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Abstract

The RuleTaker models (Clark et al., 2020; Tafjord
et al., 2020) have recently shown that transformers
can be capable of learning to deductively inference
over facts and rules provided as natural language
sentences. This is a significant achievement, since
they can eliminate the need for express the knowl-
edge in a formal representation. In this paper, we
evaluate the robustness of these models to adver-
sarial attacks. We first investigate the availability
of dataset biases: superficial cues which can be
exploited by the models to obtain high accuracies
without solving the task. We train a model on par-
tial inputs, ignoring some parts that are essential
for true reasoning. High accuracy obtained by this
model reveals the existence of dataset biases. To
examine possible inattention of the models to the
necessary preconditions for valid reasoning, we
present three adversarial attacks on the test set:
ReplaceMid that replaces a word in the theory, Ad-
dMid which adds a new word to the theory, and
ChangePolarity that negates one sentence. In our
adversarial settings, the accuracy drops from an
average of 97.55% to 67.10%. This highlights the
need for development of more robust models in
both logic and language complexity scopes.

1 Introduction

The task of enabling machines to reason over pro-
vided knowledge has been classically approached
by explicitly presenting the knowledge in a for-
mal language (Davis, 1979). This approach has
the obvious drawback of requiring to formally
present the knowledge which can be challenging.
Thanks to the successes of Transformers (Vaswani
et al., 2017) in natural language processing (NLP)
tasks, the alternative approach of presenting the
knowledge in natural languages has been recently
pursued (Bhagavatula et al., 2019; Clark et al.,

2020; Tafjord et al., 2020; Aghahadi and Talebpour,
2021). They have reported promising results in a
narrow setting showing that BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) can emulate
reasoning over theories authored in English.

In this paper, we evaluate the performance of
these transformer-based models in adversarial set-
tings to investigate their true reasoning. The base
of this evaluation is the assumption that many NLP
systems exploit some superficial cues in the dataset,
known as dataset biases, to obtain high accuracy
in the in-distribution settings without truly solving
the task (Jia and Liang, 2017; Gururangan et al.,
2018; Manjunatha et al., 2019).

To evaluate this assumption, we train a
transformers-based model on partial inputs of the
RuleTaker dataset (introduced in §2), ignoring
some parts that are essential for reasoning (§3.1).
High accuracy of the trained model shows the exis-
tence of some biases in the data that are likely to be
exploited by the models. We then introduce three
adversaries that minimally change the test inputs
to evaluate the robustness of the trained models
against attacks (§3.2). The significant drop in the
performance of the models (see §4) show that even
though transformers are fairly capable of extracting
patterns to obtain high in-distribution accuracies,
they are very fragile against small changes in the in-
put distributions, which is likely a consequence of
relying on superficial cues instead of truly solving
the reasoning task.

2 Task and Data

RuleTaker (Clark et al., 2020; Tafjord et al., 2020)
is a dataset for studying deductive reasoning over
narrative texts, formulated as a question-answering
problem. The inference rules are explicitly pro-
vided instead of implicitly inferred as in read-
ing comprehension datasets (Baradaran et al.,
2020). Each example in the dataset is a quadruple
(theory, question, answer, proof), where theory
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Figure 1: Left: an example of a syllogism (depth-
1) in the RuleTaker dataset. Right: adversarial the-
ory replaces the term “sees” with the term “needs”;
this changes the label to unknown (an example of Re-
placeMid adversary).

includes a number of facts and rules; question is a
declarative sentence to prove; answer is true if ques-
tion deductively follows from the theory, false if it
is wrong based on the theory, and unknown under
the open-world assumption (OWA) if it cannot be
inferred to be true or false; and proof includes the
statements in theory that contribute to the answer.

The dataset contains up to 5 depths of inference
to prove the answers. Each theory has at least one
question in each depth. Depth-0 refers to a lookup
question and depth-1 refers to a syllogism. A syl-
logism is a common form of deductive reasoning
which involves exactly two premises (Khemlani
and Johnson-Laird, 2012). The anchor term that
is present in both premises is called the middle-
term. Figure 1 (left) shows a syllogism from the
RuleTaker dataset.

Table 1 shows the statistics of depth-0 and depth-
1 samples in the dataset. In the next section, we
introduce the settings to evaluate the robustness of
the transformers-based models train on this data in
adversarial situations.

3 Evaluation Settings

We first introduce the partial input setting in which
a model is trained on some parts of the input which
are not informative-enough for reasoning. It is
used to investigate the existence of biases in the
RuleTaker dataset. We then introduce three dif-
ferent adversaries to evaluate the performance of
transformer-based reasoners in adversarial settings.

3.1 Partial input

A generalizable model should base its decision on
the essential parts of the input, which we define as

those segments that, if removed, the model should
not be able to reasonably produce the output. For
instance, in the natural language inference task,
where the goal is to determine the entailment rela-
tionship between a premise and a hypothesis, both
parts are essential, such that the model should not
be able to produce a sensible output without each
of them. By partial input we mean the input with
some of its essential parts removed. The high ac-
curacy of a model trained on the partial inputs re-
veals the existence of some superficial cues, also
known as dataset biases, which can be exploited
by the model (Gururangan et al., 2018). This
results in solving the dataset instead of the task,
which is highlighted by high in-distribution accu-
racy and substantially lower out-of-distribution per-
formance.

To evaluate the performance of transformers-
based reasoners on partial inputs, we train a BERT
(Devlin et al., 2019) and a RoBERTa (Liu et al.,
2019) classifier just on the guestion part of the
input, ignoring the theory which is obviously an
essential part. As we show in §4, the classifier ob-
tains an accuracy which is significantly higher than
the chance level on this partial input data, which
reveals the existence of exploitable biases in Rule-
Taker dataset.

3.2 Adversaries

To determine whether transformers’ reasoning is
limited to simple patterns, we introduce adversaries
by altering the test set of the RuleTaker dataset.
Consider the example in Figure 1 in which the the
label is changed from true to unknown when one
word is changed in the theory.

We define three adversary functions that
modify the theory and answer in an example
(theory, question, answer, proof). To ensure
that the functions generate valid examples, a hu-
man labeler evaluates some random generated in-
stances (§4). We just target depth-1 examples. All
theories in depth-1 contain a syllogism. Syllogistic
reasoning has two conditions: 1) The middle-term
should convey the same meaning in the premises.
2) The middle-term should not come with modify-
ing terms in one of the premises.

To check the sensitivity of the RuleTaker-trained
model to the first condition, the ReplaceMid func-
tion replaces the middle-term with another term. To

'Tn a more general definition, the semantic meaning of the

middle-term in one premise can be a synonym, hypernym, or
hyponym of the other.



RuleTaker RuleTaker || Replace Add Change | Adversarial
train set test set Mid Mid Polarity | test set
All 69616 20210 1914 360 708 2982
True 18016 5214 - - 708 708
False 18016 5214 - - - -
Unknown 33584 9782 1914 360 - 2274

Table 1: RuleTaker dataset and adversarial data statistics.

check the sensitivity to the second condition, the
AddMid function adds a new term to the middle-
term. The added term is not included in the refer-
ence theory, but it is selected from the RuleTaker
dataset. So, under the OWA, AddMid modifies
the true labels to unknown. Refer to Figure 2 for
an illustration of these steps. We also introduce
ChangePolarity function to examine the sensitivity
of the models to the negation of the premises. All
three mentioned functions use a three-step proce-
dure to generate sentences that are similar to the
original premises in theory, but lead to different
answers. We will provide more details in the fol-
lowing.

* ReplaceMid. To create an adversarial exam-
ple for a question, we focus on facts and rules
in the proof of the answer. The ReplaceMid
function modifies an example with true label
by replacing the middle-term in the second
premise with a new selected word. After this
change, the first and second premises do not
match, and the label will not be true. On the
other hand, as noted earlier, the added term is
not included in the reference theory. So, there
is no other sentence in theory that matches
the adversary sentence, gives more informa-
tion about it, or contradicts with the original
answer. Therefore, under OWA, the label of
the adversarial example would be unknown.
Figure 1 (right) shows an example of this ad-
versary.

* AddMid. This function changes the middle-
term by adding extra items to it. In some true
questions, the first premise includes two facts.
Here again, the first and second premises do
not match, and because there is no other sen-
tence in theory to match the adversary sen-
tence or give more information about it, we ex-
pect the label to be unknown. Figure 2 shows
an example of this adversary.

* ChangePolarity. This function works on ex-
amples with false label by negating the second
premise. Because the adversary sentence con-
tradicts with the original sentence, we expect
the false label to be changed to true.

Table 1 includes the statistics of the adversarial
dataset. The aggregation of instances generated
by ReplaceMid, AddMidd, and ChangePolarity
functions constitutes the adversarial test set. Each
dataset is split into 80/20% training and test sets,
respectively. To make sure that after manipulating
the data, the original answer cannot be obtained
through an alternative proof, we only used the part
of the original test set that has single proofs.

4 Results and Discussion

In this section, we present and discuss the results
of evaluations introduced in §3. In all experiments,
we utilized Google Colab platform which provides
GPU Tesla K80.

Dataset Bias The partial input line in Table 2
shows the results of training BERT and RoBERTa
models just on the guestion part of the input (de-
tailed in §3.1). The obtained accuracies are obvi-
ously higher than chance-level baseline which is
33.3%. This reveals the existence of dataset biases
which can be exploited by models to obtain high
accuracies without solving the task. Note that this
experiment does not prove that the models neces-
sarily exploit these biases (Amirkhani and Pilehvar,
2021). If the models base their decision on these su-
perficial cues, they cannot generalize to adversarial
settings, which is examined in the following.

Adversarial Evaluation Table 2 shows the accu-
racy of the BERT and RoBERTa models against
all three adversaries. According to this table, the
transformers-based models trained on the Rule-
Taker dataset are significantly fragile against adver-
saries introduced in §3.2. For instance, AddMid ad-
versary decreases the accuracy of RoOBERTa model



Step 1: Extract the proof

Input: $answer$; $question$=Harry is blue?; $context$ =Dave is quiet. Fiona is blue. Harry is furry. Harry is green.
Harry is kind. Harry is quiet. Harry is young. Green, young people are blue. If Dave is furry then Dave is cold. If

someone is furry and cold then they are green.

Step 2: Generate adversary sentence

Step 3: Replace in original theory

cold. If someone is furry and cold then they are green.

Output: $answer$ = True; $proof$ = [triple4 triple7 — rulel]

Harry is green. Harry is young. Green, young people are blue.

Green, young and rough people are blue.

Input: $answer$; $question$ =Harry is blue? ; Scontext$ =Dave is quiet. Fiona is blue. Harry is furry. Harry is green.
Harry is kind. Harry is quiet. Harry is young. Green, young and rough people are blue. If Dave is furry then Dave is

Output: $answer$ = Unknown; $proof$ = [rulel « FAIL]

Figure 2: An example of the AddMid adversary procedure.

from 97.55% to 61.39%. ReplaceMid is even more
effective, where it drops accuracy to 36.62%. Low
accuracy of BERT under ChangePolarity function
verifies its insensitivity to negation, which has also
been reported in previous research (Ettinger, 2020).

Failure Analysis Investigating the adversarial
cases that fool the model shows that for Re-
placeMid adversary, in 99.42% of cases, the model
outputs the same label produced for attack-free
instance. This ratio is 97.10% for the AddMid ad-
versary. This finding is in line with the known fact
that NLP models are overly stable and do not real-
ize that a small change can completely change the
meaning of one sentence (Jia and Liang, 2017).

Human Evaluation To ensure that the generated
adversarial instances are valid and trivial for hu-
mans, we randomly sampled and labeled 50 exam-
ples of AddMid, ReplaceMid, and ChangePolarity
instances. We also added some attack-free records
from the original dataset to make the datasets more
natural. The results of this human evaluation pre-
sented in Table 3 show that the instances are com-
pletely trivial for humans, while BERT model has
a considerable low accuracy on them.

5 Conclusions

In this paper, we evaluated the recent success of
transformers-based models in reasoning over natu-
ral language texts (Clark et al., 2020; Tafjord et al.,
2020). We first showed that there are some dataset
biases in the RuleTaker dataset which are likely
to be exploited by the models to obtain fake high
accuracies. Then, three adversarial functions were

RoBERTa BERT

Acc. Acc.
RuleTaker train set 97.29 80.00
RuleTaker test set 97.55 79.25
Partial input 52.27 52.33
Adversarial test set 67.10 58.71
ReplaceMid 36.62 70.68
AddMid 61.39 69.44
ChangePolarity 99.01 21.23

Table 2: Accuracy of BERT-base and RoBERTa-

base models in different settings (random baseline is
33.3%).

Sub Records BERT Human

Datasets without  Acc. Acc.
attack

ReplaceMid 17.53% 68.63 100

AddMid 13.46% 65.86 100

ChangePolarity 69.23% 41.06 100

Table 3: Human evaluation on random subsets of adver-
sarial instances.

introduced to investigate true reasoning capabilities
of the learned models. We observed that the learned
models are significantly fragile against minimal ad-
versarial changes. This illustrates that transformers
partly use non-generalizable patterns to perform
reasoning, highlighting the need for developing
more robust real reasoners.
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