Asymmetric DQN for Partially Observable Reinforcement Learning

Andrea Baisero/ Brett Daley!

Christopher Amato!

'Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA

Abstract

Offline training in simulated partially observable
environments allows reinforcement learning meth-
ods to exploit privileged state information through
a mechanism known as asymmetry. Such privi-
leged information has the potential to greatly im-
prove the optimal convergence properties, if used
appropriately. However, current research in asym-
metric reinforcement learning is often heuristic in
nature, with few connections to underlying theory
or theoretical guarantees, and is primarily tested
through empirical evaluation. In this work, we de-
velop the theory of Asymmetric Policy Iteration, an
exact model-based dynamic programming solution
method, and then apply relaxations which eventu-
ally result in Asymmetric DON, a model-free deep
reinforcement learning algorithm. Our theoretical
findings are complemented and validated by empir-
ical experimentation performed in environments
which exhibit significant amounts of partial ob-
servability, and require both information gathering
strategies and memorization.

1 INTRODUCTION

Offline training and online execution (OTOE) is a modern
reinforcement learning (RL) paradigm in which a learn-
ing agent is trained offline (i.e., in simulation) before be-
coming operational online (i.e., in the “real” environment).
Advantages of OTOE are broad and include safety guar-
antees, training speed, flexibility, and—the focus of our
work—access to privileged information. For all these rea-
sons, OTOE has even become the paradigm of preference
in some research cliques, such as that of multi-agent RL,
where it is often called centralized training and decentralized
execution (CTDE). Privileged information is data which is
accessible during offline training, but not during standard on-

line training and/or execution. This can take different forms
depending on the type of control problem, e.g., other agents’
actions and observations in multi-agent RL, or the system’s
state in partially observable RL (PORL). In OTOE, access
to this information is a temporary privilege, available exclu-
sively in the offline phase due to access of the simulation’s
internal state. However, despite being not available during
online execution, such information has the potential (when
used appropriately) to improve the agent’s overall training
performance and/or convergence speed, and therefore its
online performance.

In PORL, OTOE and privileged information is most com-
monly associated with actor-critic methods through a mech-
anism called asymmetry. Asymmetry has a very specific
etymological meaning described below; however, we use
the term “asymmetry” more loosely to also refer to the
general idea of exploiting privileged information during of-
fline training—two concepts which overlap strongly in this
work. In actor-critic methods, two separate models are being
trained: a policy model (representing the agent’s behavior)
and a critic model (representing the agent’s evaluation of
its situation). Standard actor-critic methods can be said to
be implicitly symmetric in the sense that both models re-
ceive the same information—in PORL, the agent’s history.
In asymmetric actor-critic, this symmetry is broken by pro-
viding privileged information to the critic [Pinto et al., [2018}
Foerster et al., 2018} [Lowe et al.,[2017,|Yang et al., 2018}, [Li
et al.| 2019, |Wang et al., 2020, Warrington et al., 2021} | Xiao
et al| 2021} Baisero and Amato, 2022, [Lyu et al., 2022].
This is possible because the critic is exclusively a training
construct which is not used or needed during the execution
phase. Asymmetry has also been used in some DQN-like RL
methods [Rashid et al.,2018| Mahajan et al., {2019, [Rashid
et al.| 2020, Xiao et al., 2020\ |de Witt et al., 2020|], where
normally there would not be a secondary model analogous
to the critic which is only used during training. In such
cases, a second value-based model is introduced exclusively
as a means for asymmetry, and which constitutes a training
construct analogous to that of the critic in actor-critic.

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<baisero.a@northeastern.edu>?Subject=Your UAI 2022 paper

However, a substantial majority of prior work in asymmetric
RL has proposed heuristic forms of asymmetry primarily
verified through empirical evaluations, but which lack the
support of a theoretical framework which guarantees the
state information is used in an appropriate fashion. We ar-
gue that, if unverified by proper theoretical analysis, such
methods could quite simply make use of state information
in ways which actually hinders the training of a partially ob-
servable agent. For example, a well-known result in partially
observable control is that the optimal action for a partially
observable agent can differ greatly from that of an optimal
fully observable agent, and that an optimal partially observ-
able agent might even take actions which an optimal fully
observable agent would never take under any circumstance,
e.g., information-gathering actions that help the partially
observable agent learn something about the environment
state, but do not help the fully observable agent.

The ultimate goal of this work is to develop a state-of-the-
art asymmetric value-based deep RL algorithm for partially
observable control that is supported by a sound theoreti-
cal analysis. To reach this goal, we employ a bottom-up
approach, focusing first on developing the theory of asym-
metric policy improvement, i.e., mechanisms through which
privileged state information can be integrated into a policy
improvement process while retaining optimal convergence
guarantees. In practice, we begin by developing Asymmetric
Policy Iteration (API) and Asymmetric Action-Value Iter-
ation, model-based dynamic programming solution meth-
ods. We then introduce elements of stochastic training from
sample experience which result in Asymmetric Q-Learning
(AQL), a direct RL successor to API and AAVI. Finally,
we introduce value-function approximation which results in
Asymmetric DON (ADQN), a method comparable to other
state-of-the-art deep RL algorithms, but which is also capa-
ble of exploiting state informationin a principled fashion. To
the best of our knowledge, our work is the first to develop
theoretically-driven asymmetric value-based RL.

2 RELATED WORK

Privileged information available offline has been used to
improve training performances in a wide range of prior
single-agent and multi-agent methods which include both
policy-based and value-based methods.

In sigle-agent control, [Pinto et al.| [2018]] employ DDPG
with an asymmetric state-based critic to handle robot ma-
nipulation tasks; belief-grounded networks [Nguyen et al.,
2021]] uses a belief-based form of asymmetry and a belief-
reconstruction task to train the history representation; [War{
rington et al.|[2021]], Chen et al.|[2020] use imitation learn-
ing to train a partially observable agent via a fully observ-
able agent trained offline. Baisero and Amato| [2022]] show
theoretical issues with state-only forms of asymmetry for
policy-gradients, and develop a history-state variant.

In multi-agent control, COMA [Foerster et al., 2018]] uses
a single centralized asymmetric critic which employs the
joint observations and/or the environment state. MAD-
DPG [Lowe et al., 2017]] and M3DDPG |[Li et al.,[2019] use
multiple centralized asymmetric critics, one for each agent,
which employ the joint observations and/or the environment
state. R-MADDPG [Wang et al., 2020] uses a recurrent
model and a centralized critic which uses the entire histo-
ries of all agents; CM3 [[Yang et al.,|2018]] uses a state-only
critic for reactive control; MacDec-DDRQN [Xiao et al.}
2020] uses a centralized value model to learn individual
centralized value models. ROLA [Xiao et al.| 2021[] uses
both centralized and individual asymmetric critics which
employ local history and/or state information to estimate
individual advantage values. QMIX [Rashid et al.| [2018]],
MAVEN [Mahajan et al.,|2019], and WQMIX [Rashid et al.,
2020]] use a centralized but factored value model to train
individual agent value models. [Lyu et al.| [2022] extend the
theory by Baisero and Amato|[2022] to the multi-agent case.

3 BACKGROUND

In the next subsection, we present some of the background
required to understand our work. Section [3.1] formally de-
scribes partially observable control problems. Section [3.2]
contains a review of non-asymmetric value-based control,
in the form of DQN. Section covers the definition of
history-state value functions. In Section [3.4] we present
operator notation and useful operators.

3.1 POMDPS

A partially observable Markov decision process (POMDP)
is a discrete-time control problem represented by tuple
(S, A,0,by, T,0, R,v), where (a) S, A, and O are state,
action, and observation spaces, (b) by € AS is an initial
state distribution, (¢) T: S x A — AS is a stochastic state
transition function, (d) O: S x A x § — AQ is a stochas-
tic observation emission function, (¢) R: S x A — Ris a
reward function, and (f) v € [0, 1) is a discount factor.

Partially observable control is based on observable histo-
ries, i.e., the sequences of past actions and observations.
The history space H = (A x O)* represents such se-
quences. To simplify notation, we overload symbol R
to also denote the expected reward function on histories
R(h,a) = Eg, [R(s, a)]. General partially observable poli-
cies take the form of mappings from histories to action
distributions 7: H — AA; however, in this work, we will
focus exclusively on deterministic policies w: H — A. The
goal of the control problem is to find a policy which maxi-
mizes the episodic expected return E [Y°, 7' R(s¢, at)).

Every policy 7 is associated with an action-value function
Q™ (h, a) which represents the expected return associated

with the agent having observed history , taking action a,
and then continuing to behave according to the policy 7. Q™
is the unique solution to the Bellman equation,

Q" (h,a) = R(h,a) +YEqp q [Q" (hao, w(hao))] . (1)

The action-value function associated with the optimal pol-
icy 7 is denoted as Q*, and is the unique solution to the
Bellman optimality equation,

Q" (hya) = R(h,a) + 7 Egjy o [max Q" (hao,a’)] .)

Notation We use symbols @), @™, Q*, and Q to denote
similar but separate concepts. Q: H x A — R denotes an
arbitrary real-valued function, not necessarily associated
with any policy, Q™ denotes the value function associated
with a policy, @* denotes the value function associated with
an optimal policy, while Q denotes a (deep) parametric
model. We denote the space of all such history-action real
functions as Q@ = {Q | Q: H x A — R}. Further, we use
g(@Q) to denote the policy which acts greedily based on @,
ie., if 7 = ¢g(Q), then 7(h) = argmax, Q(h, a).

32 DQN

Deep Q-Network (DQN) [Mnih et al. 2015] is a highly
successful algorithm for training deep neural networks to
control high-dimensional fully-observable Markov decision
processes (MDPs) based on reward feedback, and the first
to achieve human-level performance on a majority of the
Atari 2600 games. Rather than relying on a lookup table to
track the estimated expected return for each state-action pair
(s,a), DQN learns a parametric function Q: S x A — R
to generalize over state-action pairs. The algorithm reformu-
lates the incremental Q-Learning update [Watkins| |1989] as
a squared-error minimization problem,

2
L(s,a,r,s") = (r + 7 max Q(s',d';607) — Q(s,a; 9)) ,
a

3
where 6 is a set of parameters and 6~ is a time-delayed
copy of 6 to stabilize learning. The agent interacts with the
environment and stores observed transitions (s, a,r,s’) in a
replay memory, periodically updating 6 via gradient descent
on randomly sampled minibatches of experience [Lin}[1992].
This approach approximates the i.i.d. supervised training
setting commonly used for neural networks and required for
first-order optimization methods.

Adapting DQN to Partially Observable Control The
DOQN algorithm was primarily designed for fully observable
control problems represented as MDPs. Nonetheless, as with
many other model-free RL algorithms, generalization to par-
tially observable control is conceptually straightforward,
and achievable by replacing state variables with history

variables in the relevant equations, and by employing archi-
tectures capable of processing history data. Frame stacking,
i.e., the practice of concatenating a small number of re-
cent observations, has been found to be sufficient to tackle
problems which feature small amounts of partial observabil-
ity [Mnih et al.,|2015]]. On the other hand, larger amounts of
partial observability generally require longer-term memo-
rization capabilities. For such problems, the standard choice
has become that of combining the DQN training algorithm
with a recurrent neural network component used to pro-
cess history data, also known as Deep Recurrent Q-Network
(DRQN) [Hausknecht and Stonel 2015]]. Although some
practitioners use the DQN label exclusively to indicate the
variant which lacks a recurrent component, our view is that
the essence of the DQN algorithm is in its training regime
and its losses, rather than the details of which architecture
is used. Therefore, in this document, we use the label DQN
more broadly to encompass all architectural variants. In
practice, because our work focuses on control problems
which feature large amounts of partial observability, we em-
ploy appropriate algorithmic and modeling choices, i.e., all
methods and baselines employ a history-based model Q, and
all models which receive history data employ a recurrent
network component to process it.

3.3 HISTORY-STATE VALUE FUNCTIONS

Recent theoretical work in asymmetric actor-critic for PORL
has employed the notion of a history-state value function
U™ (h, s,a) [Baisero and Amato, 2022} [Lyu et al., 2022],
which represents the expected return associated with the
agent having observed history h, the environment being
in state s, taking action a, and then continuing to behave
according to the policy 7. U™ is the unique solution to the
history-state Bellman equation,

U™(h,s,a) = R(s,a)+7Ey o5, [U" (hao, s, w(hao))] .
“

Despite using the state context to represent a more informed
measure of the agent’s expected return, U™ still relates to
a partially observable agent which is unable to exploit that
privileged information, i.e., the state determines future re-
wards, observations, and states, but it does not directly deter-
mine future actions, which are rather determined indirectly
by the history. U™ is related to Q™ via a simple identity,

Qﬂ-(ha Cl) =]Es|h [Uw(h7 S a)] : (5

We denote the history-state value function associated with
the optimal policy as U*. Once again, this notion of op-
timality is relative to the space of partially observable
policies. Among other things, this means that an opti-
mal partially observable policy cannot be recovered by
maximizing U*, i.e., generally, there is no guarantee that
7*(h) = argmax, U*(h, s, a) for any given value of s.

Notation We use symbols U, U™, U*, and U to denote
similar but separate concepts. U : ‘H x S x A — R denotes
an arbitrary real-valued function, not necessarily associated
with any policy, U™ denotes the value function associated
with a policy, U* denotes the value function associated with
an optimal policy, while U denotes a (deep) parametric
model. We denote the space of all such history-state-action
real functionsastd ={U |U: H xS x A — R}

3.4 OPERATOR NOTATION

To simplify the upcoming math, we make extensive use of
operator notation for mappings between () and U functions.

Operator B, : Q — @ is the Bellman operator defined as
Ber(hv a) = R(hv a) + VEo\h,a [Q(haoa ’/T(hao))]’ with
which Equation (T]) can be rewritten as Q™ = B.Q".

Lemma 3.1. Operator B is a contraction with fixed point
Q™ (proof in Appendix[A.1])

Operator B: Q — Q is the Bellman optimality operator de-
finedas BQ(h,a) = R(h, a)+yEyp o [maxy Q(hao,a’)]
or, equivalently, B: @ — By)@, and with which Equa-
tion (2) can be rewritten as Q* = BQ*.

Lemma 3.2. Operator B is a contraction with fixed point

Q* (proof in Appendix[A.2])

Some operators for U are analogous to those for @). To
avoid introducing a separate set of symbols for such cases,
we overload the previously defined symbols to include these
new meanings; the distinction will remain clear from con-
text, usually as the type of the operator’s input/output.

Operator B, : U — U is the Bellman operator defined as
BrU(h,s,a) = R(s,a) + 7 Ey ofs,0 [U(hao, s', w(hao))],
with which Equation () can be rewritten as U™ = B,U™.

Lemma 3.3. Operator B, is a contraction with fixed point
U™ (proof in Appendix[A.3])

Operator E: U — Q converts U functions to () functions
by taking the conditional expectation over states, and is
defined as EU(h, a) = Ey, [U(h, s, a)].

Definition 3.4 (Mutual Consistency). We say that functions
Q@ and U are mutually consistent iff Q = EU holds.

4 ASYMMETRIC VALUE-BASED PORL

In this section, we present the core of our theoretical and
algorithmic contributions, which focus on computing or
learning optimal action-values Q*(h, a) by means of asym-
metry. In Section[d.T|we present Asymmetric Policy Iteration
(API), a solution method for tabular models with optimal

convergence guarantees. In Section[d.2] we present Asymmet-
ric Action-Value Iteration (AAVI), an eager variant of API
with similar optimal convergence guarantees. In Section [4.3]
we relax aspects of AAVI to make it suitable for learning
by means of sample experience, and present Asymmetric
Q-Learning (AQL). In Section[d.4] we introduce value func-
tion approximation to improve generalization, and present
Asymmetric DON (ADQN), and other related variants.

Introducing Asymmetry to Value-Based Methods Two
fundamental issues make the use of state information in
value-based methods not directly possible: (a) because an
action-value model Q(h, a) is eventually used for online
control, it is constrained by the control problem and cannot
directly employ privileged state information; and (b) typical
value-based methods do not feature a separate model for
the purpose of offline training which may access privileged
information (akin to the critic in actor-critic). As such, value-
based methods seem fundamentally incompatible with the
notion of asymmetry and the use of privileged information.
We resolve both issues, and introduce an auxiliary history-
state model U (h, s, a), trained to model the optimal history-
state value function U*(h, s, a), and used exclusively as a
training construct through which to implement asymmetry.
Our goal is to train U and Q jointly so as to converge to the
optimal value functions U* and Q*.

4.1 ASYMMETRIC POLICY ITERATION

Consider Asymmetric Policy Iteration (AP]), an iterative pro-
cess analogous to Policy Iteration [Sutton and Barto, [2018]]
which employs both history-state and history values to im-
plement asymmetry. API starts from arbitrary initial values
and policy Uy, Qo, and 7, and then uses the following
update rules to generate sequences Uy, Q, and 7,

Ugt1 < lim BY Uy, (U-evaluation) (6)
n—oo

Qi+1 +— EUpy1,
Tht1 ¢ 9(Qrs1) -

(Q-evaluation) (7)

(improvement) (8)

The U-evaluation step can be practically implemented as the
solution to the system of equations U1 = R+vF;, Ug+1,
or by using B, until convergence (see Algorithm [I}).

Theorem 4.1 (API Optimality). The sequences Uy, Qy, and
i, generated by API converge to U*, Q*, and 7*.

Proof. By Lemma[3.1] Uy equals the fixed point of B, ,
i.e., U1 = U™ . Then, by Equation (3), Qi1 = EU™ =
Q™ and consequently 7,11 = g(Q™*). Therefore, in each
iteration and until 7* is reached, the next policy 74 is a
strict improvement on the previous policy 7 (Policy Im-
provement Theorem, [Sutton and Barto, [2018]]). Let &* be
the smallest index such that 7« is optimal; for &k > k*, we
conclude that U, = U* and Q) = Q™. O

Algorithm 1 Asymmetric Policy Iteration (API)

Algorithm 2 Asymmetric Action-Value Iteration (AAVI)

Require: Uy, Qo, 7 arbitrarily initialized tabular models.
Ensure: limy_,oo{Ux, Qr, mc} = {U*, Q*, 7*}.
1: fork+0,1,2,3,...do

2: Ukt1 < Uy
3: repeat
4: Uk+1 B-,r,C Uk+1
5: until convergence
6: Qk+1 — EUk+1
7 Tht1 < 9(Qrr1)
8: end for
Limitations While API is formally guaranteed to con-

verge optimally, it also has significant practical limitations:
(a) API is a solution method which requires a model of the
environment, as well as efficient and accurate methods to
compute the expectations in the U-evaluation and the Q-e-
valuation steps. (b) A practical approximation of the limit
operator in the U-evaluation step (see Algorithm[I)) might
itself require multiple iterations to achieve an adequate pre-
cision. (c) API requires tabular models U and @, which is
not only impractical given that the space of histories grows
exponentially with episode lengths, but also makes it not
applicable to control problems which have continuous obser-
vations or states. (d) Perhaps most importantly, API does not
offer any significant advantage compared to its non-asym-
metric counterpart PI. Ultimately, both API and PI converge
to the same optimal value function Q*; if anything, API
requires more memory and computation to achieve the same
goal, resulting in a less practical solution method.

Why API? In light of the above limitations, particularly
the last one, what is then the purpose of API? We argue that
API plays two crucial roles: (a) The first is to show that priv-
ileged and asymmetric information such as the system state
can be properly included into a value-based solution process
while maintaining formal optimality guarantees. This theo-
retical aspect is often overlooked in modern asymmetric RL
research, which instead tends to focus on heuristic methods
and empirical results, and API represents the first theoretical
guarantee of this kind for value-based RL. (b) The second
is to serve as a basis for other algorithms which do pro-
vide practical advantages compared to their non-asymmetric
counterparts. Starting from the next subsection, we relax
various aspects of API and develop asymmetric value-based
algorithms which address each of API’s limitations.

4.2 ASYMMETRIC ACTION-VALUE ITERATION

The first limitation of API which we address is the presence
of the limiting operator in its U-step, which makes practical
implementations approximate, and/or inefficient. To this
end, consider Asymmetric Action-Value Iteration (AAVI),

Require: Uy, @y arbitrarily initialized tabular models.
Ensure: limy_,o{Ux, Qr} = {U*,Q*}.

1: fork+0,1,2,3,...do

2: Ukty1 + Bg(Qk)Uk

3 Qi1 ¢ EUgia

4: end for

an eager variant of API which uses the following updates,

(U-evaluation) ©)]
(Q-evaluation) (10)

Ukt1 < Byq,)Uk »
Qrt1 — EUpqa

Compared to API, the improvement step has been folded in
the U-evaluation step, removing the need for an explicit pol-
icy representation. Further, the U-evaluation step has been
simplified to apply operator By(q,) a single time, making
for a simple, faster, and more practical implementation (see
Algorithm [2)) without compromising optimality guarantees.
Both aspects make AAVI analogous to Value Iteration [Sut}
ton and Barto, 2018]], with the primary differences being the
use of action-values and asymmetry.

Lemma 4.2 (Asymmetric Bellman Equivalence). For mu-
tually consistent U and Q, the identity EByo)U = BQ

holds (proof in Appendix[A.4})

Theorem 4.3 (AAVI Optimality). The sequences Uy, and
Q. generated by AAVI converge to U* and Q™.

Proof. We can combine the U-evaluation and Q-evaluation
steps, and then use Lemmato obtain Qi1 = EUpy1 =
EBy(q,)Ur = BQg. By induction, Q) = B*Q,, which
converges to the fixed point of B: i.e., limg_, o Qr = Q™.
This guarantees the existence of some iteration k* such that
9(Qx) = *,Vk > k*. Therefore, Uy, = B¥7* Uy vk >
k*, and Uy converges to the fixed point of B.«: i.e.,
limg 0o Uy = U™, U

4.3 ASYMMETRIC Q-LEARNING

Like all dynamic programming methods, API and AAVI
make extensive and often unrealistic assumptions like the
model of the environment and being able to compute exact
expectations. To bypass many of these requirements, we can
employ incremental stochastic updates based on sequentially
sampled transitions. We call this new method Asymmetric Q-
Learning (AQL), as it generalizes the iterative Q-Learning
algorithm [[Watkins} |1989|] to asymmetric PORL.

To handle the randomness induced by the sample transitions,
the algorithm must average over the samples using a variable
stepsize parameter oy, € [0, 1]. At each iteration k, the agent

Algorithm 3 Asymmetric Q-Learning (AQL)

Algorithm 4 Asymmetric DQN (ADQN)

Require: U, @ mutually consistent tabular models.
Ensure: {U,Q} — {U*,Q*}.

1: while True do

2: Initialize history and state (h,)

3: while s is not terminal do
4: Choose action a from e-greedy policy on @)
5: Take action a, observe r, s, 0
6: y < r +~vyU(hao, s', argmax, Q(hao,a’))
7: U(h,s,a) + (1 —a)U(h,s,a) + ay
8: Q(h,a) + (1 —a)Q(h,a) + ay
9: (s,h) < (8', hao)
10: end while

11: end while

samples a transition (hg, Sk, ak, Tk, Sk+1, 0) and conducts
AAVI-like updateﬂ on the respective entries of Uy, and Q.

For notational brevity, we first define the following targets:

Yi(h, s, a) = {(Bg@wUk +wy) (h,s,a) for (hy, sk, ar)

Ui(h,s,a) otherwise
1n
Zi(h,a) = (EBQ(Qk)Uk + Uk?) (h,a) for (hg,ax)
o Qi (h,a) otherwise
(12)

Here, wy, € U and v, € Q are zero-mean noise processes
that represent the randomness in the environment and action
selection at iteration k. AQL then conducts the following
updates based on the stochastic targets Yz and Zj:

U1 < U + Oék(yk — Uk;),
Qry1 <+ Qr + ar(Zr — Qi) Pr(sy | hi) .

13)
(14)

Note that the targets Y; and Z, are defined elementwise
such that only one entry of U, and (),—the one associated
with (hy, sk, ax)—is updated for any given index k. When
the stepsizes o, are annealed towards zero at an appropriate
rate, AQL converges optimally despite the noisy updates.

Theorem 4.4 (AQL Optimality). Assume stepsizes oy, sat-
isfying the following asymptotic conditions,

[e)
E ap = 00,
k=0

If Qo, Uy are mutually consistent (g = EUy), then the
sequences Qi and Uy, generated by AQL converge to QQ*
and U* with probability 1 (proof in Appendix[A.3])

Zai <00. (15)
k=0

"The Q-evaluation step of AAVI (Equation) can equiva-
lently be expressed as Qx+1 <+ EBgy(q,)Ur, which is the form
AQL employs to guarantee optimal convergence.

Require: U,Q deep models parameterized by 6.
1: Initialize parameters 6
2: Initialize and prepopulate episode buffer
3: while True do

4: From the simulated environment, sample episodes
and append them to the episode buffer
5: From the episode buffer, sample batch of transitions

{(hi7 Siy gy Ty S'/L? Oi)}'f\il

N
6: LU — %Zi:l ‘CU(hhSiaa%T%S;aoi)-
N
7. LQ — %Zi:] ‘CQ(hiasiaaiariasfpoi)*
8: Perform a gradient step on 6 using Vo(Ly + Lg)
9: end while

Factor Pr(sy | hg) is necessary to ensure that Uy and
@1 remain mutually consistent throughout the process; a
necessary condition for optimal convergence. Pr(sy | hy)
can be interpreted as a scaling factor which makes Uy, and
Q@1 update at relatively comparable rates. For any given
“full*“ update on Uy (hg, Sk, ax) the corresponding update
on Q(hg, ax) should be scaled down to a “partial amount”
relative to the likelihood of s;. While we were able to re-
move other forms of model-based requirements, Pr(sy, | hy)
remains, leaving AQL just shy from reaching both opti-
mal convergence and concrete practicality at the same time.
While it may be possible to approximate this factor in other
model-free ways, AQL remains primarily a conceptual al-
gorithm also due to the requirement of a tabular model over
histories. Either way, AQL serves as a fundamental basis to
derive the next iteration of asymmetric value-based RL.

44 ASYMMETRIC DQN

When acting in POMDPs with high-dimensional observa-
tions and states, a tabular-lookup method such as AQL be-
comes infeasible. In such instances, we must introduce func-
tion approximation to generalize over similar experiences.
The use of approximation sacrifices the optimal convergence
guarantee established by Theorem 4.4} but is necessary to
scale algorithms to significantly more challenging partially
observable environments. Nevertheless, the value function
approximations are an orthogonal matter to how privileged
state information is used, and we expect the sound theoreti-
cal principles upon which AQL is built will help asymmetric
deep methods even when relying on function approximation.

Our primary algorithmic contribution here is Asymmetric
DQON (ADQN), an asymmetric variant of DQN derived by
introducing value function approximation to AQL. We first
replace the tabular-lookup models U and @) of AQL with
parametric differentiable models U and Q In practice, these
are implemented as deep neural networks whose architec-
tures are chosen according to the structure of the states and
observations emitted by the POMDP.

To facilitate the substitution, we must reformulate the
stochastic update rules of AQL as squared-error loss mini-
mization. For the rest of the section, due to spacing concerns,
we will use ™ = g(@) as a shorthand to represent actions se-
lected greedily on Q, i.e., #(h) = argmax, Q(h, a). Given
a single environment interaction (h, s, a, r, s, 0), the corre-
sponding losses can be defined as

U(h,s,a))”,

(16)

a))?
a7

Ly = (r+~SG [U(hao, s, #(hao))] —

Lo = (r 478G [U(hao, s, 7 (hao))] — Q(h,

where SG is the stop-gradient function which indicates that
gradient calculation should not consider the enclosed terms.
It is worth noting that £y and L£¢ use the same target to
train U and Q The crucial difference is that U is in able to
model the target as a function of s, while Q is unable to do
so, and can at only model the expectation of the target over
values of s. In a way, these losses approximately enforce a
“loose* form of mutual consistency Q ~ EU.In practice,
the term is generated by “target networks” that rely on stale
parameters to stabilize learning when bootstrapping [Mnih
et al.l 2015]; the stale parameters are periodically updated
by copying the main parameters. The total loss L + Lo
can be jointly minimized with respect to the parameters by
a single backpropagation step, efficiently approximating the
interleaved updates of AQL.

When the function approximators are nonlinear (as is often
the case for neural networks), training will fail if the gradient
updates are conducted on sequentially collected transitions
that are not i.i.d. [Mnih et al.l 2015]]. The second critical
modification to AQL is therefore the adoption of experience
replay [Lin, |1992] in order to decorrelate training experi-
ences. Rather than training on a sample immediately when
it is collected, each POMDP transition (h, s, a,r,s’,0) is
deferred to a first-in first-out replay memory. Periodically,
when it is time to train the networks, a minibatch of several
experiences is sampled from the replay memory; gradients
for these samples are computed and averaged together to
estimate the true gradient of the joint loss L¢r + L&, which
in turn is used to improve the parameters.

Why ADQN?
advantages of API, it is worthwhile to reconsider the “why
question again, this time focusing on why one would prefer
to use ADQN compared to DQN. Ultimately, the purpose of
both algorithms is to train an approximate Q~ Q* through
which optimal control can be executed, and both algorithms
should in theory converge to very similar approximations.
What is then the advantage of ADQN over DQN? Similarly
to the asymmetric actor-critic case [Baisero and Amato,
2022]], the advantage is a practical one associated with the
difficulties of learning an appropriate representation of his-
tory ¢(h), which is one of the major bottlenecks in PORL.

Having finally addressed the practical dis-

13

History representations are sequence models which notori-
ously requires lots of data and processing power for proper
training. To further compound on this issue, the quality of
the data used to train the history representation in PORL is
directly related to the quality of Q(¢(h), -, -), which in turn
depends on the quality of the history representation itself;
unsurprisingly, it can be quite hard to bootstrap the training
of an improved history representation when starting from
a poor history representation. Note, however, that learning
an appropriate state representation ¢(s) is much simpler
than learning ¢(h) due to the non-sequential nature of indi-
vidual states, i.e., the ¢(s) representation model has fixed
input and output sizes, and can generally be modeled using
a simpler feed-forward architecture. In ADQN, the issues
associated with learning a proper history representation are
alleviated by the fact that its training is bootstrapped not
only on the history representation itself, but also on the state
representation. Even when the history representation is poor,
we can expect the state representation to contain sufficient
contextual information to allow U(¢(h), ¢(s), -) to model
meaningful values, which in turns helps further bootstrap
the learning of the history representation ¢(h), the history
model Q(¢(h),), and the respective implicit policy g(Q).

Next, we consider some variants of interest of ADQN.

4.4.1 Variance-Reduced ADQN

In this variant, we approx1mate the target of L from Equa-
tion (17) as r 4+ yU (hao, s', #(hao)) ~ U(h, s, a), which
holds particularly well once U has been trained sufficiently.
Therefore, this variant uses the following losses,

Lo = (r +vSG[U(hao, s', #(hao))] — U(h, s,a))> ,
(18)
Ly = (SG[U(h,s,a)] — Q(h,a))? (19)

This approximate target results in lower variance throughout
the entire training process at the cost of introducing bias
primarily in the early stages of training; a trade-off which
may result advantageous in some control problems.

4.4.2 State-Only ADQN

Some prior work in asymmetric RL has adopted heuristic
forms of asymmetry which uses state-only (i.e., history-less)
value functions U (s, a). Such form of asymmetry is how-
ever associated with fundamental theoretical issues which
may severely compromise the learning performance, rang-
ing from potentially being ill-defined, to introducing bias
into the learning process [Baisero and Amatoj 2022]]. Such
issues are inherently related to partial observability, and their
effects scale with the amount of partial observability that the
agent is subject to, as well as the agent’s “reactiveness”, i.e.
the amount of history that is willfully ignored by the agent

itself to select actions. Nonetheless, this state-only form of
value function may be more useful than others in control
problems which have small amounts of partial observability,
such as vision-based tasks with an occlusion-free view of
the environment [Pinto et al., [2018| |Baisero and Amato,
2022]]. Although our main focus is control problems with
significant amounts of partial observability, we are still in-
terested in formulating a state-only variant of ADQN as an
additional baseline, and as reference for future work which
may focus on the kinds of control problems where it thrives.

In this state-only variant, we redefine the parametric model

U (s, a) to ignore history, and adopt the following losses,

Lo = (r+~vSG[U(s, 7(hao))] — U(s,a))”, (20)

Lo = (r+~vSG[U(s', #(hao))] — Q(h,a))® . (1)

4.4.3 Reduced-Variance State-Only ADQN

This variant applies a state-only variant of the variance
reduction approximation from Section f.4.T]to state-only
ADQN. In this case, we approximate the target of L from
Equation as +~U(s', 7 (hao)) = Ul(s, a),

Lo = (r+~vSG[U(s, m(hao))] — U(s,a))”, (22)
Ly = (SG[U(s,a)] — Q(h,a))” . (23)

S EVALUATION

We perform an empirical evaluation of our proposed ADQN
method and its variants in a variety of environments which
feature significant amounts of partial observability.

Methods We compare the performances of 5 value-based
PORL algorithms, denoted as follows:

* DQN is the standard non-asymmetric DQN algorithm;

¢ ADQN and ADQN-VR are the history-state ADQN
algorithms from Sections {.4]and [d.4.1} and

¢ ADQN-State and ADQN-State-VR are the state-only
ADQN algorithms from Sections 4.4.2]and f.4.3]

Environments Evaluations are run on 5 partially observ-
able navigation tasks which require information gathering
strategies and memorization of the past:

¢ Heaven-Hell-3 and Heaven-Hell-4 [Bonet, |1998|], cor-
ridor environments where the agent must reach the
exit to heaven and avoid the exit to hell, but must first
backtrack to visit a priest to learn which exit is which;

¢ Car-Flag [Nguyen, 2021]], a 1-dimensional continuous
control variant of Heaven-Hell;

 Cleaner [Jiang and Amatol[2021]], a maze environment
where two agents must reach all tiles to clean them. In
our experiments, the two agents are treated as a single
agent, and controlled in a centralized fashion; and

¢ GV-MemoryFourRooms-7x7 [Baisero and Katt,
2021]], a dynamically generated gridworld with 4 con-
nected rooms, where the agent must reach the good
exit and avoid the bad exit, but must first find and
memorize a beacon to learn which is which.

A more thorough description of these environments can be
found in Appendix C of Baisero and Amato|[2022].

Each method is trained and evaluated using code available
as a public repositor For each environment and algorithm,
we perform an independent grid-search over some hyper-
parameters of interest (see Appendix D)), and select the com-
bination of hyper-parameters which results in the best final
performance and learning stability (prioritizing final perfor-
mance if necessary). To improve the statistical significance
of the results, each combination of environment, algorithm,
and hyper-parameters is run 20 independent times.

5.1 RESULTS AND DISCUSSION

Figure E] shows the results of these evaluations, which
broadly confirm our theoretical analysis on asymmetric
value-based PORL, the practical advantage of employing
history-state forms of evaluation to aid partially observable
control, and confirm the superiority of ADQN compared to
other similar symmetric and asymmetric variants. This eval-
uation further confirms other recently developed theoretical
analysis on asymmetric PORL, i.e., that state-only forms of
asymmetry are inadequate to handle non-trivial amounts of
partial observability [[Baisero and Amato, [2022].

Across the board, ADQN and ADQN-VR outperform all
baselines in final performance, convergence speed, and/or
overall learning stability. The contrast between methods is
particularly stark in Figures[Taland[Tb, where ADQN and
ADQN-VR are not just the only methods that demonstrate
any substantial improvement, but are also able to reach opti-
mal performance. On the other hand, the state-only variants
fail to outperform even the DQN baseline in most environ-
ments (with a single exception discussed later), which fur-
ther confirms the theoretical issues that have been recently
associated with state-only forms of asymmetry. Broadly, the
variance-reduced variants ADQN-VR and ADQN-State-
VR only differ in relatively minor ways from their default
counterparts. Such differences can be found in Figures|[Ta]
and[1d] where ADQN is more stable or has better conver-
gence properties than ADQN-State-VR, and in Figures
and [Id} where ADQN-State-VR has better final conver-
gence values than ADQN-State. This seems to indicate

nttps://github.com/abaisero/asym-rlpo/

https://github.com/abaisero/asym-rlpo/

e DQN ADQN e ADQN-VR = ADQN-State = ADQN-State-VR
1.0 1.0
v Mol ’“J'N 0.0
0.8 MV 0.8
0.6 0.6 -0.5
0.4 0.4
-1.0
0.2 0.2
0.0 0.0 15
0 2M 4 M 6M
Timestep Timestep
-2.0
(a) Heaven-Hell-3 (b) Heaven-Hell-4
W/v\/\/_/‘/\ A [-2.5
0.6 -3.0
0.4 40
-3.5
0.2
0.0 20 4.0
0 1M 2M 3M 4M 0 1M 2M 3M 4M 0 2M 4 M 6 M
Timestep Timestep Timestep

(c) Car-Flag

(d) Cleaner

(e) GV-MemoryFourRooms-7x7

Figure 1: Performance curves showing episodic returns averaged over the last 100 completed episodes, with statistics
computed over 20 independent runs. The shaded areas represent one standard error around the mean.

that the type of asymmetry (history-state or state-only) is
a larger contributor to overall performance than the choice
of using the standard or the variance-reduced variant of the
same method. In Figure |le|too, ADQN and ADQN-VR
outperform all other baselines. However, these results also
represent an interesting exception to some of the above anal-
ysis, e.g., ADQN-State outperforms DQN and ADQN-VR
outperforms ADQN. To explain this, we note that this is the
only task not reliably solved by any of the methods, which
is likely due to the highly dynamic nature of the randomly
generated map and object locations. In fact, the fact that
some of the trends found in the other results do not also
appear here may be explained by the fact that none of the
methods achieve their full potential performance.

6 CONCLUSIONS

OTOE is a RL framework where agents are trained offline
in a simulated environment, which allows temporary access
to privileged information which would otherwise be un-
available, like the partially observable environment’s state.
Asymmetry is a common mechanism through which such
privileged information can be used during training, and has
the potential to greatly boost learning performance and effi-
ciency when implemented correctly. However, modern work
in asymmetric RL tends to focus on unproven heuristics
which lack a theoretical justification. In this work, we filled

this void and developed the theory of asymmetric value-
based RL. We achieved our primary goal of developing a
theoretically-sound asymmetric value-based RL algorithm
by employing a bottom-up approach, and by first focus-
ing on the base theory of asymmetric policy improvement.
This took the form of API, a conceptual solution method
with strict optimal convergence guarantees but concrete
practical limitations. Then, we applied a series of relax-
ations to API which addressed those limitations and ulti-
mately resulted in ADQN, a practical and competitive deep
RL algorithm. We performed an empirical evaluation to
compare the performances of ADQN and its variants to
standard non-asymmetric DQN in a series of environments
which are specifically selected to exhibit high levels of par-
tial observability, and which require information-gathering
strategies and memorization of the past. In all these en-
vironments, ADQN achieved the best performance, even
solving control problems which standard DQN could not.
Overall, our evaluation confirmed the potential offered by
privileged information, the importance of using it in princi-
pled and theoretically-guided ways, and the overall success
our ADQN algorithm in partially observable control prob-
lems. Future work may focus on extending ADQN to the
multi-agent control case, which poses further learning chal-
lenges, on finding applications where state-only ADQN may
thrive (such as vision-based robotic tasks with little partial
observability), and on extending the evaluation of ADQN in
more complicated partially observable vision-based tasks.

Author Contributions

Andrea Baisero conceived the idea, developed proofs, ran
experiments, and wrote the paper. Brett Daley developed
proofs and wrote the paper. Christopher Amato supervised.

Acknowledgements

This research was funded by NSF award 1816382.

References

Andrea Baisero and Christopher Amato. Unbiased Asym-
metric Reinforcement Learning under Partial Observabil-
ity. In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, pages
44-52, 2022.

Andrea Baisero and Sammie Katt. gym-gridverse: Grid-
world domains for fully and partially observable rein-
forcement learning, 2021. URL https://github.
com/abaisero/gym—gridversel

Blai Bonet. Solving large POMDPs using real time dynamic
programming. In Proc. AAAI Fall Symp. on POMDPs,
1998.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krihenbiihl. Learning by cheating. In Conference on
Robot Learning, pages 66—75. PMLR, 2020.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre
Kamienny, Philip Torr, Wendelin Bohmer, and Shimon
Whiteson. Deep Multi-Agent Reinforcement Learning
for Decentralized Continuous Cooperative Control. arXiv
preprint arXiv:2003.06709, 2020.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson. Counterfactual
multi-agent policy gradients. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Matthew Hausknecht and Peter Stone. Deep recurrent g-
learning for partially observable mdps. In 2015 AAAI Fall
Symposium Series, 2015.

Shuo Jiang and Christopher Amato. Multi-agent reinforce-
ment learning with directed exploration and selective
memory reuse. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing, pages 777-784, 2021.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang,
and Stuart Russell. Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradi-
ent. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 42134220, 2019.

Long-Ji Lin. Self-improving reactive agents based on re-
inforcement learning, planning and teaching. Machine
learning, 8(3):293-321, 1992.

Ryan Lowe, Yil. Wu, Aviv Tamar, Jean Harb, OpenAl Pieter
Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In Ad-
vances in neural information processing systems, pages
6379-6390, 2017.

Xueguang Lyu, Andrea Baisero, Yuchen Xiao, and Christo-
pher Amato. A Deeper Understanding of State-Based
Critics in Multi-Agent Reinforcement Learning. In Pro-
ceedings of the AAAI conference on artificial intelligence,
2022.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and
Shimon Whiteson. Maven: Multi-agent variational ex-
ploration. In Advances in Neural Information Processing
Systems, pages 7613-7624, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, and Andreas K. Fidjeland.
Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529, 2015.

Hai Nguyen. POMDP Robot Domains, 2021. URL
https://github.com/hai-h-nguyen/

pomdp—-domains,

Hai Nguyen, Brett Daley, Xinchao Song, Christopher Am-
ato, and Robert Platt. Belief-Grounded Networks for
Accelerated Robot Learning under Partial Observabil-
ity. In Conference on Robot Learning, pages 1640-1653.
PMLR, 2021.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wo-
jciech Zaremba, and Pieter Abbeel. Asymmetric Actor
Critic for Image-Based Robot Learning. In Proceedings
of Robotics: Science and Systems, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder,
Gregory Farquhar, Jakob Foerster, and Shimon Whiteson.
Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning. In International con-
ference on machine learning, pages 4295-4304. PMLR,
2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon
Whiteson. Weighted gmix: Expanding monotonic value
function factorisation for deep multi-agent reinforcement
learning. Advances in neural information processing
systems, 33:10199-10210, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. MIT press, 2018.

https://github.com/abaisero/gym-gridverse
https://github.com/abaisero/gym-gridverse
https://github.com/hai-h-nguyen/pomdp-domains
https://github.com/hai-h-nguyen/pomdp-domains

Rose E. Wang, Michael Everett, and Jonathan P. How. R-
maddpg for partially observable environments and limited
communication. arXiv preprint arXiv:2002.06684, 2020.

Andrew Warrington, Jonathan W. Lavington, Adam Scibior,
Mark Schmidt, and Frank Wood. Robust asymmetric
learning in pomdps. In International Conference on Ma-
chine Learning, pages 11013—-11023. PMLR, 2021.

Christopher John Cornish Hellaby Watkins. Learning from
delayed rewards. PhD Thesis, King’s College, Cam-
bridge, 1989.

Yuchen Xiao, Joshua Hoffman, Tian Xia, and Christopher
Amato. Learning multi-robot decentralized macro-action-
based policies via a centralized Q-net. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), pages 10695-10701. IEEE, 2020.

Yuchen Xiao, Xueguang Lyu, and Christopher Amato. Lo-
cal Advantage Actor-Critic for Robust Multi-Agent Deep
Reinforcement Learning. In 2021 International Sympo-
sium on Multi-Robot and Multi-Agent Systems (MRS),
pages 155-163. IEEE, 2021.

Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fu-
jimura, and Hongyuan Zha. Cm3: Cooperative multi-goal
multi-stage multi-agent reinforcement learning. arXiv
preprint arXiv:1809.05188, 2018.

	Introduction
	Related Work
	Background
	POMDPs
	DQN
	History-State Value Functions
	Operator Notation

	Asymmetric Value-Based PORL
	Asymmetric Policy Iteration
	Asymmetric Action-Value Iteration
	Asymmetric Q-Learning
	Asymmetric DQN
	Variance-Reduced ADQN
	State-Only ADQN
	Reduced-Variance State-Only ADQN

	Evaluation
	Results and Discussion

	Conclusions

