QUEST: A ROBUST ATTENTION FORMULATION USING QUERY-MODULATED SPHERICAL ATTENTION

Anonymous authors

Paper under double-blind review

ABSTRACT

The Transformer model architecture has become one of the most widely used in deep learning and the attention mechanism is at its core. The standard attention formulation uses a softmax operation applied to a scaled dot product between query and key vectors. We explore the role played by norms of the queries and keys, which can cause training instabilities when they arbitrarily increase. We demonstrate how this can happen even in simple Transformer models, in the presence of easy-to-learn spurious patterns in the data. We propose a new attention formulation, QUEry-modulated Spherical aTtention (QUEST), that constrains the keys to a hyperspherical latent space, while still allowing individual tokens to flexibly control the sharpness of the attention distribution. QUEST can be easily used as a drop-in replacement for standard attention. We focus on vision applications while also exploring other domains to highlight the method's generality. We show that (1) QUEST trains without instabilities and (2) produces models with improved performance (3) that are robust to data corruptions and adversarial attacks.

1 Introduction

Transformers (Vaswani et al., 2017) are one of the most widely used model architectures across many domains in recent times. Each domain has adapted Transformers to build domain-specific variants such as Vision Transformers (ViT) (Dosovitskiy et al., 2020) in computer vision, GPT (Radford et al., 2018) in natural language processing, PointTransformer (Zhao et al., 2021) for 3D pointcloud data and Conformer (Gulati et al., 2020) in speech recognition, to name a few. A core building block of the Transformer that is common across such variants is the attention mechanism (Bahdanau et al., 2015; Britz et al., 2017; Luong et al., 2015). Although several different variants of the Transformer have been developed, they commonly use the vanilla attention mechanism consisting of a scaled dot-product followed by a softmax operation. Despite their success, training Transformer models can be challenging due to training instabilities (Chowdhery et al., 2023; Dehghani et al., 2023; Li et al., 2022a; Wortsman et al., 2024; Davis et al., 2021; Liu et al., 2020b; Zhai et al., 2023). Many training techniques consisting of initialization methods (Kedia et al., 2024; Huang et al., 2020), specific hyperparameter schedules (Liang et al., 2022; Kobayashi et al., 2024), normalizations (Dehghani et al., 2023; Wang et al., 2019; Xiong et al., 2020) and optimization strategies (Qi et al., 2025) have been developed to mitigate these issues. While this has limited such training instabilities to a great extent, why this issue occurs is still not fully understood (Hajra, 2025).

We study the scaled dot-product attention formulation and identify the roles of different components of this attention. We find that the arbitrary vector norms of the queries and keys may potentially cause the exploding attention logits, that is known to cause training instabilities (Zhai et al., 2023; Dehghani et al., 2023). Through a toy example, we demonstrate a scenario where the norms of these vectors increase and can lead to the model being stuck at a suboptimal solution. Even in stably trained models, we show that the model can concentrate attention on a few tokens instead of relying on all relevant tokens (see Figure 1 for an example using a ViT). We propose a new formulation, called Query-modulated Spherical Attention (QUEST), that displays improved training robustness across different hyperparameters. QUEST is a very simple modification of the standard attention and can easily be used as a drop-in replacement in any Transformer. Nevertheless, through extensive experiments on Transformers used in different domains, we show that our proposed attention formulation can bring consistent performance gains by learning robust patterns in the data. This is further reflected in improved robustness to adversarial attacks and data corruptions.

2 ATTENTION, PLEASE!

The attention mechanism is the core component of Transformers and operates on set-like or sequential data. In this section, we first present a background on scaled dot product attention (SDPA), which is the most widely used formulation of attention. Then, we provide an interpretation of the different components of this form of attention. Using that motivation, we propose a new attention formulation and finally, we use a toy example to demonstrate how it improves over SDPA and other related attention variants.

Scaled dot product attention: In the self-attention paradigm, the attention mechanism¹ transforms an input sequence (of length N) $X \in \mathbb{R}^{N \times D}$ to an output sequence $Z \in \mathbb{R}^{N \times D}$. Each item in this sequence is referred to as a token. Intuitively, this can be viewed as a process of relating each input token to the other tokens and aggregating some relevant information from these related tokens. In multihead self-attention, this is repeated over several heads, to obtain H different outputs $Z_h \in \mathbb{R}^{N \times D_H}$, where $D_H = D/H$. The output Z_h is obtained as:

$$\boldsymbol{Z}_h = \boldsymbol{A}_h \boldsymbol{V}_h = \operatorname{softmax} \left(C \boldsymbol{Q}_h \boldsymbol{K}_h^T \right) \boldsymbol{V}_h$$

Figure 1: Class-activation maps for an image from the Macaw class in ImageNet, generated using AG-CAM (Leem & Seo, 2024). Standard attention concentrates on few bird instances (see first row) and mis-classifies the image if the region containing those instances is noised (see third row). QUEST attention attends evenly to different bird instances and classifies the image correctly even if some of the bird instances are noised.

where the queries Q_h , keys K_h and values V_h for head h are obtained as $Q_h = XW_{Q,h}^T$, $K_h = XW_{K,h}^T$ and $V_h = XW_{V,h}^T$ respectively. The softmax is applied row-wise to the matrix $CQ_hK_h^T$. Typically, the scaling factor is a constant, $C = 1/\sqrt{D_H}$. For the sake of brevity, we will ignore the head index h from the notation henceforth and denote vanilla attention as: $A = \operatorname{softmax}(CQK^T)$.

2.1 AN ALTERNATIVE VIEW ON ATTENTION

Let $v = ||v||\bar{v}$ where ||v|| is the norm of the vector and \bar{v} is a unit vector. The attention corresponding to token i can be written as:

$$\mathbf{A}_{i} = \operatorname{softmax} \left(C \mathbf{q}_{i} \mathbf{K}^{T} \right) = \operatorname{softmax} \left(C \| \mathbf{q}_{i} \| \bar{\mathbf{q}}_{i} \mathbf{K}^{T} \right) \\
= \left\{ \frac{\exp[C \| \mathbf{q}_{i} \| \| \mathbf{k}_{1} \| (\bar{\mathbf{q}}_{i} \cdot \bar{\mathbf{k}}_{1})]}{\sum_{j'=1}^{N} \exp[C \| \mathbf{q}_{i} \| \| \mathbf{k}_{j'} \| (\bar{\mathbf{q}}_{i} \cdot \bar{\mathbf{k}}_{j'})]}, \dots, \frac{\exp[C \| \mathbf{q}_{i} \| \| \mathbf{k}_{N} \| (\bar{\mathbf{q}}_{i} \cdot \bar{\mathbf{k}}_{N})]}{\sum_{j'=1}^{N} \exp[C \| \mathbf{q}_{i} \| \| \mathbf{k}_{j'} \| (\bar{\mathbf{q}}_{i} \cdot \bar{\mathbf{k}}_{j'})]} \right\} \tag{1}$$

It can be noted that the norms of the queries and keys perform distinct roles in attention. The query norm $\|q_i\|$ scales all the attention logits and thus, controls the sharpness of the attention distribution for that token. A higher query norm results in a sharper attention and focuses on fewer tokens whereas a smaller query norm results in a softer distribution, aggregating information from a larger number of tokens. The dot product $(\bar{q}_i \cdot \bar{k}_j)$ denotes the similarity or vector alignment between each pair of query and key tokens. The key norm $\|k_j\|$ controls the contribution to "general" attention from the key j. For a query token that is uniformly distributed in the query-key latent space, the queries are more likely to attend to key tokens that have higher norms. The token that gets the most attention from a query token depends on a combination of its vector alignment and its key norm, $\|k_j\|(\bar{q}_i \cdot \bar{k}_j)$.

¹Although we focused on self-attention, the interpretation in this section and the proposed QUEST attention are also applicable to other attention paradigms like cross-attention.

During training, if the information from a token helps reduce the loss objective, its key norm and the query norm of the token (e.g. CLS token) that aggregates information from that key grow larger. This can result in an attention logit explosion and attention collapse as noted by Zhai et al. (2023). But this information can sometimes be a spurious correlation. In the attention operation, higher key norms increase the attention towards that key token and reduce the attention to other key tokens. The gradients through the attention operation are weighted by the attention probabilities (Katz & Wolf, 2025). Hence, tokens with lower key norms and thereby lower attention probabilities, also contribute less to parameter updates. Further, the parameter updates to the queries depend on a linear combination of the keys and vice versa. This indicates a cross-play where large key norms can further cause related query norms to increase, potentially leading to attention entropy collapse which contributes to training instabilities. Models initially learn features which are easy-to-learn, which can sometimes be spurious. If attention solely focuses on these features to solve the task, it is harder for the model to *unlearn* these spurious features and learn other useful features by attending to other tokens. We demonstrate this using a toy example in the section below, where we study the training of a simple Transformer model by introducing some spurious patterns in the training data.

In standard attention (Vaswani et al., 2017), the constant scaling factor $C=1/\sqrt{D_H}$ was proposed to prevent large attention logit values, which were observed when D_H was large. However, recent efforts to scale Vision Transformer models have shown that this formulation can still be unstable for large Transformer models due to arbitrarily growing attention logits (Dehghani et al., 2023). The proposed solution was to ℓ_2 -normalize both the queries and keys and scale each feature dimension in the queries and keys by learnable parameters (unique to each layer but shared across the heads), C_q , $C_k \in \mathbb{R}^{D_H}$. We refer to this as QKNorm-DS attention. Another related formulation, QKNorm-HS (Liu et al., 2022) instead scales each head with a learnable scalar $C \in \mathbb{R}^H$. DS and HS denote dimension and head scaling, respectively. We list the limitations of these attention variants below:

- 1. **Standard attention** is known to have training instabilities arising from large attention logits (Zhai et al., 2023). Arbitrarily increasing key and query norms is one mechanism through which this happens.
- QKNorm attentions (both QKNorm-HS and QKNorm-DS) enable stable training but scale all tokens in all heads by the same scaling factor which limits the expressivity of attention since all tokens are constrained to have the same sharpness.

A natural middle ground is to normalize either queries or keys. This would break the cross dependence between query (key) norms and key (query) gradient, with the potential of stabilizing the training. Neither of these options have however, to the best of our knowledge, been proposed in the literature. We will evaluate both options below, but what we propose is a new formulation of attention obtained by normalizing the keys while keeping the queries unnormalized. The intuition behind this choice is to allow each token to individually control the sharpness of its softmax distribution, and to prevent that large key norms "steal attention globally". We call this attention formulation, *Query-modulated Spherical Attention (QUEST)*, and compute attention as: $\mathbf{A} = \operatorname{softmax}\left(\mathbf{Q}\bar{\mathbf{K}}^T\right)$, where $\bar{\mathbf{K}}$ denotes ℓ_2 -normalized keys. Note that we do not use any additional scaling, i.e. C=1. This is an easily interpretable attention variant where the rank order of the attention distribution is purely defined by the vector alignment between queries and keys in the hyperspherical latent space (cosine similarity). The query norms allow each query to independently control the sharpness of its attention.

2.2 Spurious attention issues

We construct a simple toy example to demonstrate how standard attention can get stuck on spuriously correlated data patterns and find it difficult to learn the true and more consistent patterns in the data. Given a sequence of N vectors $X = [x_1, ..., x_N]$, where $x_i \in \mathbb{R}^D$, the task is to retrieve information (an *answer*) from one of the vectors in $[x_1, ..., x_N]$. The vectors consist of two parts: a real-valued vector x_i^k and a one-hot encoded vector x_i^v . All the real-valued vectors are sampled from a certain distribution except the one at a random answer location L. A correctly learned model should learn to identify this "out of distribution" vector x_L^k and ex-

Figure 2: Illustration of toy example.

tract the answer x_L^v from its location. This is a robust signal that is always true but we introduce a biased signal that can also solve the task, but only for a subset of the samples ($\sim 50\%$).

Specifically, independently for each training sample, let $L \sim \operatorname{Int}(\mathcal{N}(\mu_l, \sigma_l))$ denote the location of the answer token and let $u \sim \operatorname{Bernoulli}(p=0.5)$ denotes if the sample is biased or not. For all non-answer tokens we sample $\boldsymbol{x}_{i:i\neq L}^k \sim \mathcal{N}(0, \boldsymbol{I})$ (regardless of u), whereas for the answer token we sample $\boldsymbol{x}_L^k \sim \mathcal{N}(0, \Sigma)$ if u=0 (unbiased) or $\boldsymbol{x}_L^k \sim \mathcal{N}(\boldsymbol{b}, 0.1\boldsymbol{I})$ if u=1 (biased). Here, the bias vector $\boldsymbol{b} \sim \mathcal{N}(0, \Sigma)$ is shared for all biased samples and $\Sigma \neq I$ (details in A.2). Note that we introduced an additional bias in the answer location (by sampling from a normal distribution with mean μ_l and standard deviation σ_l) to ensure that the inputs are still biased even after the addition of a positional embedding. The answer part of the vectors, \boldsymbol{x}_i^v , are all sampled as uniform one-hot vectors over C classes, but it is the one-hot vector at location L that is defined as the correct answer.

We consider a simple Transformer model $y = f(X; \theta)$ with parameters θ which takes an input sequence X to produce a classification output y. We use a single Transformer layer (with learnable positional embeddings), which is sufficient to solve this task, and one head, which enables us to easily study the effect of different query and key norms. We use the <code>[CLS]</code> token features and use a linear layer to produce the class logits. More implementation details of the Transformer model is provided in the appendix A.2. We run this experiment with 5 different realizations of the data and 5 different weight initializations for the model weights. We train the model using the AdamW (Loshchilov & Hutter, 2018) optimizer for 50 epochs with a batch size of 32 and use learning rate values $\{0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01\}$ and weight decay values $\{0.0, 0.01, 0.02, 0.05, 0.05, 0.01\}$.

Figure 3: Success rates of learning the correct solution to the toy example. Models are trained with different hyperparameter combinations with 5 different weight initializations and 5 different realizations of the data. The QKNorm methods obtained \sim 0% overall success rate and their results are available in Figure A1.

Figure 4: **Norms of answer key tokens for biased and unbiased samples:** A common failure case for standard and QNorm attention involves the key norms of the biased answer token increasing as the training progresses. The model relies on looking up the bias vector to identify the answer.

Based on the performance on the training and test sets, we can categorize the learned models as degenerate (both training and test accuracy are random chance), biased (training accuracy of $50 \sim 80\%$ but a test accuracy $\sim 20-40\%$) and correct (training and test accuracy > 90%). The biased solution could learn a combination of the position and the vector bias to achieve a test accuracy $\sim 20-40\%$. We observed that degenerate solutions were common among QKNorm methods, which is not surprising since they completely discard the information about the atypical distribution of

the answer location contained in the norm of this vector. In general, the biased solution is easier to learn and only requires the model to look up the answer corresponding to the biased target vector \boldsymbol{b} . Specifically, the weight matrix for the keys will align with the vector \boldsymbol{b} in the sense that the stretch (or amplification) factor is large in the direction of \boldsymbol{b} , allowing the key norms to grow. This will concentrate attention globally on the answer location, but *only when the bias vector is present*. In standard attention, this is accelerated by the cross-play between query and key parameter updates. In QNorm, the queries are ℓ_2 -normalized, which helps in reducing this cross-play effect. Indeed, investigating the failed trainings of standard and QNorm attention, we found that the norms of the biased answer keys grew as the training progressed (see Figure 4). These models only learn to attend to the biased vector \boldsymbol{b} but fail to learn the correct solution. QUEST mitigates this effect by ensuring that individual tokens are unable to "steal attention" globally. In Figure 3, we show the success rates of learning the correct solution using different hyperparameter combinations and different attention formulations. We observe that the proposed QUEST attention displays a better overall success rate of 58% that also works well across a wider range of hyperparameter values.

3 RELATED WORK

In this work, we focus on improving the core attention mechanism and, hence, restrict our discussion to other works that explored this. We consider this work as an orthogonal contribution to other improvements in architecture design, training techniques and optimization. With the motivation of improving efficiency, a class of linear complexity Transformers without the softmax operation have been proposed (Wang et al., 2020; Choromanski et al., 2021; Kitaev et al., 2020; Katharopoulos et al., 2020). However, this work explores softmax-based attention only. Probabilistic interpretations of attention have connected attention to Nadaraya-Watson regression with Gaussian isotropic kernels (Nguyen et al., 2022b; Han et al., 2023), mixture models (Nguyen et al., 2022a), and asymmetric kernels (Chen et al., 2023). Elliptical attention (Nielsen et al., 2024) is a recent work that extends the Gaussian isotropic kernel interpretation of standard attention to hyper-ellipsoids using a Mahalanobis metric. QUEST attention uses keys in the hyperspherical latent space but we show that they are synergetic and can be combined as Elliptical QUEST. This uses an elliptical metric instead of cosine similarity between queries and keys (see A.4.2 for further discussion).

Prior works have studied the use of LayerNorm (Ba et al., 2016) in attention (Xiong et al., 2020) and its positioning (Wang et al., 2019). A main contributor to the training instability of Transformer models is the attention logit explosion (Zhai et al., 2023). This is directly related to the properties of queries and keys (Bao et al., 2024). Explicit ℓ_2 -normalization of the queries and keys proposed, QKNorm (Dehghani et al., 2023; Liu et al., 2022), is the closest to our work but were mainly aimed at scaling Vision Transformers. Mongaras et al. (2025) used a similar formulation to QKNorm, but in the context of softmax-free attention. While this makes large models stable to train, we show that this limits the expressivity of attention, shown by worse performance on smaller models compared to standard attention. Our QUEST attention is applicable to Transformers in general, stable to train up to the scales that we have attempted and shows improved performance compared to QKNorm.

4 EXPERIMENTS

We primarily focus on applications using Vision Transformers but also conduct experiments on Transformers used in other domains such as language modeling, graph Transformers and general time series tasks. Our goal is to demonstrate broad applicability and effectiveness offered by a simple modification. We therefore study the impact of replacing standard attention with QUEST in popular attention-based architectures in different settings across multiple domains.

4.1 VISION APPLICATIONS

4.1.1 CLASSIFICATION

Ablation: We conduct image classification experiments using the DeiT (Touvron et al., 2021a) training method. Firstly, we perform ablation experiments on different QK-normalization patterns in attention by training a ViT-Tiny model on ImageNet-1K dataset for 300 epochs and report the results in Table 1. In addition to evaluating on the ImageNet validation set, we also evaluate on

Table 1: Ablation of different QK normalization methods for ImageNet classification (ViT-Tiny model trained using DeiT for 300 epochs) [†Liu et al. (2022), ‡Dehghani et al. (2023)]

Attention	Scaling	IN-val Top-1	IN-v2 Top-1	IN-ReaL Top-1	IN-C MCE↓	IN Top-1	-A Top-5
Standard	$1/\sqrt{D_h}$	72.5	60.6	80.4	55.7	8.2	32.9
QUEST		73.3	61.1	81.2	55.0	8.5	34.6
QNorm	-	72.7	60.8	80.6	55.3	8.2	34.5
QKNorm-HS	$^{\dagger}~oldsymbol{C} \in \mathbb{R}^{L imes H}$	72.4	60.8	80.5	56.4	7.9	33.3
QKNorm-DS	‡ $oldsymbol{C}_q, oldsymbol{C}_k \in \mathbb{R}^{L imes D_h}$	71.6	59.7	79.6	57.4	7.2	31.5
QKNorm	$oldsymbol{C}_q, oldsymbol{C}_k \in \mathbb{R}^{L imes H imes D_h}$	71.2	59.3	79.0	58.1	7.0	31.0

Table 2: DeiT ImageNet Classification [† denotes training with DeiT-3, †Dehghani et al. (2023)]

Model	Attention	Epochs	IN-val	IN-v2	IN-ReaL	IN-C	IN	-A
		•	Top-1	Top-1	Top-1	$MCE\downarrow$	Top-1	Top-5
ViT-S/16	Standard	200	79.6	68.4	85.8	44.8	18.2	50.7
ViT-S/16	QUEST	200	80.2	68.9	86.2	43.2	20.4	53.5
ViT-B/16	Standard	100			-training o	crashed-		
ViT-B/16	QKNorm-DS [‡]	100	79.0	67.5	84.9	44.4	17.7	50.0
ViT-B/16	QUEST	100	79.7	68.7	85.7	42.9	19.2	51.9
ViT-B/16 [†]	Standard	400 + 20	82.7	72.4	88.0	36.5	34.8	67.7
ViT-B/16 [†]	QUEST	400 + 20	83.2	73.3	88.2	35.7	37.6	69.9
ViT-L/16	Standard	100			–training o	crashed-		
ViT-L/16	QKNorm-DS [‡]	100	72.5	58.5	78.2	54.4	8.9	31.2
ViT-L/16	QUEST	100	74.9	61.4	80.6	50.3	11.1	35.6

the validation data from ImageNet-v2 (Recht et al., 2019), ImageNet-ReaL (Beyer et al., 2020), ImageNet-Adversarial (Hendrycks et al., 2021) and ImageNet-Corrupted (Hendrycks & Dietterich, 2019). We report validation accuracies on all datasets except for IN-C, which is evaluated using the mean corruption error (MCE) over 16 corruptions. We observe that the proposed QUEST attention performs clearly better than standard attention but also compared to alternative methods to normalize the queries and keys. While QKNorm-DS is shown to be stable for larger ViTs, we observe that it performs worse than standard attention in smaller models as it limits the expressivity of attention. On this basis, we consider standard attention as the baseline in other experiments. If training is unstable with standard attention, then we use other QKNorm variants as the baseline.

DeiT and DeiT-3: Next, we consider experiments on larger sizes of Vision Transformers (Small, Base and Large). DeiT training with standard attention is unstable and divergent for ViT-Base and Large. In those cases, we use QKNorm-DS attention as the baseline. DeiT-3 proposed an improved and stable training recipe for larger ViTs by using better augmentation strategies and techniques such as stochastic depth (Huang et al., 2016) and LayerScale (Touvron et al., 2021b). We also evaluate QUEST attention using DeiT-3 for the ViT-Base training. The results are reported in Table 2. For all the considered model sizes and with both DeiT and the more recent DeiT-3 training recipes, we find that QUEST produces stable training (see Figure A6 for further analysis) and consistently better performance. We observe larger performance improvements in IN-C and IN-A evaluations, showing that QUEST attention produces more robust models. We further explore this through experiments on adversarial robustness and explainability in 4.1.2 and 4.1.4. We show additional experiments in A.4.1 to evaluate the sensitivity of these results to changes in the training data and hyperparameters like learning rate. We found the performance improvement to be consistent when training with different limited data subsets. The models with QUEST attention are stable to train at different learning rates.

Additional experiments: We experiment with an alternate Transformer architecture, CrossViT (Chen et al., 2021), to demonstrate that QUEST attention is compatible with cross-attention (see A.4.1). Since it is commonplace to use self-supervised models, we also evaluate QUEST attention for pre-training in A.4.8, and find that it improves over standard attention in downstream performance.

Table 3: Robustness to adversarial attacks using ViT-Ti/16 model trained using DeiT

Attention	Top-1	Clean Data Top-5	a NLL	Top-1	FGSM Top-5	NLL	Top-1	PGD Top-5	NLL
Standard	72.50	91.45	1.190	54.23	85.28	1.827	43.65	78.18	2.503
QUEST	73.33	91.91	1.160	56.90	86.63	1.745	45.26	79.33	2.448
Elliptical	71.53	90.70	1.254	55.96	85.53	1.746	46.30	80.05	2.231
Elliptical-QUEST	72.48	91.20	1.214	56.39	85.94	1.741	47.25	80.61	2.211

Table 4: Robustness to adversarial attacks using ViT-Ti/16 model trained using DeiT

Attention	Top-1	SPSA Top-5	NLL	Top-1	Auto Top-5	NLL
Standard	47.17	83.95	2.027 1.904	26.57	67.60	3.230
QUEST	50.70	85.49		27.29	67.98	3.200
Elliptical	57.96	86.92	1.654	27.35	67.28	3.014
Elliptical-QUEST	59.15	87.44	1.613	28.54	68.10	2.965

4.1.2 ROBUSTNESS

In addition to improved robustness to corruptions and adversarially curated images observed above, we evaluate the robustness of QUEST attention to adversarial attacks. For adversarial attacks under image perturbations, we adopt the experimental setup of Nielsen et al. (2024). We report the validation performance under the following adversarial attacks: fast gradient sign method (FGSM) (Goodfellow et al., 2015), PGD attack based on projected gradient descent (Madry et al., 2018), SPSA attack based on simultaneous perturbation stochastic approximation (Uesato et al., 2018) and Auto attack (Croce & Hein, 2020). The Auto attack is an ensemble of auto PGD-Cross Entropy, auto PGD-targeted, fast adaptive boundary-targeted and Square attacks. The complete experimental details are provided in A.4.2. We report the validation accuracies and NLL, after adversarial perturbations for the ViT-Tiny model in Table 3 and 4 (see Table A4 for similar results for larger ViT models). Firstly, we observe that QUEST is more robust than standard attention across all adversarial attacks. QUEST attention focuses more evenly on relevant object regions whereas standard attention concentrates on only a few object parts or object instances (see further discussion below in 4.1.4). Elliptical attention (Nielsen et al., 2024) is a SOTA model for robustness but this is achieved at the expense of classification accuracy (71.53% vs 72.50%). We show that QUEST can be orthogonally added to Elliptical attention to further improve robustness, while also achieving better classification accuracy on clean data.

4.1.3 SEGMENTATION

We evaluate image segmentation using the Segmenter approach (Strudel et al., 2021) using a Mask Transformer decoder, where we initialize the backbone ViT model with the DeiT weights from above and finetune the entire model (encoder and decoder) for semantic segmentation on the ADE20K dataset (Zhou et al., 2019; 2017). We also evaluate the segmentation models for robustness under 16 different types of image

Table 5: ADE20K Image Segmentation

Model	Attention	Clean data mIoU	Corrupted data mIoU
ViT-Ti/16	Standard	37.34	32.19
ViT-Ti/16	QUEST	38.87	33.55
ViT-S/16	Standard	43.43	38.45
ViT-S/16	QUEST	44.13	39.19

corruptions, following the experimental setup of Zhou et al. (2022). The segmentation results are reported in Table 5. Based on the commonly used mIoU metric (mean Intersection over Union), QUEST attention performs better than standard attention and displays better robustness to corruptions.

4.1.4 EXPLAINABILITY

Attention-based models are also beneficial from a model explainability standpoint. AG-CAM (Leem & Seo, 2024) is a recent explainability method that combines attention maps and gradient information

to produce class activation maps (CAMs) for image classifiers. Following the same evaluation protocol, we apply a probability threshold of 0.5 to the CAMs and evaluate pixel accuracy, mIoU and DICE score by comparing with ground truth localization labels in ImageNet. We consider the ViT-B model trained using the DeiT-3 training recipe and report the results for QUEST and standard attention in Table 6. In Figure 1 and 5, we show how a model trained with QUEST produces a better CAM for different classes. Specifically, standard attention concentrates on few object parts or instances whereas QUEST attends to them more evenly (see A.4.3 for additional qualitative examples). By not relying on only a few aspects of an object, QUEST can perform more robustly as observed in 4.1.2.

Table 6: Model explainability using AG-CAM

Backbone	Attention	Method	Epochs	Pixel accuracy (%) ↑	mIoU ↑	DICE Score ↑
	Standard QUEST		400 + 20 $400 + 20$	65.22 70.76	35.53 53.54	0.4870 0.6597

TIME-SERIES CLASSIFICATION

We conduct general sequence classification experiments using the UEA multivariate time series classification suite (Bagnall et al., 2018). We train Transformer models using the experimental setup in Wang et al. (2024) (see results in Table 7; more details in A.4.6). With the exception of 3 datasets, QUEST attention performs better or the same as standard attention. The overall average accuracy of QUEST attention surpassed the SOTA (73.17%) achieved by Crossformer Zhang & Yan (2023).

4.3 Graph Transformers

Recently, several Transformer-based models have been proposed for tasks involving graph-structured data. We adopt the experimental setup of GraphGPS (Rampášek et al., 2022) to evaluate on standard GNN benchmarks from Dwivedi et al. (2023) and long-range graph benchmarks (LRGB) from Dwivedi et al. (2022). We use the same optimal hyperparameter setups for each dataset as in GraphGPS (see A.4.7 for detailed experimental setups for each dataset) and evaluate QUEST attention as a drop-in replacement for standard attention used in those graph Transformers. The results for the standard and LRGB benchmarks are reported in Tables 8 and 9, respectively. For the standard benchmarks, standard attention and QUEST perform on par for all datasets (within significance range). On the long-range benchmark, we see significant improvements for COCO-SP, Peptides-func and PCQM-Contact, whereas we perform on par with standard attention for PascalVOC-SP and Peptides-struct.

Figure 5: Class activation maps for Elephant Table 7: UEA Multivariate Time Series Classifiand Zebra. Model with QUEST attention shows cation using Transformers better coverage of the different instances of the animals than standard attention.

OUEST Standard

Dataset	Standard	QUEST
EthanolConcentration	29.28	30.42
FaceDetection	65.24	65.83
Handwriting	42.00	49.18
Heartbeat	77.56	78.54
JapaneseVowels	98.38	98.38
PEMS-SF	83.82	80.92
SelfRegulationSCP1	88.05	88.05
SelfRegulationSCP2	58.89	58.33
SpokenArabicDigits	98.86	99.41
UWaveGestureLibrary	86.88	86.25
Average	72.90	73.53

432 433

Table 8: GNN Benchmarks using GraphGPS (mean \pm s.d over 10 runs)

436 437 438

439 440

441 442 443

444

445 446 447

448 449 450

456 457

462

467 468 469

470 471

483

484

485

CIFAR10 **CLUSTER** Attention ZINC **PATTERN** MAE ↓ Accuracy ↑ Accuracy ↑ Accuracy ↑ Standard 0.070 ± 0.004 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180 **OUEST** 0.069 ± 0.002 72.843 ± 0.526 86.760 ± 0.046 77.894 ± 0.205

Table 9: Long Range Graph Benchmarks using GraphGPS (mean \pm s.d over 4 runs)

Attention	PascalVOC-SP	COCO-SP	Peptides-func	Peptides-struct	PCQM-Contact
	F1 score ↑	F1 score ↑	AP↑	$MAE\downarrow$	MRR ↑
Standard QUEST	0.375 ± 0.011 0.373 ± 0.003	0.341 ± 0.004 0.349 ± 0.004	0.654 ± 0.004 0.662 ± 0.004	0.250 ± 0.001 0.251 ± 0.002	0.334 ± 0.001 0.346 ± 0.001

4.4 Language Modeling

We conduct language modeling experiments using the WikiText-103 dataset (Merity et al., 2017) and use the experimental setup from Nielsen et al. (2024) and (Schlag et al., 2021) for the Transformer model. We also consider a larger model, the Transformer-XL (Dai et al., 2019) and evaluate it using their experimental setup. Additionally, we evaluate the robustness of these language models using the Word Swap Attack from Nielsen et al. (2024) that replaces random words with the "AAA" token with specified rates. The perplexity (PPL) metrics for these models using clean and contaminated data (different attack rates) are reported in Table 10. We observe that QUEST attention generally produces marginally better performance on both clean and contaminated data.

Table 10: Language Modeling on WikiText-103

Method Model size		Attention	Clean Data PPL ↓		Contaminated Data PPL (Corruption %) \downarrow		
	(Parameters)		Val	Test	Test (1.5%)	Test (2.5%)	Test (5.0%)
Transformer Transformer	Small (44M) Small (44M)	Standard QUEST	33.073 32.966	34.076 33.966	41.566 41.522	46.380 46.299	60.944 61.062
Transformer Transformer	Medium (90M) Medium (90M)	Standard QUEST	27.441 26.980	28.851 28.478	36.234 35.849	40.866 40.499	55.012 54.531
Transformer-XL Transformer-XL	Base (151M) Base (151M)	Standard QUEST	22.650 22.436	23.592 23.320	29.627 29.339	33.386 33.008	44.168 43.511

Conclusion

The instabilities in training Transformers are well known and occur when attention collapses due to arbitrarily increasing query and key norms. We demonstrate how spuriously correlated features in certain tokens can contribute to such behavior. Unlike prior works which argued that such issues only occurred in larger models, we showed that they can also limit small models, resulting in reduced performance even if the training does not diverge. We propose a simple drop-in replacement called QUEST attention that considers a hyperspherical latent space for attention while still allowing individual tokens to flexibly and independently control the sharpness of their attention distributions. Through extensive experiments, we show that QUEST attention trains more robustly and produces models that typically perform better and that are more robust to corruptions and adversarial attacks than standard attention and its variants like QKNorm. We also show that QUEST attention improves the robustness of the trained models and can orthogonally improve SOTA methods like Elliptical attention. While we have shown consistent improvements when using QUEST with Transformers in multiple domains, we have primarily focused on vision applications and leave more in-depth evaluation on other domains and incorporation of QUEST into domain-specific SOTA architectures for future work. Given the effectiveness of operating in the hyperspherical latent space, exploring more geometrically aligned operations and optimization methods, e.g. Riemannian gradient descent (Kasai et al., 2019), is another promising avenue for future work.

REPRODUCIBILITY STATEMENT

We include an algorithmic implementation of QUEST attention and standard attention in Algorithm A1 to clearly illustrate our proposed modification. In all our experiments, we use standard evaluation protocol and use publicly available code repositories. We introduced QUEST attention as a simple drop-in replacement for standard attention in the different experiments that we conducted. We provide details in the Appendix (see A.4) for all the code repositories used and clarify any changes to hyperparameter configurations.

REFERENCES

- Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient learning. In *ECCV*, 2022.
- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint* arXiv:1607.06450, 2016.
- Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. The UEA multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075, 2018.
- Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In *ICLR*, 2015.
- Han Bao, Ryuichiro Hataya, and Ryo Karakida. Self-attention networks localize when qk-eigenspectrum concentrates. In *ICML*, 2024.
- Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of image transformers. In *ICLR*, 2022.
- Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we done with imagenet? *arXiv preprint arXiv:2006.07159*, 2020.
- Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 mining discriminative components with random forests. In *ECCV*, 2014.
- Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive exploration of neural machine translation architectures. In *EMNLP*, 2017.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *ICCV*, 2021.
- Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision transformer for image classification. In *ICCV*, 2021.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *ICML*, 2020.
- Yingyi Chen, Qinghua Tao, Francesco Tonin, and Johan Suykens. Primal-attention: Self-attention through asymmetric kernel svd in primal representation. *NeurIPS*, 2023.
- Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with performers. In *ICLR*, 2021.
- Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways. *JMLR*, 2023.
 - Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In *CVPR*, 2014.

- Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In *ICML*, 2020.
- Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length context. In *ACL*, 2019.
 - Jared Q Davis, Albert Gu, Krzysztof Choromanski, Tri Dao, Christopher Re, Chelsea Finn, and Percy Liang. Catformer: Designing stable transformers via sensitivity analysis. In *ICML*, 2021.
 - Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision transformers to 22 billion parameters. In *ICML*, 2023.
 - Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *CVPR*, 2009.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2020.
 - Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and Dominique Beaini. Long range graph benchmark. In *NeurIPS Datasets and Benchmarks Track*, 2022.
 - Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. *JMLR*, 2023.
 - Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models transfer? In *CVPR*, 2021.
 - Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *IJCV*, 2010.
 - Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *ICLR*, 2015.
 - Hariprasath Govindarajan, Per Sidén, Jacob Roll, and Fredrik Lindsten. DINO as a von mises-fisher mixture model. In *ICLR*, 2023.
 - Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer for speech recognition. *Interspeech*, 2020.
 - Suvadeep Hajra. Short-range dependency effects on transformer instability and a decomposed attention solution. *arXiv* preprint arXiv:2505.15548, 2025.
 - Xing Han, Tongzheng Ren, Tan Nguyen, Khai Nguyen, Joydeep Ghosh, and Nhat Ho. Designing robust transformers using robust kernel density estimation. *NeurIPS*, 2023.
 - Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. *ICLR*, 2019.
 - Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. *CVPR*, 2021.
 - Charles Tapley Hoyt, Max Berrendorf, Mikhail Galkin, Volker Tresp, and Benjamin M Gyori. A unified framework for rank-based evaluation metrics for link prediction in knowledge graphs. In *Workshop on Graph Learning Benchmarks at The WebConf*, 2022.
 - Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic depth. In *ECCV*, 2016.
 - Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimization through better initialization. In *ICML*, 2020.

- Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic gradient algorithms on matrix manifolds. In *ICML*, 2019.
- Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In *ICML*, 2020.
 - Shahar Katz and Lior Wolf. Reversed attention: On the gradient descent of attention layers in GPT. In *NAACL*, 2025.
- Akhil Kedia, Mohd Abbas Zaidi, Sushil Khyalia, Jungho Jung, Harshith Goka, and Haejun Lee.
 Transformers get stable: An end-to-end signal propagation theory for language models. In *ICML*, 2024.
 - Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In *ICLR*, 2020.
 - Seijin Kobayashi, Yassir Akram, and Johannes Von Oswald. Weight decay induces low-rank attention layers. *NeurIPS*, 2024.
 - Saebom Leem and Hyunseok Seo. Attention guided cam: visual explanations of vision transformer guided by self-attention. In *Proceedings of the AAAI conference on artificial intelligence*, 2024.
 - Conglong Li, Minjia Zhang, and Yuxiong He. The stability-efficiency dilemma: Investigating sequence length warmup for training gpt models. *NeurIPS*, 2022a.
 - Fei-Fei Li, Marco Andreeto, Marc'Aurelio Ranzato, and Pietro Perona. Caltech 101, 2022b. URL https://data.caltech.edu/records/20086.
 - Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Tuo Zhao. No parameters left behind: Sensitivity guided adaptive learning rate for training large transformer models. In *ICLR*, 2022.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.
 - Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond. In *ICLR*, 2020a.
 - Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the difficulty of training transformers. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *EMNLP*, 2020b.
 - Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *CVPR*, 2022.
 - Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. 2018.
 - Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based neural machine translation. In *EMNLP*, 2015.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *ICLR*, 2018.
 - Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. Technical report, 2013.
 - Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In *ICLR*, 2017.
 - Gabriel Mongaras, Trevor Dohm, and Eric Larson. Cottention: Linear transformers with cosine attention. In *Intelligent Computing-Proceedings of the Computing Conference*, 2025.
 - Tam Minh Nguyen, Tan Minh Nguyen, Dung DD Le, Duy Khuong Nguyen, Viet-Anh Tran, Richard Baraniuk, Nhat Ho, and Stanley Osher. Improving transformers with probabilistic attention keys. In *ICML*, 2022a.

- Tan Nguyen, Minh Pham, Tam Nguyen, Khai Nguyen, Stanley Osher, and Nhat Ho. Fourierformer: Transformer meets generalized fourier integral theorem. *NeurIPS*, 2022b.
- Stefan Nielsen, Laziz Abdullaev, Rachel SY Teo, and Tan Nguyen. Elliptical attention. *NeurIPS*, 2024.
 - Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, 2008.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision. *TMLR*, 2024.
 - Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *CVPR*, 2012.
 - Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alexander Sorkine-Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation. *arXiv:1704.00675*, 2017.
 - Xianbiao Qi, Yelin He, Jiaquan Ye, Chun-Guang Li, Bojia Zi, Xili Dai, Qin Zou, and Rong Xiao. Taming transformer without using learning rate warmup. In *ICLR*, 2025.
 - Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
 - Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. *NeurIPS*, 2022.
 - Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers generalize to ImageNet? In *ICML*, 2019.
 - Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight programmers. In *ICML*, 2021.
 - Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for semantic segmentation. In *ICCV*, 2021.
 - Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In *ICML*, 2021a.
 - Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper with image transformers. In *ICCV*, 2021b.
 - Jonathan Uesato, Brendan O'donoghue, Pushmeet Kohli, and Aaron Oord. Adversarial risk and the dangers of evaluating against weak attacks. In *ICML*, 2018.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 2017.
 - Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao. Learning deep transformer models for machine translation. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), *ACL*, 2019.
 - Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.
 - Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, and Jianmin Wang. Deep time series models: A comprehensive survey and benchmark. 2024.

- Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam, John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale transformer training instabilities. In *ICLR*, 2024.
- Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In *CVPR*, 2010.
- Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database: Exploring a large collection of scene categories. *IJCV*, 2016.
- Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In *ICML*, 2020.
- Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention entropy collapse. In *ICML*, 2023.
- Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *ICLR*, 2023.
- Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In *ICCV*, 2021.
- Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In *CVPR*, 2017.
- Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. *IJCV*, 2019.
- Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and Jose M Alvarez. Understanding the robustness in vision transformers. In *ICML*, 2022.
- Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image bert pre-training with online tokenizer. In *ICLR*, 2021.

A APPENDIX

756

757 758

759 760

761

762

763

764

765 766

767

768

769

770

771

772 773

774

775

776

777

778

779780

781

782

783

784

785

786

787 788 789

790 791

792

793 794

795

796

797

798

799

800

801

802 803

804

805

806

807

808

809

A.1 QUEST ATTENTION IMPLEMENTATION

The implementation of both standard attention and QUEST attention is illustrated in Algorithm A1. The key modification in QUEST attention is to ℓ_2 -normalize the keys in lines 13-14. In any method that currently uses standard attention, QUEST attention can be used as a drop-in replacement. For other variants of attention that still use a similar scaled dot-product formulation, a QUEST attention variant can be obtained by normalizing the keys.

Algorithm A1 Computation of standard and QUEST attention

```
1: Input:
 2: Tensor Q_h \in \mathbb{R}^{N \times D_H}
                                                                           \triangleright Queries for N tokens in head h
 3: Tensor K_h \in \mathbb{R}^{N \times D_H}
                                                                              \triangleright Keys for N tokens in head h
 4: Tensor V_h \in \mathbb{R}^{N \times D_H}
                                                                             \triangleright Values for N tokens in head h
 5: integer D_H \in \mathbb{N}
                                                                                            ▶ Head dimension
 6: function StandardAttention(Q_h, K_h, V_h, D_H)
 7:
                                                                                      8:
        \texttt{attention\_logits} \leftarrow C \times Q_h \times K_h^T
 9:
        attention ← softmax(attention_logits) ▷ softmax along the keys dimension
10:
        output \leftarrow attention \times V_h
        return output
11:
12: function QUESTATTENTION(Q_h, K_h, V_h, D_H)
        NormK\_factor \leftarrow diag\left(\frac{1}{\|K_{h,1}\|},...,\frac{1}{\|K_{h,N}\|}\right) \triangleright Calculate normalization factor of N keys
13:
        \bar{K}_h \leftarrow \texttt{NormK\_factor} \times K_h
                                                                                 14:
        \texttt{attention\_logits} \leftarrow Q_h^{\vec{n}} \times \bar{K}_h^T
15:
16:
        attention ← softmax(attention_logits) ▷ softmax along the keys dimension
17:
        output \leftarrow attention \times V_h
18:
        return output
```

A.2 IMPLEMENTATION DETAILS OF THE TOY EXAMPLE

In this section, we provide additional details about the construction of the toy example and the Transformer model used in our experiments.

Toy example construction: In the toy example, the real-valued vectors at the answer location \boldsymbol{x}_L^k are sampled differently depending on whether the sample is biased or not (as per the Binomial random variable u). For the unbiased case, we define $\Sigma = \boldsymbol{S}\boldsymbol{S}^T$, where all elements of \boldsymbol{S} are sampled from a standard normal distribution. For the position bias, we sampled the answer positions from a normal distribution, $\mathcal{N}(\mu_l, \sigma_l)$ and converted them into integer indices. We used $\mu_l = 10$ and $\sigma_l = 2$. The most frequently sampled position occurs approximately 20% of the time in the data. The real-valued vectors and the one-hot encoded vectors are both of 10 dimensions. As a result the task is a 10-way classification problem.

Transformer model setup: We use a one-layer Transformer model for the experiments involving the toy example as it is sufficient to solve the task. We use only one head to enable easier interpretation of the norms of keys and queries belonging to specific positions such as [CLS] and answer location. The Transformer model setup is illustrated in Algorithm A2. The embedding dimensions of the Transformer model is the same as the input data dimensions (= 20). The same number of dimensions is also used in the MLP hidden layer in the Transformer. For the different attentions, the only change is to use different attention functions (see examples for standard and QUEST attention in Algorithm A1).

811

825 826 827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842843844

845 846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Algorithm A2 Transformer model setup in the toy example

```
1: Input:
812
             2: Tensor \boldsymbol{X} \in \mathbb{R}^{N \times D}
                                                                                                                  ▶ Input data samples
813
             3: Tensor P \in \mathbb{R}^{(N+1) \times D}
                                                                     \triangleright Learnable positional embeddings for the N positions
814
             4: Tensor \boldsymbol{X}_{\text{CLS}} \in \mathbb{R}^{1 \times D}
                                                                                                              815
816
             5: function Transformer(X, X_{CLS}, P)
817
                     X \leftarrow \texttt{PrependCLSToken}(X_{\texttt{CLS}}, X)
                                                                                   ▶ Prepend a learnable CLS token to the data
818
                      X = X + P
                                                                                                      > Add positional embeddings
             7:
819
                     Y \leftarrow \text{LayerNorm1}(X)
             8:
820
                     \boldsymbol{Y} \leftarrow \boldsymbol{Y} + \texttt{Attention}(\boldsymbol{X})
             9:
821
            10:
                     Y \leftarrow X + \text{LayerNorm2}(Y)
822
           11:
                     oldsymbol{Y} \leftarrow oldsymbol{X} + 	exttt{MLP}(oldsymbol{Y})
823
           12:
                     output \leftarrow classifier(Y_{\text{CLS}})
                                                                           ▶ Apply linear classifier to the CLS token features
           13:
                     return output
824
```

A.3 EXTENDED ANALYSIS OF THE TOY EXAMPLE

We provide some additional results and analysis using the toy example in this section. In the main paper, we only showed the test success rates for the 3 attention formulations that performed reasonably well (QUEST, Standard and QNorm attentions). In Figure A1 we show the success rates for all the attention formulations. We find that the QKNorm attentions largely fail achieving $\sim 0\%$ overall success rate. We attribute this to the fact that they discard useful information by normalizing the queries and keys. The input vector norms provide an initial clue to solving the task.

The distributions for the training and test accuracies for the toy example are shown in Figures A2 and A3 respectively. We can clearly identify the biased and correct solutions based on their training and test accuracies. A biased solution achieves a training accuracy of \sim 50-80% and a test accuracy of \sim 20-40%. A correct solution achieves a test accuracy greater than 90%. Degenerate solutions are characterized by a random chance test accuracy 10%. In Figure A4 and A5, we show the comparison of norms of unbiased answer token keys and non-answer token keys. For both standard and QNorm attention, the models do not seem to distinguish between the unbiased answer tokens and non-answer tokens in terms of norms of their keys. On the other hand, they assign a much higher norm to the biased answer token keys, as shown in Figure 4 from the main paper.

A.4 ADDITIONAL EXPERIMENTAL DETAILS

A.4.1 IMAGE CLASSIFICATION

Investigating divergent DeiT trainings: We found the DeiT training to be unstable for the ViT-Base model when trained on 4 NVIDIA A100 40GB GPUs using an overall batch size of 1024 as proposed in Touvron et al. (2021a). We use PyTorch 2.1 for this experiment. In Figure A6, we provide an analysis of the maximum logits and its associated query and key norms for a ViT-Base model trained using DeiT.

Training with limited training data: In Table A1, we show the results for training DeiT-Tiny models using limited subsets of the ImageNet training data. The data subsets are uniformly sampled and the reported results are aggregated over 3 such random subsets. All models are trained for 300 epochs with the same training setup as a standard DeiT model trained on the full ImageNet training dataset. We observe that QUEST consistently performs better than standard attention by 1.0-1.5%.

Training with different learning rates: In Table A2, we evaluate DeiT training using a ViT-Small model using different learning rates. We find standard attention to be unstable at larger learning rates. QUEST attention produces stable training at different learning rates and consistently displays better performance.

CrossViT, an architecture using cross-attention: CrossViT (Chen et al., 2021) is an extension to ViT that uses two branches of Transformer layers using different patch size. This is followed by additional Transformer layers which use cross-attention instead of self-attention. We train the

Figure A1: Success rates of learning the correct solution to toy example. Models are trained with different hyperparameter combinations with 5 different weight initializations and 5 different realizations of the data.

Figure A2: Distribution of training accuracies at the end of the training for the toy example.

models using a 8 NVIDIA A100 40GB GPUs. We use the same experimental configuration as in Chen et al. (2021) for the different models and adapt the batch sizes to fit our 8 GPU setup. We consider the CrossViT-9-Dagger, CrossViT-Small and CrossViT-18-Dagger models. We use a batch size of 2048, 1024 and 1024 for the CrossViT-9-Dagger, CrossViT-Small and CrossViT-18-Dagger models respectively. We report the results using standard and QUEST attention in Table A3. We found the CrossViT-18-Dagger model to be unstable with standard attention and the training crashed whereas we were able to train with QUEST attention without any training issues. We find QUEST attention to perform better than standard attention, showing that QUEST attention can also be useful in cross-attention setups. This also demonstrates the potential for QUEST attention to be used as a drop-in replacement for standard attention, orthogonally with other Transformer developments.

Figure A3: Distribution of test accuracies at the end of the training for the toy example.

Figure A4: Norm of unbiased answer token keys and non-answer token keys in standard attention. In terms of the key norms, we do not observe any distinction between unbiased answer tokens and non-answer tokens.

Figure A5: Norm of unbiased answer token keys and non-answer token keys in QNorm attention. In terms of the key norms, we do not observe any distinction between unbiased answer tokens and non-answer tokens.

A.4.2 ROBUSTNESS IN IMAGE CLASSIFICATION

We evaluate the adversarial robustness of our models trained using DeiT and DeiT-3 using different adversarial attacks using the experimental protocol of Nielsen et al. (2024) and their public codebase². We consider FGSM, PGD and Auto attacks with a perturbation budget of 1/255 and the SPSA attack with a perturbation budget of 0.1 (under l_{∞} -norm).

Prior works on adversarial robustness mainly benchmarked on the ViT-Tiny model. We also evaluated larger ViT models to compare standard and QUEST attention. These results are reported in Table A4. For this evaluation, we use the DeiT and DeiT-3 models described in Section 4.1.1 (the clean data results for these models are shown in Table 2).

Elliptical-QUEST: Elliptical attention proposes to compute the attention logits as $QMK^T/\sqrt{D_H}$, where M is a Mahalanobis factor. The matrix M is a diagonal matrix, where the diagonal elements scale the different feature dimensions in the QK product. In Elliptical-QUEST attention, we obtain

²https://github.com/stefvk/Elliptical-Attention/tree/main/ImageAttack

the logits as $S\bar{Q}M\bar{K}^T$, where S denotes a diagonal matrix containing the query token norms and \bar{Q} , \bar{K} denote the ℓ_2 -normalized queries and keys respectively. In QUEST attention, the product $\bar{Q}\bar{K}^T$ represents cosine similarity. In Elliptical QUEST, the metric can be interpreted as an elliptical analogue, where each dimension is weighted differently (according to M) in a cosine similarity.

(a) Progression of maximum logits in the first, intermediate and last layers of a ViT-Base model trained using DeiT and using different attention formulations. We observe that the max logits are highly stable in different layers using QUEST attention. The max logits rapidly increase for standard attention before the training crashes around 20000 iterations.

(b) Progression of log of the key norms (corresponding to the maximum logit token above) in the first, intermediate and last layers of a ViT-Base model trained using DeiT and using different attention formulations. For QUEST and QKNorm variants, the norms are prior to the ℓ_2 -normalization and do not have any impact on their attention logits.

(c) Progression of log of the query norms (corresponding to the maximum logit token above) in the first, intermediate and last layers of a ViT-Base model trained using DeiT and using different attention formulations. For QKNorm variants, the norms are prior to the ℓ_2 -normalization and do not have any impact on their attention logits. Note that the query norms are not ℓ_2 -normalized in QUEST attention.

Figure A6: Maximum logits and their associated query and key norms in different layers for a ViT-Base model trained using DeiT. The model with standard attention crashes around 20000 iterations, which is not observed in the other models. The rapid increase in maximum logits (especially in intermediate and initial layers) is accompanied by an underlying increase in the corresponding query and key norms. Both maximum logits and query norms are stable for QUEST attention, showing that it is not necessary to normalize both queries and keys to ensure training stability.

Table A1: ImageNet classification validation accuracies with DeiT-Tiny trained using different amounts of training data. Results are averaged over 3 different training data subsets.

Data (%)	Attention	ImageNet-val					
		Top-1	Top-5	NLL			
5%	Standard	40.82 ± 0.81	63.92 ± 0.98	3.326 ± 0.074			
	QUEST	41.96 ± 0.15	65.24 \pm 0.07	3.254 ± 0.014			
10%	Standard	56.02 ± 0.58	78.52 ± 0.66	2.201 ± 0.042			
	QUEST	57.51 ± 0.33	79.75 ± 0.17	2.136 ± 0.016			
25%	Standard QUEST	68.87 ± 0.45 69.96 \pm 0.26	88.86 ± 0.25 89.50 ± 0.11	1.386 ± 0.020 1.337 ± 0.006			
100%	Standard	72.50	91.45	1.190			
	QUEST	73.33	91.91	1.160			

Table A2: Learning rate sensitivity of DeiT training evaluated using a ViT-Small model on ImageNet validation performance

Learning rate	Epochs	Standard attention		QUEST attention	
		Top-1	Top-5	Top-1	Top-5
1e - 4	50	62.8	84.9	63.9	85.7
2e - 4	50	66.7	87.9	67.8	88.5
5e - 4	50	66.9	87.9	68.5	88.7
1e - 3	50	-training	g crashed–	67.9	88.5
2e - 3	50	–training	g crashed–	67.0	87.8

Table A3: CrossViT ImageNet Classification

Model	Attention	Epochs	ImageNet-val		
		-	Top-1	Top-5	NLL
CrossViT-9-Dagger	Standard	300	76.4	93.4	1.009
CrossViT-9-Dagger	QUEST	300	77.0	93.6	0.991
CrossViT-Small	Standard	300	80.5	95.5	0.834
CrossViT-Small	QUEST	300	80.9	95.6	0.826
CrossViT-18-Dagger	Standard	300	–trai	ning cras	hed-
CrossViT-18-Dagger	QUEST	300	82.8	96.1	0.780

Table A4: Robustness to adversarial attacks using larger ViT models trained using DeiT. Note that prior works like Elliptical attention only considered ViT-Tiny models for adversarial robustness evaluation [† DeiT-3].

Model	Attention	Epochs	FGSM		PGD		Auto	
			Top-1	NLL	Top-1	NLL	Top-1	NLL
ViT-S/16 ViT-S/16	Standard QUEST	200 200	65.90 67.02	1.362 1.328	54.47 57.51	2.050 1.886	38.22 40.98	2.699 2.540
ViT-B/16 [†] ViT-B/16 [†]	Standard QUEST	400 + 20 $400 + 20$	69.41 70.67	1.229 1.194	52.55 54.64	2.080 2.033	_ _	_
ViT-L/16 ViT-L/16	QKNorm-LN QUEST	100 100	58.95 62.85	1.849 1.669	51.79 53.54	2.355 2.316	_	_

A.4.3 IMAGE CLASSIFICATION - EXPLAINABILITY

We evaluate explainability of a model using a recent method, AG-CAM (Leem & Seo, 2024) that combines attention maps with gradient information. We adapt the code from their public repository³ to DeiT-3 models. Based on the ViT-B model trained using DeiT-3, we show additional qualitative examples in Figures A7 and A8.

(a) Example from the "Bookcase" class. QUEST attention focuses similarly on most of the books and shelves. Standard attention focuses only a few of the instances.

(b) Example from the "Cockatoo" class. Standard attention only focuses on a specific part of the birds. QUEST attention evenly attends to the entire birds.

(c) Example from the "Macaw" class. Standard attention only focuses on a specific part of the birds. QUEST attention evenly attends to the entire birds.

Figure A7: Examples showing class activation maps (CAM) for images from the ImageNet dataset. The CAM is obtained with the AG-CAM method using the DeiT-3 models shown in 4.1.1. Standard attention concentrates attention on specific parts of the object. On the other hand, QUEST attention attends more evenly to the entire object or all relevant regions.

A.4.4 IMAGE SEGMENTATION

The image segmentation models are trained on the ADE20K dataset (Zhou et al., 2019; 2017) following the setup of Segmenter (Strudel et al., 2021). We use the same training configurations as in Nielsen et al. (2024) for both ViT-Ti and ViT-S backbones. The ViT backbones are initialized with the weights obtained from the DeiT trainings in Section 4.1.1 and then, we finetune the entire model,

 $^{^3} https://github.com/LeemSaebom/Attention-Guided-CAM-Visual-Explanations-of-Vision-Transformer-Guided-by-Self-Attention$

both the encoder and the decoder. This experiment is conducted on a single NVIDIA A100 40GB GPU. We train these segmentation models for 160K iterations with a global batch size of 8. An SGD optimizer with a starting learning rate of 0.001 and polynomial learning rate scheduling is used.

A.4.5 LANGUAGE MODELING

We follow the experimental protocol of Nguyen et al. (2022b); Nielsen et al. (2024); Schlag et al. (2021) and train Transformer models of Small (44M parameters) and Medium (90M parameters) sizes on the clean WikiText-103 dataset (Merity et al., 2017). The models are trained using Adam and using the code and hyperparameters from the Elliptical Attention repository ⁴. The Transformer-Small model is trained for 120 epochs with a batch size of 96, starting learning rate of 0.00025 and cosine scheduling. The Transformer-Medium model is trained with a batch size of 56, starting learning rate of 0.00025 and cosine scheduling. Following the standard evaluation setting in Schlag et al. (2021), we process the text sequence using a sliding window (256 for Transformer-Small and 384 for Transformer-Medium). The perplexity is computed based on the last position except for the first segment, where it is evaluated for all positions. We also experiment with the larger Transformer-XL-Standard (151M parameters) model (note that the model is called Base in the repository) from Dai et al. (2019) using their public codebase ⁵. We use the hyperparameter setup from the repository and this uses the same evaluation protocol described above.

A.4.6 TIME SERIES CLASSIFICATION

We use the training and evaluation protocol from the Time Series Library (TSLib) repository 6 . The default Transformer model in the repository concatenates the output token features and uses a linear classification layer. The final classification layer can become arbitrarily large since the weights $W_{\text{CLS}} \in \mathbb{R}^{ND \times C}$ where N is the sequence length, D is the embedding dimensionality and C is the number of classes. Instead, we found that using a <code>[CLS]</code> token consistently improved the standard Transformer results (see Table A5). Hence, we use Transformers with a <code>[CLS]</code> token and the classification layer only depends on the CLS token output from the Transformer. Both standard and QUEST attention use this same setup in our experiments. We use the same training hyperparameters for both attention types, based on the default configuration for a standard Transformer provided in the repository. This consists of training a 3-layer Transformer with a model dimension of 128, a batch size of 16, a learning rate of 0.001 using the RAdam (Liu et al., 2020a) optimizer for 100 epochs (with an early stopping patience of 10 epochs).

Table A5: Impact of using a [CLS] token for UEA Multivariate Time Series Classification using a standard Transformer

Dataset	Standard	Standard + [CLS]
EthanolConcentration	28.14	29.28
FaceDetection	67.99	65.24
Handwriting	38.24	42.00
Heartbeat	77.07	77.56
JapaneseVowels	97.84	98.38
PEMS-SF	84.97	83.82
SelfRegulationSCP1	90.44	88.05
SelfRegulationSCP2	55.00	58.89
SpokenArabicDigits	98.41	98.86
UWaveGestureLibrary	86.25	86.88
Average	72.44	72.90

⁴https://github.com/stefvk/Elliptical-Attention/tree/main/Wikitext

⁵https://github.com/kimiyoung/transformer-xl

⁶https://github.com/thuml/Time-Series-Library

A.4.7 GRAPH TRANSFORMER BENCHMARKS

 We consider the ZINC, CIFAR10, PATTERN and CLUSTER tasks from the standard Graph Neural Network (GNN) benchmarks (Dwivedi et al., 2023), detailed as follows:

- **ZINC** is a regression task for a molecular property and it is evaluated using the Mean Absolute Error (MAE).
- CIFAR10 is a graph classification task based on superpixel graphs and it is evaluated using classification accuracy.
- CLUSTER and PATTERN are node classification tasks and they are evaluated using class-weighted classification accuracy.

From the long-range graph benchmarks (Dwivedi et al., 2022), we consider the PascalVOC-SP, COCO-SP, Peptides-func, Peptides-struct and PCQM-Contact tasks, detailed as follows:

- **PascalVOC-SP** and **COCO-SP** are node classification tasks based on the Pascal-VOC dataset (Everingham et al., 2010) and the MS-COCO (Lin et al., 2014) datasets respectively. For both tasks, the macro weighted F1 score is used as the performance metric.
- PCQM-Contact is a link prediction task and it is evaluated using the Mean Reciprocal Rank (MRR) (Hoyt et al., 2022).
- **Peptides-func** is a multi-label classification task with 10 classes and it is evaluated using the unweighted mean Average Precision (AP).
- **Peptides-struct** is a multi-label regression task for graph-level properties and it is evaluated using the Mean Absolute Error (MAE).

The hyperparameter setups to train GPS models for standard GNN benchmarks is shown in Table A6. Similarly, the hyperparameter setups to train GPS models for long-range graph benchmarks is shown in Table A7. The Graph Transformers were trained and evaluated using the GraphGPS repository ⁷ and the shared configuration files for each dataset.

Table A6: GPS hyperparameter setup for standard GNN benchmarks (Dwivedi et al., 2023)

Hyperparameter	ZINC	CIFAR10	PATTERN	CLUSTER
# GPS Layers	10	3	6	16
Hidden dim	64	52	64	48
GPS-MPNN	GINE	GatedGCN	GatedGCN	GatedGCN
GPS-GlobAttn	Transformer	Transformer	Transformer	Transformer
# Heads	4	4	4	8
Dropout	0	0	0	0.1
Attention dropout	0.5	0.5	0.5	0.5
Graph pooling	sum	mean	_	_
Positional Encoding	RWSE-20	LapPE-8	LapPE-16	LapPE-10
PE dim	28	8	16	16
PE encoder	linear	DeepSet	DeepSet	DeepSet
Batch size	32	16	32	16
Learning Rate	0.001	0.001	0.0005	0.0005
# Epochs	2000	100	100	100
# Warmup epochs	50	5	5	5
Weight decay	1e-5	1e-5	1e-5	1e-5
# Parameters	423,717	112,726	337,201	502,054
PE precompute	23s	2.55min	28s	67s
Time (epoch/total)	21s / 11.67h	64s / 1.78h	32s / 0.89h	86s / 2.40h

⁷https://github.com/rampasek/GraphGPS/

Table A7: GPS hyperparameter setup for long-range graph benchmarks (Dwivedi et al., 2022)

Hyperparameter	PascalVOC-SP	COCO-SP	PCQM-Contact	Peptides-func	Peptides-struct
# GPS Layers	4	4	4	4	4
Hidden dim	96	96	96	96	96
GPS-MPNN	GatedGCN	GatedGCN	GatedGCN	GatedGCN	GatedGCN
GPS-SelfAttn	Transformer	Transformer	Transformer	Transformer	Transformer
# Heads	8	8	4	4	4
Dropout	0	0	0	0	0
Attention dropout	0.5	0.5	0.5	0.5	0.5
Graph pooling	_	_	_	mean	mean
Positional Encoding	LapPE-10	LapPE-10	LapPE-10	LapPE-10	LapPE-10
PE dim	16	16	16	16	16
PE encoder	DeepSet	DeepSet	DeepSet	DeepSet	DeepSet
Batch size	32	32	256	128	128
Learning Rate	0.0005	0.0005	0.0003	0.0003	0.0003
# Epochs	300	300	200	200	200
# Warmup epochs	10	10	10	5	5
Weight decay	0	0	0	0	0
# Parameters	510,453	516,273	512,704	504,362	504,459
PE precompute	8.7min	1h 34min	5.23mi	n 73s	73s
Time (epoch/total)	17.5s / 1.46h	213s / 17.8h	154s / 8.54h	6.36s / 0.35h	6.15s / 0.34h

A.4.8 Self-supervised learning

We also conduct a self-supervised learning (SSL) experiment using the iBOT (Zhou et al., 2021) method (which is the foundation for SOTA SSL models like DINOv2 (Oquab et al., 2024)). This experiment was ran on a single node of 8 NVIDIA A100 40GB GPUs. When we attempted to reproduce DINOv2 pre-training on ImageNet-1K using the ViT-Large model (standard attention) with a smaller batch size of 512 (instead of 2048), we observed a significant drop in performance to 68.2% kNN accuracy (vs 81.6 % reported in their repository). Since training DINOv2 with smaller batch sizes was non-trivial, we instead opted for the iBOT method. We detail the pre-training and downstream evaluations below.

Pre-training: We pre-train a ViT-Base/16 model using the iBOT (Zhou et al., 2021) method and the vMF normalization (Govindarajan et al., 2023) for 400 epochs on the ImageNet-1K dataset (Deng et al., 2009) using the code from the iBOT repository ⁸ and with the exact same hyperparameters as in iBOT. The pre-training is carried out on a single node consisting of 8 NVIDIA A100 40GB GPUs.

ImageNet downstream tasks: We evaluate the kNN performance using the same protocol as DINO (Caron et al., 2021). We use weighted k-NN (temperature = 0.07) and report the best result among those obtained with $k = \{5, 10, 20, 100, 200\}$. We generally found k = 10 to produce the best result for both standard and QUEST attention. For linear classification, we follow the evaluation protocol of iBOT (Zhou et al., 2021) and report the best results among those obtained using different learning rates. The linear classifier is trained on the features obtained by concatenating the [CLS] features and average pooling of the patch features. The training is run for 100 epochs using the same hyperparameter setup as in iBOT. For evaluations with limited training data, we follow the evaluation protocol of Assran et al. (2022) and use the same data subsets. We report the average validation accuracy over 3 different data subsets for the 1, 2 and 5 images per class settings. For finetuning on ImageNet, we train for 100 epochs with a layer-wise learning rate decay of 0.65, following the effective recipe from BeIT (Bao et al., 2022). We report the best performance after considering different learning rates from $\{8e-4, 9e-4, 1e-3, 2e-3\}$. These results on ImageNet downstream tasks are reported in Table A8. We observe consistent improvements on all the considered settings. Finetuning models from SSL pre-trained weights is common in recent times and we highlight that QUEST attention can also bring improvements in this setting (84.4 % vs 84.1 %).

⁸https://github.com/bytedance/ibot/

 Transfer linear probing: We conduct transfer linear probing evaluation by freezing the pre-trained model and training a linear classifier on the [CLS] features output by the model. We follow the evaluation protocol of Ericsson et al. (2021) and Chen et al. (2020) and train ℓ_2 -regularized linear classifiers. We select the regularization strength among a set of 45 values spaced linearly in the range [-6,5] in log-space and compute the standard evaluation metric for each dataset. The dataset suite includes the following datasets: Aircraft (Maji et al., 2013), Caltech101 (Li et al., 2022b), Describable Textures Dataset (DTD) (Cimpoi et al., 2014), Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014), Pets (Parkhi et al., 2012) and SUN397 (Xiao et al., 2010; 2016) datasets. The detailed transfer linear probing results are shown in Table A10. QUEST performs significantly better than standard attention on Aircraft and Flowers datasets. On other datasets, the results are somewhat mixed. Nevertheless, QUEST performs better than standard attention in terms of the overall average.

Table A8: Self-supervised pre-training on ImageNet with iBOT and evaluating on ImageNet tasks

Attention	kNN	Linear	Finetuning	Few-shot				
				1 img/cls	2 imgs/cls	5 imgs/cls	1% imgs	
Standard QUEST	78.7 79.0	80.3 80.5	84.1 84.4	51.6 ± 0.1 52.5 ± 0.2	61.1 ± 0.7 61.7 ± 0.6	68.3 ± 0.3 69.0 \pm 0.1	72.3 72.7	

Table A9: Self-supervised pre-training on ImageNet with iBOT and evaluating on transfer tasks

Attention	Transfer linear probe		Image Retrieval			VOS		
	Average	RParis		ROxford		DAVIS-2017		7
		M	Н	M	Н	$\mathcal{J}\&\mathcal{F}_m$	\mathcal{J}_m	\mathcal{F}_m
Standard QUEST	81.5 81.9	65.4 65.8	38.1 39.3	38.1 38.6	13.8 15.3	63.1 63.2	61.9 61.8	64.2 64.5

Table A10: Self-supervised pre-training on ImageNet-1K with iBOT-vMF and evaluating with transfer linear probes

Attention	Acft.	Cal101	DTD	Flwrs.	Food	Pets	SUN	Avg.
Standard QUEST								

Other transfer learning tasks: For image retrieval experiments, we follow the evaluation protocol of DINO and evaluate on the face-blurred versions (v1.0) of the Oxford and Paris datasets. We perform image retrieval based on nearest neighbors and report the mean Average Precision (mAP) on the medium (M) and hard (H) data splits for each dataset. For video object segmentation (VOS), we use the evaluation protocol of DINO and evaluate VOS performance using standard metrics on the DAVIS-2017 benchmark dataset (Pont-Tuset et al., 2017). These transfer learning results are reported in Table A9. We find that QUEST attention performs better on image retrieval and similar to standard attention on video object segmentation.

(a) Image queried with the target class of Bottle and Bottlecap.

(b) Image queried with the target class of Elephant and Zebra.

(c) Image queried with the target class of Dog and Cat.

Figure A8: Examples showing class activation maps (CAM) for images containing two distinct objects. The CAM is obtained with the AG-CAM method by querying for the specified classes (i.e. using the specified class as the target) using the DeiT-3 models shown in 4.1.1. Standard attention concentrates attention on specific parts of the object or fewer instances of the object. On the other hand, QUEST attention attends more evenly to the entire object or all relevant regions.