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Abstract. Algorithm selection and instance hardness prediction are
important tasks in combinatorial optimization, as different algorithms
perform optimally on different instances, and accurately predicting in-
stance difficulty enables more efficient problem-solving strategies. While
researchers have explored feature-based machine learning models for
these tasks, there remains a lack of general and effective instance repre-
sentations, even for fundamental problems like the Euclidean Traveling
Salesman Problem (TSP). Recent studies have leveraged Convolutional
Neural Networks (CNNs) to learn TSP representations, but they still
require intermediate image-based representations, introducing additional
preprocessing steps. We tackle algorithm selection and hardness predic-
tion problems for TSP, but instead treat instances as geometric graphs.
We propose four Geometrically Invariant and Equivariant Graph Neu-
ral Networks (GIE-GNNs), based on conventional GNN models. The
proposed GIE-GNNs incorporate a novel message-passing mechanism to
capture geometric information effectively. Evaluations on two algorithm
selection and two hardness prediction datasets demonstrate that our
GNNs outperform feature-based, CNN-based, and standard GNN ap-
proaches designed for non-geometric graphs and point clouds. Moreover,
our analysis highlights that our GNNs uniquely achieve geometrically
invariant predictions. Code and datasets are available at GitHub.

Keywords: Traveling Salesperson Problem · Algorithm Selection · In-
stance Hardness Prediction · Graph Representation Learning · Graph
Neural Network · Geometrically Equivariant · Geometrically Invariant.

1 Introduction

The Euclidean Traveling Salesman Problem (TSP) is one of the most intensely
studied NP-hard combinatorial optimization problems. It relates to many real-
world applications and has significant theoretical value. TSP can be described
as follows. Given a list of cities with known positions, find the shortest route
to visit each city and return to the origin city. Researchers have developed
various exact, heuristic, and learning-based algorithms to solve this routing

https://github.com/ai-for-decision-making-tue/GE_GI_GNN_TSP
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problem [1]. As these algorithms’ performance is highly variable depending on the
characteristics of the problem instances, predicting the algorithms’ performance
and selecting algorithms for each instance helps to improve the overall efficiency [2].
The algorithm selection problem was proposed in [3] and developed further in
Instance Space Analysis (ISA) [4,5], where it is framed as a classification task
establishing mappings between Problem Space and Algorithm Space. Researchers
also utilize ISA to investigate instance hardness, employing a process consistent
with algorithm selection [6]. Traditionally, domain experts have hand-engineered
features [7] to capture the characteristics of TSP instances. A machine learning
classifier is then trained on these features to select the most suitable algorithm.
However, this feature-based approach suffers from several drawbacks [8]: it
demands extensive domain expertise, the features themselves may be insufficiently
expressive, and a separate feature selection step is often required. Moreover,
handcrafted features do not transfer well to other optimization problems, and for
complex or less-studied problems than TSP, it becomes especially challenging for
humans to design effective features in the first place.

Deep learning models, especially Convolutional Neural Networks (CNN), have
recently been applied to select TSP algorithms. By converting TSP instances into
images and applying CNN to recognize them, the algorithm selection problem is
transformed into a computer vision problem. Since CNN has sufficient automatic
feature learning capability, this approach no longer requires handcrafted features.
In [8], the authors generate three images: a point image, a Minimum Spanning
Tree (MST) image, and a k-Nearest-Neighbor-Graph (kNNG) image, to represent
each TSP instance. Then an 8-layer CNN architecture was applied to predict
which algorithm is better. The authors of [9] use a gridding method to transform
TSP instances into density maps and then apply ResNet [10] to do the prediction.
Similarly, [2] applies a CNN model to predict algorithms’ temporal performance
at different time steps.

Although [2,8,9] show CNNs outperform traditional handcrafted feature-based
ML models for TSP algorithm selection, the CNN based approaches have the
following drawbacks. (1) They need to generate intermediate representations
(images) from the instances. This step is often labor-intensive. In [8], producing
MST and kNNG images for each instance requires significant computation,
while in [9], multiple upscaling steps are performed to improve image resolution.
Moreover, data augmentation techniques such as random rotations and flips
are widely used to enhance CNN generalization [2,8,9], meaning that multiple
images must be generated for each TSP instance. (2) They may introduce problem-
irrelevant parameters. In [8], cities are represented by solid dots and connected
by solid lines in MST and kNNG images, however, the dot size and line width are
unrelated to the inherent properties of the TSP instance. Similarly, when using
a gridding method, one must specify parameters such as image size or number
of grids [9], thereby adding complexity and increasing the burden of parameter
tuning. (3) They potentially lose problem-relevant information. Dividing a TSP
instance into grids, with each cell reflecting the number of cities it includes [2,9],
can lead to the loss of certain local structural details. Moreover, imposing a
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maximum value for each grid cell [2] introduces further distortion and reduces the
fidelity of the representation. (4) Their generalizability to other routing problems
could be limited. It is relatively straightforward to convert TSP instances into
images in a 2D Euclidean space. However, for variants such as the Asymmetric
TSP (ATSP) or the Vehicle Routing Problem (VRP), this procedure becomes
much less direct. In these cases, a graph-based representation with node and
edge features is often more suitable than an image-based approach.

To address the above limitations of CNN-based approaches, we propose to
represent TSP instances as geometric graphs and employ Graph Neural Networks
(GNNs) to address both algorithm selection and instance hardness prediction. We
integrate geometric invariance and equivariance into GNN to robustly capture the
underlying geometric information. Our end-to-end framework directly processes
cities’ coordinates and pairwise distances, ensuring invariance to rotations and
translations in the 2D Euclidean space. Our main contributions are:

– We design geometrically invariant and equivariant GNNs (GIE-GNN for
short) to learn the representation of TSP instances for algorithm selection
and hardness prediction, outperforming the existing feature-based and CNN-
based approaches on public TSP datasets.

– With the adopted graph representation, we show that there is no need to
generate intermediate representations, such as handcrafted features or images.

– The proposed GNNs not only exceed the performance of traditional GNNs on
non-geometric graphs and point clouds but also demonstrate the capability
to offer geometrically invariant predictions. This makes them more reliable
and robust, as shown in our analysis.

2 GIE-GNNs as TSP algorithm selector

The TSP algorithm selection problem is defined as follows: given a TSP instance
set I = {I1, I2, ..., Il}, a TSP algorithm set A = {A1, A2, ..., Am}, and a certain
algorithm performance metric, the goal is to identify a per-instance mapping
from I to A that maximizes its performance on I based on the given metric. A
related task, instance hardness prediction, is a special case where the algorithm
space consists of a single algorithm and each instance is labeled as either easy or
hard. Traditionally, TSP instances have been represented by handcrafted features
or images that serve as inputs to supervised models like SVMs and CNNs. In
contrast, we use geometric graphs G = (S, P,E) to represent TSP instances,
where S are scale node features invariant to rotation or translation, P contains
the geometric vectors (coordinates) of nodes, and E are edges computed via the
k-Nearest Neighbor method. Given a set of TSP graphs {G1, G2, ..., Gl} and their
algorithm performance labels {y1, y2, ..., yl}, the task of selecting TSP algorithms
can be converted to a graph-level classification task.

We propose four GIE-GNN models: GINE-GI, MP-GI, GINE-GE, and MP-
GE, by adapting from conventional GNN architectures and standard message
passing mechanisms.



4 Y. Song et al.

Design Geometrically Invariant Node Features In contrast to previous
work [11] that processes TSP instances as non-geometric graphs by treating
city coordinates as node features, our GNNs treat coordinates as positional vec-
tors while restricting node features to scalar values, preserving invariance under
geometric transformations. This distinction ensures that geometric attributes
propagate via equivariant operations rather than contaminating invariant feature
channels. Since TSP nodes inherently lack distinguishable attributes beyond
coordinates, we design scalar features for our GNN architectures to preserve
geometric invariance. Positional Encoding enhances graph representation learning
by embedding node spatial relationships through trainable geometric priors,
with Random Walk Positional Encoding (RWPE) [12] particularly construct-
ing invariant node representations for TSP geometric graphs via k-step return
probabilities:

si =
[
RW

(1)
ii , RW

(2)
ii , . . . , RW

(k)
ii

]
∈ Rk (1)

where k denotes the preset maximum walk steps, and RW
(t)
ii represents the t-step

return probability from node i to itself with t ∈ {1, ..., k}. Once a geometric graph
is constructed, the relationships between points become fixed. Since the edge
indices remain unchanged under rotations or translations, the positional encodings
derived from random walks on these edges are invariant. These geometrically
invariant features thus serve as robust inputs for our proposed GNNs.

Geometrically Invariant GINE (GINE-GI) We adapt the conventional
GINE model [13] to be geometrically invariant. Our strategy involves assigning
both a scalar feature and geometric vector (coordinates) to each node, while
ensuring we propagate only the invariant scalar features of nodes and edges. The
invariant scalar features of edges are the relative distances between nodes. The
message-passing formulation of GINE-GI is shown as follows:

s
(ℓ+1)
i = MLP

(
(1 + ϵ) · s(ℓ)i + aggregatej∈N (i)ReLU

(
s
(ℓ)
j + ∥pj − pi∥

))
, (2)

where s
(ℓ)
i is the scalar node features, with the initial features s

(0)
i = si derived

from the RWPE encoding defined in Eq. (1). ∥pj − pi∥ is the scalar edge features
and is equal to the Euclidean distance between the two connected nodes, and
aggregate indicates the selected aggregator: it can be either the MAX aggregator
or the SUM aggregator.

Geometrically Invariant Message-Passing (MP-GI) Similar to the setting
of GINE-GI, we construct another geometrically invariant GNN with a different
powerful message-passing mechanism. In this new message-passing approach,
instead of adding node features and edge features to compute the message as
in GINE, we use a simple concatenation operation to aggregate information
and employ an MLP to project the concatenated features into a unified feature
space. Concatenation allows for a richer representation of the combined node
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and edge features compared to simple addition. Besides, by using an MLP after
concatenation, the model gains more flexibility in transforming and learning
complex relationships between node and edge features. The message-passing
formulation of MP-GI is shown as follows:

s
(ℓ+1)
i = MLP

(
Concat

(
s
(ℓ)
i , aggregatej∈N (i)Concat(s(ℓ)i , s

(ℓ)
j , ∥pj − pi∥)

))
,

(3)
where Concat is concatenation operation. The first Concat combines the node and
edge features to provide a richer representation, and the second one concatenates
the feature of node i with the aggregated features from its neighbors.

Geometrically equivariant Message-Passing (MP-GE) In [14], the authors
designed EGNN and demonstrated that it is geometrically equivariant. The
EGNN aggregates and updates node embeddings and performs geometrically
equivariant updates on nodes’ coordinates. Our MP-GE framework is built
upon the foundations of EGNN. However, it diverges from EGNN in three
significant aspects. First, we calculate the Euclidean distance between nodes
for message construction instead of using the squared relative distance. This
decision is informed by the fact that Euclidean distance is better suited to the
characteristics of TSP instances and results in smoother gradients during training,
which enhances the model’s numerical stability. Second, we adopt a different
aggregator to gather task-relevant information from the graph. Finally, we employ
a distinct information integration method, for example, updating node features
by concatenating the current features with the aggregated message, allowing for
more flexible information propagation. The formulation of MP-GE is as follows:

mi,j = MLPm

(
Concat

(
s
(ℓ)
i , s

(ℓ)
j , ∥pj − pi∥

))
, (4)

mi = aggregatei̸=j mi,j , (5)

p
(ℓ+1)
i = p

(ℓ)
i +

∑
i ̸=j

(pj − pi) · MLP (mi,j) , (6)

s
(ℓ+1)
i = MLPu

(
Concat

(
s
(ℓ)
i ,mi

))
. (7)

The message-passing mechanism in MP-GE involves both message aggregation
and geometric updates of the scalar node features and coordinates. Eq. (4)
defines the message passed between two nodes, computed via an MLP using
concatenated node features and their Euclidean distance. Eq. (5) formalizes the
message aggregation process via permutation-invariant operators. For coordinate
updates, Eq. (6) applies a weighted sum of relative positions with neighbors,
where the weights are learned via an MLP from the message. Meanwhile, Eq. (7)
updates node scale features by concatenating current features with the aggregated
message, processed by an MLP for the next layer’s features. Together, these
equations equip MP-GE with the ability to capture spatial structures while
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preserving equivariance to rotations and translations, ensuring robust feature
learning in geometric graphs.

Geometrically equivariant GINE (GINE-GE) We adopt the framework of
MP-GE and replace the message-passing part with GINE. The formulation of
GINE-GE is shown as follows:

mi,j = ReLU
(
s
(ℓ)
j + ∥pj − pi∥

)
, (8)

mi = aggregate.i ̸=jmi,j , (9)

p
(ℓ+1)
i = p

(ℓ)
i +

∑
i ̸=j

(pj − pi) · MLP (mi,j) , (10)

s
(ℓ+1)
i = MLP

(
s
(ℓ)
i +mi

)
. (11)

In contrast to MP-GE, where the message is derived from the concatenation
of both nodes’ scalar features s

(ℓ)
i and s

(ℓ)
j along with their positional distance

and processed by an MLP, GINE-GE simplifies the message to the sum of the
neighboring node’s scalar features s

(ℓ)
j and the distance between their positions,

followed by a ReLU activation. This simplification avoids the use of an MLP
at this step and focuses on the influence of the neighboring information and
positional distance directly. Besides, GINE-GE directly sums the current state s(ℓ)i

with the aggregated message mi before passing it through an MLP. This results
in a simpler and more direct update rule, potentially reducing the computational
complexity associated with the concatenation operation.

After adopting geometrically invariant node features and the message-passing
procedure, we construct a lightweight GNN architecture as shown in Figure
1. In Geometrically equivariant GNNs, although geometric vectors P are not
directly incorporated into the final classifier, their role in maintaining geometric
equivariance and supporting the message passing process indirectly improves
the feature representation of scalars, thereby impacting the final prediction
result. We adopt two GNN layers to extract salient information from TSP graphs
and apply PairNorm [15] after each GNN layer to address the over-smoothing
problem. Then we apply the Jumping Knowledge strategy [16], which means
concatenating each layer’s graph embedding and feeding it into the following
graph-level pooling layer. We employ the Global Maximum Pooling technique
here, as it is proficient in capturing and preserving the most prominent features,
remaining unaffected by variations in point density. This enables us to maximize
the use of the representation acquired across the two GNN layers.

3 Experiments

We evaluate our GNNs on four TSP datasets: two for algorithm selection and
two for hardness prediction. All datasets derive from ISA [17] and CNN-based
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Fig. 1. The proposed GIE-GNN architecture

selection studies [8], differing in instance size (100 vs. 1000 cities) and target
algorithms.

Algorithm Selection Datasets: TSP-ISA (100-city) contains 1,330 instances
categorized into seven CLK/LKCC performance groups. The binary task pre-
dicts which algorithm outperforms per instance. The Single-Best-Solver (LKCC)
achieves 71.43% accuracy; we balance the imbalanced training set via oversam-
pling. TSP-CNN (1000-city) includes 1,000 instances comparing EAX and LKH
algorithms. With a balanced distribution, the Single-Best-Solver (EAX) reaches
only 49% accuracy, indicating comparable algorithm competitiveness.

Hardness Prediction Datasets: We construct two hardness prediction datasets
from the TSP-ISA collection by redefining labels according to algorithm-specific
difficulty criteria. The CLK hardness dataset contains 760 balanced instances,
with classes defined as follows: Easy instances combine the original CLKeasy
and easyCLK-hardLKCC groups, while hard instances comprise CLKhard and
hardCLK-easyLKCC categories. Similarly, the LKCC hardness dataset consists
of 760 balanced samples where easy instances merge LKCCeasy with hardCLK-
easyLKCC, and hard instances correspond to LKCChard combined with easyCLK-
hardLKCC.

3.1 Baseline model

In addition to comparing with the model proposed in other articles, we create
several baseline models to be TSP selectors. For traditional feature-based models,
we adopt Random Forest (RF) as the classifier following its proven effectiveness
in TSP algorithm selection [8]. In our experiments, we set the maximum tree
depth to 5, a configuration that balances performance and overfitting risk on our
datasets. We evaluate four feature groups extracted via the salesperson R package
[7]: (1) All140: Complete set of 140 features categorized into 10 groups, including
Minimum Spanning Tree (MST), kNNG, and Angle features. (2) Top15: Optimal
15 features identified through feature selection for the TSP-CNN dataset [8],
predominantly comprising kNNG connectivity statistics along with MST/Angle
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Fig. 2. Top 10 importance features for algorithm selection datasets (TSP-ISA and
TSP-CNN), hardness prediction datasets (TSP-ISA CLK and TSP-ISA LKCC).

features. (3) MST19: All 19 MST-related features capturing distance/depth
statistics. MST is prioritized due to its established theoretical connection to TSP
approximation [8]. (4)kNNG51: Comprehensive 51-feature set describing kNNG
distance distributions and connectivity components.

We evaluate two categories of baseline GNNs for TSP algorithm selection:
(1) GCN [18] and GINE [13] for non-geometric graphs, and (2) PointNet [19]
and DGCNN [20] for point clouds. To our knowledge, this is the first successful
application of these GNNs to TSP algorithm selection. All models share the same
architecture and parameters, differing only in GNN layer types. Following prior
work [17,8], we adopt identical dataset processing methods. For evaluation, we
use 10-fold cross-validation on TSP-ISA and TSP-CNN (replicating the original
grouping), and 5-fold cross-validation for CLK/LKCC hardness prediction. All
datasets are balanced, with classification accuracy as the metric. Models are
trained for 150 epochs using the Adam optimizer (learning rate 0.001) and
Cross Entropy loss. TSP instances are represented via kNNG (k=10) to balance
computational efficiency. Random seeds are fixed to 41 for reproducibility [11].

3.2 Results of algorithm selection and hardness prediction

Table 1 presents the classification accuracy on the TSP-ISA algorithm selection
dataset. Random forest (RF) with full 140 features achieves the best performance
among feature-based methods, while feature reduction significantly degrades
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Table 1. Overall performance comparison on the TSP-ISA algorithm selection dataset
(bold: best; underline: runner-up).

Category Models Input data Parameters Accuracy

Feature-based
models RF

All140 features

–

95.94± 1.88%
Top15 features 87.22± 2.54%
MST19 features 87.82± 2.54%
kNNG51 features 74.21± 3.69%

Standard
GNNs

GCN Non-geometric graphs 1,122 97.52± 1.26%
GINE Non-geometric graphs 1,266 98.65± 0.94%

Point cloud
GNNs

PointNet Point clouds 962 99.33± 0.53%
DGCNN Point clouds 6,370 99.03± 0.48%

Proposed
GIE-GNNs

GINE-GI Geometric graphs 1,266 98.87± 0.97%
MP-GI Geometric graphs 2,546 99.25± 0.75%

GINE-GE Geometric graphs 1,622 99.48 ± 0.59%
MP-GE Geometric graphs 2,614 99.17± 1.03%

accuracy, particularly revealing that MST features exhibit greater importance
than kNNG features. This observation aligns with Figure 2, where TSP-ISA
and TSP-CNN show markedly different key feature distributions, justifying the
necessity of automatic feature learning in deep models. All GNNs surpass manual
feature-based approaches through automatic feature extraction. While standard
GNNs (GCN, GINE) designed for non-geometric graphs relatively underperform,
point cloud-based architectures like PointNet and DGCNN excel by leveraging
point coordinates to discern TSP instance patterns. Our geometrically invariant
and equivariant GNNs further advance performance, with GINE-GE achieving
state-of-the-art results. This underscores the importance of incorporating geo-
metric awareness into model design. Specifically, these models achieve superior
accuracy without TSP-specific domain knowledge, demonstrating their potential
as promising approaches to TSP algorithm selection. TSP-CNN outcomes pre-
sented in Table 2 indicate that RF with MST features consistently outperforms its
kNNG-based alternatives. Although CNN with Points+MST images outperforms
other vision-based approaches, it lags behind RF. Notably, point cloud-based
GNNs underperform compared to standard GNNs here due to larger instance
complexity, yet our geometric GNN variants still surpass all baselines. Compared
to CNNs in [8], our GNNs achieve higher accuracy with fewer parameters and
direct raw data processing, emphasizing their efficiency advantage.

Although the hardness prediction instances originate from the TSP-ISA
algorithm selection dataset, the key features shift significantly due to the change
in prediction targets. Moreover, as shown in Figure 2, the top 10 most important
features differ substantially between the two hardness measures, CLK and LKCC.
Table 3 presents the overall results for CLK and LKCC hardness prediction.
While CNN performs comparably to GCN on LKCC, it performs poorly on CLK,
revealing its lack of robustness across tasks. In contrast, our proposed GNN models
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Table 2. Overall performance comparison on the TSP-CNN algorithm selection dataset
(bold: best; underline: runner-up).

Category Models Input data Parameters Accuracy

Feature-based
models RF

All140 features

–

73.30± 5.10%
Top15 features 73.40± 5.66%
MST19 features 73.90± 4.81%
kNNG51 features 72.80± 5.86%

CNNs CNN [8]
Points+MST+kNNG images 1,174,690 70.50± 7.55%

Points+MST images 1,174,402 72.00± 4.96%
Points images 1,174,114 71.80± 6.63%

Standard
GNNs

GCN Non-geometric graphs 4,290 71.80± 4.21%
GINE Non-geometric graphs 2,874 72.10± 3.56%

Point cloud
GNNs

PointNet Point clouds 962 68.60± 3.26%
DGCNN Point clouds 6,370 64.10± 4.64%

Proposed
GIE-GNNs

GINE-GI Geometric graphs 2,874 74.30± 4.45%
MP-GI Geometric graphs 9,698 74.20± 4.83%

GINE-GE Geometric graphs 5,798 73.80± 4.28%
MP-GE Geometric graphs 9,830 75.40 ± 3.35%

consistently achieve the highest accuracy across both tasks while maintaining
lower model complexity. Consistent with our findings in algorithm selection, GNNs
tailored for non-geometric graphs underperform compared to those designed for
point clouds. Our GIE-GNNs are the only methods that outperform traditional
feature-based models in all settings. From a statistical perspective, our models
exhibit significant improvement over feature-based baselines on the CLK task,
confirming that the observed gains are not due to random variation. For the LKCC
task, our models also perform better on average, though the difference is not
statistically conclusive. Nonetheless, the overall trend, combined with substantial
and consistent margins over CNN, supports the robustness and generalization
ability of our geometry-aware GNN framework for TSP hardness prediction.

3.3 Ablation study

This section evaluates the effectiveness of different parts of the proposed GNNs.
First, we compare the performance of GINE, GINE-GI, and GINE-GE on various
tasks. GINE is a GNN designed for non-geometric graphs, and its information
propagation is not geometric invariant or equivariant. On the other hand, GINE-
GI and GINE-GE are our geometric invariant GNN and geometric equivariant
GNN, respectively. As shown in Table 4, by transforming GINE into a geometri-
cally invariant GNN, we observe a significant improvement in prediction accuracy
across all tasks. Although geometrically equivariant GNNs are theoretically more
powerful than geometrically invariant GNNs, the performances of GINE-GE
are slightly worse than GINE-GI in some cases. There could be two possible
reasons for this. Firstly, both models already achieve close to 100% prediction
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Table 3. CLK and LKCC hardness prediction overall performance comparison.

Models Input data Parameters CLK Acc LKCC Acc

RF

All140 features

–

98.82± 0.49% 97.50± 0.97%
Top15 features 97.76± 0.53% 87.24± 2.84%
MST19 features 98.29± 1.07% 95.66± 0.53%
kNNG51 features 96.45± 0.67% 70.53± 5.60%

CNN Points images 132,466 77.50± 3.39% 92.37± 1.22%

GCN Non-geometric
graphs 1,122 85.79± 2.06% 92.63± 3.42%

GINE Non-geometric
graphs 1,266 97.11± 0.89% 95.13± 1.79%

PointNet Point clouds 962 91.71± 1.48% 95.92± 2.33%
DGCNN Point clouds 6,370 93.68± 0.67% 95.66± 0.98%
GINE-GI Geometric graphs 1,266 99.61 ± 0.32% 97.76± 1.07%
MP-GI Geometric graphs 2,546 97.89± 1.83% 97.63± 1.07%

GINE-GE Geometric graphs 1,622 98.82± 1.47% 98.29 ± 0.89%
MP-GE Geometric graphs 2,614 98.95± 1.22% 96.97± 1.22%

Table 4. The prediction accuracy of GINE, GINE-GI, and GINE-GE on different
algorithm selection and hardness prediction tasks.

Models Geometrically
Invariant

Geometrically
Equivariant

ISA-TSP
Algorithm selection

ISA-TSP
CLK Hardness

ISA-TSP
LKCC Hardness

CNN-TSP
Algorithm selection

GINE ✗ ✗ 98.65± 0.94% 97.11± 0.89% 95.13± 1.79% 72.10± 3.56%
GINE-GI ✓ ✗ 98.87± 0.97% 99.61 ± 0.32% 97.76± 1.07% 74.30 ± 4.45%
GINE-GE ✗ ✓ 99.47 ± 0.59% 98.82± 1.47% 98.29 ± 0.89% 73.80± 4.28%

accuracy, leaving little room for improvement. Additionally, the GINE-GE model
is more complex and thus has a higher risk of over-fitting. Next, we investigate
the impact of the adopted positional encoding method named RWPE on the
model performance on two hardness prediction tasks and summarize it in Table 5.
When RWPE is not applied, we set the point features to a zero tensor of the same
dimension. In most cases, using RWPE helps to distinguish graph attributes, but
there are also some cases where directly setting the features to zero yields better
results. We found that when using GINE as the message-passing mechanism,
RWPE consistently improves performance. However, when using MP to propagate
information, RWPE has a negative impact. One possible reason is that in MP,
directly concatenating RWPE with different information and performing multiple
linear transformations may introduce instability.

3.4 Geometrically invariant analysis

The inherent hardness and optimal solutions of TSP instances are fundamentally
geometrically invariant; they remain constant under coordinate transformations
like rotation or translation. This necessitates prediction models to maintain
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Table 5. The performance comparison of applying RWPE on the TSP-ISA CLK and
LKCC hardness prediction dataset.

CLK hardness prediction LKCC hardness prediction
Positional
Encoding None RWPE None RWPE

GINE-GI 98.68± 1.25% 99.61± 0.32%↑ 97.11± 0.67% 97.76± 1.07%↑
MP-GI 98.82± 0.64% 97.89± 1.83%↓ 96.97± 2.23% 97.63± 1.07%↑

GINE-GE 98.55± 0.77% 98.82± 1.47%↑ 97.76± 1.22% 98.29± 0.89%↑
MP-GE 99.08± 0.53% 98.95± 1.22%↓ 97.24± 1.13% 96.97± 1.22%↓

Table 6. The prediction accuracy on rotated training and test data of the TSP-ISA
CLK hardness prediction dataset.

Model
Data Training Data Test Data

Orig. 45° 90° 180° Orig. 45° 90° 180°

GCN 95.07 80.69↓ 84.70↓ 83.75↓ 85.79 81.58↓ 86.32↑ 83.03↓
GINE 99.31 96.32↓ 96.25↓ 95.92↓ 97.11 96.45↓ 95.79↓ 96.18↓
PointNet 99.70 91.05↓ 91.25↓ 90.62↓ 91.71 92.11↑ 89.21↓ 92.37↑
DGCNN 100.00 89.18↓ 91.64↓ 92.53↓ 93.68 90.13↓ 91.97↓ 92.11↓
GINE-GI 99.67 99.67↔ 99.67↔ 99.67↔ 99.61 99.61↔ 99.61↔ 99.61↔
MP-GI 99.93 99.93↔ 99.93↔ 99.93↔ 97.89 97.89↔ 97.89↔ 97.89↔
GINE-GE 99.93 99.93↔ 99.93↔ 99.93↔ 98.82 98.82↔ 98.82↔ 98.82↔
MP-GE 100.00 100.00↔ 100.00↔ 100.00↔ 98.95 98.95↔ 98.95↔ 98.95↔

geometric invariance, a property that is unattainable without explicitly treating
TSPs as geometric graphs through invariant/equivariant GNN architectures. To
validate this critical property, we evaluated model robustness under coordinate
rotations applied to both training and test data. Table 6 compares prediction con-
sistency across three rotation configurations. Traditional GNNs for non-geometric
graphs and point clouds show significant performance degradation, demonstrating
their coordinate system dependency. In contrast, our geometric GNNs consistently
maintain unchanged prediction results. Our approach achieves this through two
principled designs: 1) Geometrically invariant GNNs naturally maintain invari-
ance by only propagating scalar features; 2) Geometrically equivariant GNNs
maintain equivariant intermediate representations while enforcing invariance
through graph-level pooling. This geometric-aware learning focuses on essential
structural patterns rather than coordinate system artifacts, ensuring reliable
predictions. Figure 3 uses t-SNE to compare the graph-level embeddings of GINE,
GINE-GI, and GINE-GE on both original and rotated test instances, illustrating
that GINE-GI and GINE-GE maintain more stable and separable representations
compared to GINE.
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Fig. 3. The graph embeddings of GINE, proposed GINE-GI, and proposed GINE-GE
before and after rotation on the TSP-ISA CLK hardness prediction dataset.

3.5 Model properties comparison

Table 7 provides an overview of the characteristics of feature-based models, CNNs,
conventional GNNs used for non-geometric graphs and point clouds, as well as
the proposed GNNs in relation to the task of selecting algorithms and predict-
ing hardness for TSP. The feature-based approach suffers from heavy reliance
on domain expertise and poor feature generalizability across datasets. While
CNNs automate feature learning, they require computationally intensive image
conversions with sensitive hyperparameters that lack theoretical justification.
More critically, their image-based paradigm becomes impractical for complex
routing problems such as VRP with heterogeneous nodes. Our geometrically
invariant and equivariant GNNs overcome these limitations by directly processing
coordinate and distance matrices, eliminating manual feature engineering and
image generation. Unlike traditional GNNs that ignore spatial relationships, we
explicitly model geometric invariances through dedicated message propagation
mechanisms. This architecture achieves superior prediction accuracy while main-
taining robustness across problem scales - particularly crucial as TSP instance
sizes vary. The coordinate native representation also facilitates effortless extension
to various routing problems by straightforwardly augmenting features, such as
identifying depot nodes for VRPs.
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Table 7. Properties comparison between Feature-based model, CNN, traditional GNNs,
and Our GNNs for algorithm selection and hardness prediction.

Properties Feature-based CNN[8] Traditional GNNs Our GNNs
Instance

representations
Handcrafted

features
Points, MST,
kNNG images

Non-geometric graphs
Point clouds

Geometric
graphs

Feature engineering
required Yes No No No

Problem-irrelevant
parameters None Image size

Dot/line params None None

Data Augmentation None Random rotation
Random flipping None None

Information loss Domain knowledge
dependent Resolution dependent None None

Generalize to VRP Hard Hard Easy to
add node features

Easy to
add node features

Geometrically
invariant prediction No No No Yes

4 Conclusion

We propose a group of geometrically invariant and equivariant GNNs to do
algorithm selection and hardness prediction for TSP. Our proposed GNNs can
learn useful spatial information of TSP instances and outperform traditional
feature-based models, CNNs, and GNNs designed for non-geometric graphs or
point clouds on four public datasets. Our GNNs only take cities’ coordinates and
distance matrices as input. Thus, no intermediate representations for problem
instances, such as features or images, need to be designed and generated prior to
model training. In contrast to converting TSP instances to images, the graph
representation is more natural and efficient, as it neither introduces problem-
irrelevant parameters nor loses problem-relevant information. We have shown the
proposed GNNs are promising as they can provide geometrically invariant pre-
dictions, which are more reliable and robust. Besides, they are easy to generalize
to other routing problems. For example, we can distinguish nodes and routes in
the problem instances by adding node and edge features.

In this work, we use a well-studied problem, TSP, to demonstrate our proposed
approaches to algorithm selection and instance hardness prediction, as benchmark
datasets and methods (handcrafted feature-based and CNN-based) for TSP are
public available, which allows us to do a fair comparison. In the future, we will
test our architectures for more complex variants of routing problems.
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