR 2019

of 72 orientations, each repeated 50 times. Dimensionality reduction of the dataset showed that for
each orientation of the drifting grating stimulus, the neural response oscillates over time, but in a
stimulus dependent geometry captured in 3-dimensions (Zhao & Park, 2017). We used 50 trials
each from a subset of 4 stimulus orientations grouped in two (140 and 150 degrees vs. 230 and 240
degrees) where each trial contained 140 neurons. Out of the 140 neurons, we selected 63 well-tuned
neurons. The spike trains were binarized with a 10 ms window for Bernoulli observation model and
we truncated the onset and offset neural responses, resulting in 111 time bins per trial.

We fit TrSLDS with K = 4 leaf nodes and 3-dimensional continuous latent space; the sampler was
run for 500 samples where the last sample was used to produce the results shown in Fig. 4. To obtain
an initial estimate for x0:T , we smoothed the spike trains using a Gaussian kernel and performed
probabilistic PCA on the smoothed spike trains.

From Fig. 4, it is evident that TrSLDS has learned a multi-scale view as expected. It is able to
correctly distinguish between the two groups of orientations by assigning them to two different
subtrees (green-yellow vs. red-orange). The leaf nodes of each subtree refines the periodic orbit
further. From Fig. 4, we can see that TrSLDS also learns two limit cycles that are separated.

ori=140
ori=150

ori=230
ori=240

Example Spike Raster for orientation 150 Example Spike Raster for orientation 240

Figure 4: Modeling primary visual cortex spike trains. (top) Example spike raster plots in response to
a drifting grating of orientations 150 and 240 degrees. Our data consisted of 200 such trials. (bottom)
The average inferred latent trajectories over time for orientations 140 and 150 degrees colored by the
most likely discrete latent state. (right top) Same plotted in space. The model is able to separate the
limit cycles for each orientation group (green-yellow vs. red-orange) and refine them further with
the leaf nodes. (right bottom) Two model generated predictive trajectories showing two stable limit
cycles that resemble the two periodic orbits.

6 CONCLUSION

In this paper, we propose tree-structured recurrent switching linear dynamical systems (TrSLDS)
which is an extension of rSLDS (Linderman et al., 2017). The system relies on the use of tree-
structured stick-breaking to partition the space. The tree-structured stick-breaking paradigm naturally
lends itself to imposing a hierarchical prior on the dynamics that respects the tree structure. This
tree-structured prior allows for a multi-scale view of the system where one can query at different
levels of the tree to see different scales of the resolution. We also developed a fully Bayesian sampler,
which leverages the Pólya-Gamma augmentation, to learn the parameters of the model and infer
latent states. The two synthetic experiments show that TrSLDS can recover a multi-scale view of the
system, where the resolution of the system increase as we delve deeper into the tree. The analysis on
the real neural data verifies that TrSLDS can find a multi-scale structure.

10

Published as a conference paper at ICLR 2019

REFERENCES

Guy A Ackerson and King-Sun Fu. On state estimation in switching environments. IEEE Transactions
on Automatic Control, 15(1):10–17, 1970.

Ryan P Adams, Zoubin Ghahramani, and Michael I Jordan. Tree-Structured Stick Breaking for
Hierarchical Data. In J D Lafferty, C K I Williams, J Shawe-Taylor, R S Zemel, and A Culotta (eds.),
Advances in Neural Information Processing Systems 23, pp. 19–27. Curran Associates, Inc., 2010.

David Barber. Expectation Correction for Smoothed Inference in Switching Linear Dynamical
Systems. Technical report, 2006.

David Barber, A Taylan Cemgil, and Silvia Chiappa. Bayesian time series models. Cambridge
University Press, 2011.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov Chain Monte
Carlo. CRC press, 2011.

Chaw-Bing Chang and Michael Athans. State estimation for discrete systems with switching
parameters. IEEE Transactions on Aerospace and Electronic Systems, (3):418–425, 1978.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pp. 2980–2988, 2015.

Petar Djuric and Mónica Bugallo. Cost-Reference Particle Filtering for Dynamic Systems with
Nonlinear and Conditionally Linear States, 9 2006.

Arnaud Doucet, Nando Freitas, and Neil Gordon. An Introduction to Sequential Monte Carlo
Methods. In Sequential Monte Carlo Methods in Practice, pp. 3–14. Springer New York, New
York, NY, 2001. doi: 10.1007/978-1-4757-3437-9{_}1.

Elena A. Erosheva and S. McKay Curtis. Dealing with Reflection Invariance in Bayesian Factor Anal-
ysis. Psychometrika, 82(2):295–307, 6 2017. ISSN 0033-3123. doi: 10.1007/s11336-017-9564-y.

Emily Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. Nonparametric Bayesian Learning
of Switching Linear Dynamical Systems. In D Koller, D Schuurmans, Y Bengio, and L Bottou
(eds.), Advances in Neural Information Processing Systems 21, pp. 457–464. Curran Associates,
Inc., 2009.

Roger Frigola, Yutian Chen, and Carl Edward Rasmussen. Variational Gaussian Process State-Space
Models. In Z Ghahramani, M Welling, C Cortes, N D Lawrence, and K Q Weinberger (eds.),
Advances in Neural Information Processing Systems 27, pp. 3680–3688. Curran Associates, Inc.,
2014.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural
population models through nonlinear embeddings. In Advances in neural information processing
systems, pp. 163–171, 2016.

John Geweke and Guofu Zhou. Measuring the Pricing Error of the Arbitrage Pricing Theory. Review
of Financial Studies, 9(2):557–587, 4 1996. ISSN 0893-9454. doi: 10.1093/rfs/9.2.557.

Zoubin Ghahramani and Geoffrey E Hinton. Switching state-space models. Technical report,
University of Toronto, 1996.

Arnulf B. Graf, Adam Kohn, Mehrdad Jazayeri, and J. Anthony Movshon. Decoding the activity
of neuronal populations in macaque primary visual cortex. Nature neuroscience, 14(2):239–245,
February 2011. ISSN 1546-1726. doi: 10.1038/nn.2733.

James D Hamilton. Analysis of time series subject to changes in regime. Journal of econometrics, 45
(1):39–70, 1990.

Simon S Haykin. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc., New York,
NY, USA, 2001. ISBN 0471369985.

11

Published as a conference paper at ICLR 2019

Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
Composing graphical models with neural networks for structured representations and fast inference.
In Advances in neural information processing systems, pp. 2946–2954, 2016.

Rahul G Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. 2017.

Balaji Lakshminarayanan. Decision Trees and Forests: A Probabilistic Perspective. Technical report,
UCL (University College London), 2016.

Scott Linderman, Matthew Johnson, and Ryan P Adams. Dependent Multinomial Models Made
Easy: Stick-Breaking with the Polya-gamma Augmentation. In C Cortes, N D Lawrence, D D Lee,
M Sugiyama, and R Garnett (eds.), Advances in Neural Information Processing Systems 28, pp.
3456–3464. Curran Associates, Inc., 2015.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems. In Aarti Singh
and Jerry Zhu (eds.), Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research, pp. 914–922, Fort
Lauderdale, FL, USA, 9 2017. PMLR.

Kevin P Murphy. Switching Kalman filters. Technical report, Compaq Cambridge Research, 1998.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg, et al.
Inferring single-trial neural population dynamics using sequential auto-encoders. Nature methods,
pp. 1, 2018.

Nicholas G Polson, James G Scott, and Jesse Windle. Bayesian Inference for Logistic Models Using
Pólya–Gamma Latent Variables. Journal of the American Statistical Association, 108(504):1339–
1349, 2013. doi: 10.1080/01621459.2013.829001.

Simo Särkkä. Bayesian filtering and smoothing, volume 3. Cambridge University Press, 2013.

Ioan Stanculescu, Christopher KI Williams, and Yvonne Freer. A hierarchical switching linear
dynamical system applied to the detection of sepsis in neonatal condition monitoring. In UAI, pp.
752–761, 2014.

David Sussillo, Rafal Józefowicz, L. F Abbott, and Chethan Pandarinath. LFADS - Latent Factor
Analysis via Dynamical Systems. CoRR, abs/1608.06315, 2016.

Yuan Zhao and Il Memming Park. Interpretable nonlinear dynamic modeling of neural trajectories.
In Advances in Neural Information Processing Systems (NIPS), 2016.

Yuan Zhao and Il Memming Park. Variational Latent Gaussian Process for Recovering Single-
Trial Dynamics from Population Spike Trains. Neural Computation, 29(5), May 2017. doi:
10.1162/NECO_a_00953.

Yuan Zhao and Il Memming Park. Variational joint filtering. arXiv, abs/1707.09049, 2018.

Onno Zoeter and Tom Heskes. Hierarchical visualization of time-series data using switching linear
dynamical systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):
1202–1214, 2003.

12

Published as a conference paper at ICLR 2019

A PROOF OF THEOREM 1

Proof. Let T be a balanced binary tree with K leaf nodes. To show that the models are equal, it
suffices to show the equivalence of the likelihood and the prior between models. For compactness,
we drop the affine term and the vec(·) operator. The likelihood of TrSLDS is

p(x1:T |z1:T ,Θ) =

T∏
t=1

N (xt|xt−1 +Aztxt−1, Qzt), (26)

and the likelihood of the residual model is

p(x1:T |z1:T , Θ̃) =

T∏
t=1

N
(
xt|xt−1 + Āztxt−1, Q̃zt

)
. (27)

where Āzt is defined in eq. (16). Substituting Azt =
∑
j∈path(zt) Ãj into eq. (27) equates the

likelihoods. All that is left to do is to show the equality of the priors.

We can express An =
∑
j∈path(n) Ãj recursively

An = Ãn +Apar(n). (28)

Plugging eq. (28) into ln p(An|Apar(n))

ln p(An|Apar(n)) = −1

2

(
An −Apar(n)

)T
Σ−1n

(
An −Apar(n)

)
+ C (29)

= −1

2

(
Ãn +Apar(n) −Apar(n)

)T
Σ−1n

(
Ãn +Apar(n) −Apar(n)

)
+ C (30)

= −1

2
ÃTnΣ−1n Ãn + C (31)

= −1

2
ÃTn

(
λdepth(n)Σε

)−1
Ãn + C (32)

where C is a constant. Because Σε = Σ̃ε and λ = λ̃, eq. (32) is equivalent to the kernel of p(Ãn)
implying that the priors are equal. Since this is true ∀n ∈ T , the joint distributions of the two models
are the same.

B DETAILS ON BAYESIAN INFERENCE

B.1 HANDLING BERNOULLI OBSERVATIONS

Suppose the observation of the system at time t follows

p(yt|xt,Ψ) =

N∏
n=1

Bern(σ(υn,t)) =

N∏
n=1

(eυn,t)
yn,t

1 + eυn,t
, (33)

υn,t = cTnxt + dn, (34)

where cn ∈ Rdx , dn ∈ R. Equation 33 is of the same form as the left hand side of eq. (20), thus it
is amenable to PG augmentation. We introduce PG axillary variables ηn,t. Conditioning on η1:N ,
eq. (33) becomes

p(yt|xt, η1:N) =

N∏
n=1

e−
1
2 (ηn,tυn,t−2κn,tυn,t) (35)

∝
N∏
n=1

N (cTnxt + dn|κn,t/ηn,t, 1/ηn,t) (36)

= N (Cxt +D|H−1t κt, H
−1
t) (37)

where Ht = diag([η1,t, . . . , ηN,t]), κt = [κ1,t, . . . , κN,t] and κn,t = yn,t − 1
2 .

13

Published as a conference paper at ICLR 2019

The observation is now effectively Gaussian and can be incorporated into the message passing for x1:T .
The emission parameters are also conjugate with the augmented observation potential given a Matrix
Normal prior. The conditional posterior on the axillary PG variables ηn,t also follows a PG distribution
i.e. ηn,t|(cn, dn), xt ∼ PG(1, υn,t). Note that this augmentation scheme can also work for negative
binomial, binomial, and multinomial observations (Polson et al., 2013; Linderman et al., 2015).

B.2 MESSAGE PASSING FOR x1:T

Assuming that the observations, y1:T , are linear and Gaussian, the posterior of the continuous latent
states, x0:T , conditioned on all the other variables is proportional to

T∏
t=1

ψ(xt, xt−1, zt)ψ(zt, xt−1)ψ(xt, yt) (38)

where ψ(xt, xt−1, zt) is the potential of the conditionally linear dynamics, ψ(xt, yt) is the potential
of the observation and ψ(xt−1, zt) is the recurrence potential. ψ(xt−1, zt) is a product of all the
internal nodes traversed at time t

ψ(xt−1, zt) =
∏

n∈path(zt)\Z

ψn(xt−1, zt). (39)

If the potentials in eq. (38) were all linear and Gaussian, then we could efficiently sample from
the posetrior of x0:T by passing messsages forward through Kalman Filtering and then sampling
backwards; the prescence of the recurrence potentials prevent this because they aren’t Gaussian. By
augmenting the model with the PG r.v.’s, the recurrence potential at internal node n becomes

ψn(xt−1, zt, wn,t−1) = N (RTnxt−1 + rn|κn,t−1/ωn,t−1, 1/ωn,t−1) (40)

which is effectively Gaussian , allowing for the use of the Kalman filter for message passing.

C INITIALIZATION

We initialized the Gibbs sampler using the following initialization procedure: (i) probabilistic PCA
was performed on the data, y1:T to initialize the emission parameters, {C, d} and the continuous
latent states, x1:T . (ii) To initialize the dynamics of the nodes ,Θ, and the hyperplanes, Γ, we propose
greedily fitting the proposed model using MSE as the loss function. We first optimize over the root
node

arg min
Aε,bε

1

T

T∑
t=0

‖xt+1 − xt −Aεxt − bε‖22 , (41)

and obtain A∗ε , b
∗
ε (Note that A∗ε , b

∗
ε can obtained in closed form by computing their corresponding

OLS estimates). Fixing A∗ε and b∗ε , we then optimize over the second level in the tree

arg min
A1,b1,A2,b2,Rε,rε

1

T

T∑
t=0

‖xt+1 − σ(vε)x̂1 − σ(−vε)x̂2‖ , (42)

x̂i = xt + (A∗ε +Ai)xt + (b∗ε + bi) , (43)

vε = RTε xt + rε. (44)

This procedure would continue until we reach the leaf nodes of the tree. Θ∗ and Γ∗ are then used
to initialize the dynamics and the hyperplanes, respectively. In our simulations, we used stochastic
gradient descent with momentum to perform the optimization. (iii) The discrete latent states, z1:T ,
were initialized by performing hard classification using Γ∗ and the initial estimate of x0:T .

D DEALING WITH ROTATIONAL INVARIANCE

A well known problem with these types of model is it’s susceptibility to rotational and scaling
transformation, thus we can only learn the dynamics up to an affine transformation Erosheva & Curtis
(2017). During Gibbs sampling the parameters will continuously rotate and scale, which can slow

14

Published as a conference paper at ICLR 2019

down the mixing of the chains. One possible solution to the issue is if we constrained C to have
some special structure which would make the model identifiable; this would require sampling from
manifolds which is usually inefficient. Similar to Geweke & Zhou (1996), we use the following
procedure to prevent the samples from continuously rotating and scaling:

• Once we obtain a sample from the conditional posterior of the emission parameters {C,D},
we normalize the columns of C.

• RQ decomposition is performed on C to obtain U,O where U ∈ Rdy×dx is an upper
triangular matrix and O ∈ Rdx×dx is an orthogonal matrix.

• We set C = U and rotate all the parameters of the model using O.

E SCALABILITY AND COMPUTATIONAL COMPLEXITY OF THE INFERENCE

0 100 200 300 400 500

Iteration

1000000

750000

500000

250000

0

250000

500000

750000

lo
g

jo
in

t

2 states
4 states
8 states

Figure 5: The logarithm of the joint density was computed for all the samples generated from the 3
TrSLDS and smoothed using a trailing moving average filter. The sampler seems to converge to a
mode rather quickly for all the three instantiations of the TrSLDS.

The rSLDS and the TrSLDS share the same linear time complexity for sampling the discrete and
continuous states, and both models learn K-1 hyperplanes to weakly partition the space. Specifically,
both models incur: an O(TK) cost for sampling the discrete states, which increases to O(TK2) if
we allow Markovian dependencies between discrete states; an O(TD3) cost (D is the continuous
state dimension) for sampling the continuous states, just like in a linear dynamical system; and
anO(KD3) cost for sampling the hyperplanes. The only additional cost of the TrSLDS stems from
the hierarchical prior on state dynamics. Unlike the rSLDS, we impose a tree-structured prior on the
dynamics to encourage similar dynamics between nearby nodes in the tree. Rather than sampling
K dynamics parameters, we need to sample 2K-1. Since they are all related via a tree-structured
Gaussian graphical model, the cost of an exact sample isO(KD3) just as in the rSLDS, with the only
difference being a constant factor of about 2. Thus, we obtain a multi-scale view of the underlying
system with a negligible effect on the computational complexity.

To see how the number of discrete latent states effects the convergence speed of the Gibbs sampler,
we fit 3 TrSLDS, with K = 2, 4, 8 respectively, to a Lorenz Attractor described in Sec. but used 250
trajectories to train the model as opposed to 50. To assess convergence, we plotted the logarithm of
the joint density as a function of Gibbs samples. The results are shown Fig. 5.

15

Published as a conference paper at ICLR 2019

F SYNTHETIC NASCAR R©

We ran the TrSLDS on the synthetic NASCAR R© example from (Linderman et al., 2017), where the
underlying model is an rSLDS. We trained TrSLDS on 10,000 time points and ran Gibbs for 1,000
samples; the last sample was used to create Fig. 6 where the vector fields where created from the
mode of the conditional posterior of the dynamics. Even though the partitions were created using
sequential stick-breaking, TrSLDS was able to reconstruct the dynamics of the model.

4 2 0 2 4

x1

3

2

1

0

1

2

3

x 2

True Latent States

4 2 0 2 4

x1

3

2

1

0

1

2

3

x 2

Inferred Latent States

4 2 0 2 4

x1

3

2

1

0

1

2

3

x 2

True Vector Field

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

4 2 0 2 4

x1

3

2

1

0

1

2

3

x 2

Vector Field of leaf nodes

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

4 2 0 2 4

x1

3

2

1

0

1

2

3

x 2

Vector Field of root node

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

4 2 0 2 4

x1

3

2

1

0

1

2

3

x 2

Vector Field of second layer

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Figure 6: TrSLDS applied to the synthetic NASCAR R© example. (left top) The true continuous latent
states colored by their discrete state assignment. (left bottom) TrSLDS is able to infer the continuous
and discrete latent states. (middle top) The dynamics were constructed such that the trajectories
produced creates an oval track. (middle bottom) Although the partitioning is done through sequential
stick-breaking, TrSLDS is still able to recover the dynamics. (right) We can see that TrSLDS can
indeed recover a multi-scale view. The root nodes captures the rotation. The second level seperates
the track into two rotations of different speeds.

G TREE SYNTHETIC NASCAR R©

To check whether the sampler is mixing adequately, we test TrSLDS on a twist on the synthetic
NASCAR R© example where the underlying model is a TrSLDS. We also ran rSLDS on the example to
highlight the limitations of seqeuntail stick-breaking. We trained both rSLDS and TrSLDS on 20,000
time points and Gibbs was ran for 1,000 samples; the last sample was used to create Fig. 7. To compare
the precditive performance between the models, the R2

k was computed for rSLDS and TrSLDS.

16

Published as a conference paper at ICLR 2019

15 10 5 0 5 10 15 20

x1

15

10

5

0

5

10

x 2

True Latent States

15 10 5 0 5 10 15 20

x1

15

10

5

0

5

10

x 2

Inferred Latent States

15 10 5 0 5 10 15 20

x1

15

10

5

0

5

10

x 2

True Vector Field

2

1

0

1

15 10 5 0 5 10 15 20

x1

15

10

5

0

5

10

x 2

TrSLDS Vector Field

2

1

0

1

15 10 5 0 5 10 15 20

x1

15

10

5

0

5

10

x 2

rSLDS Vector Field

2

1

0

1

0 20 40 60 80 100

prediction horizion (k-step)
0.0

0.2

0.4

0.6

0.8

1.0
R

2
k-step prediction performance

rSLDS
TrSLDS

Figure 7: TrSLDS and rSLDS applied to the tree version of to the synthetic NASCAR R©. (left top)The
true continuous latent states colored by their discrete state assignment. (left bottom) TrSLDS is able
to infer the continuous and discrete latent states. (middle) TrSLDS was able to learn the underlying
dynamics and partitions, indiicating that the sampler is mixing well. (right top)Due to the sequential
nature of rSLDS, the model can’t adequately learn the dynamics of the model. (right bottom) We
can see from the k-step R2 that TrSLDS outperforms rSLDS.

17

	Introduction
	Background
	Switching Linear Dynamical Systems
	Recurrent Switching Linear Dynamical Systems

	Tree-Strucutred Recurrent Switching Linear Dynamical Systems
	A Hierarchical Dynamics Prior that Respects the Tree Structure
	Residual Model

	Bayesian Inference
	Pólya-Gamma Augmentation
	Conditional Posteriors

	Experiments
	FitzHugh-Nagumo
	Lorenz Attractor
	Neural Data

	Conclusion
	Proof of Theorem 1
	Details on Bayesian Inference
	Handling Bernoulli Observations
	Message Passing for x1:T

	Initialization
	Dealing with rotational invariance
	Scalability and Computational Complexity of the Inference
	Synthetic NASCAR®
	Tree Synthetic NASCAR®

