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Abstract
001

The RuleTaker models (Clark et al., 2020; Tafjord002

et al., 2020) have recently shown that transformers003

can be capable of learning to deductively inference004

over facts and rules provided as natural language005

sentences. This is a significant achievement, since006

they can eliminate the need for express the knowl-007

edge in a formal representation. In this paper, we008

evaluate the robustness of these models to adver-009

sarial attacks. We first investigate the availability010

of dataset biases: superficial cues which can be011

exploited by the models to obtain high accuracies012

without solving the task. We train a model on par-013

tial inputs, ignoring some parts that are essential014

for true reasoning. High accuracy obtained by this015

model reveals the existence of dataset biases. To016

examine possible inattention of the models to the017

necessary preconditions for valid reasoning, we018

present three adversarial attacks on the test set:019

ReplaceMid that replaces a word in the theory, Ad-020

dMid which adds a new word to the theory, and021

ChangePolarity that negates one sentence. In our022

adversarial settings, the accuracy drops from an023

average of 97.55% to 67.10%. This highlights the024

need for development of more robust models in025

both logic and language complexity scopes.026

1 Introduction027

The task of enabling machines to reason over pro-028

vided knowledge has been classically approached029

by explicitly presenting the knowledge in a for-030

mal language (Davis, 1979). This approach has031

the obvious drawback of requiring to formally032

present the knowledge which can be challenging.033

Thanks to the successes of Transformers (Vaswani034

et al., 2017) in natural language processing (NLP)035

tasks, the alternative approach of presenting the036

knowledge in natural languages has been recently037

pursued (Bhagavatula et al., 2019; Clark et al.,038

2020; Tafjord et al., 2020; Aghahadi and Talebpour, 039

2021). They have reported promising results in a 040

narrow setting showing that BERT (Devlin et al., 041

2019) and RoBERTa (Liu et al., 2019) can emulate 042

reasoning over theories authored in English. 043

In this paper, we evaluate the performance of 044

these transformer-based models in adversarial set- 045

tings to investigate their true reasoning. The base 046

of this evaluation is the assumption that many NLP 047

systems exploit some superficial cues in the dataset, 048

known as dataset biases, to obtain high accuracy 049

in the in-distribution settings without truly solving 050

the task (Jia and Liang, 2017; Gururangan et al., 051

2018; Manjunatha et al., 2019). 052

To evaluate this assumption, we train a 053

transformers-based model on partial inputs of the 054

RuleTaker dataset (introduced in §2), ignoring 055

some parts that are essential for reasoning (§3.1). 056

High accuracy of the trained model shows the exis- 057

tence of some biases in the data that are likely to be 058

exploited by the models. We then introduce three 059

adversaries that minimally change the test inputs 060

to evaluate the robustness of the trained models 061

against attacks (§3.2). The significant drop in the 062

performance of the models (see §4) show that even 063

though transformers are fairly capable of extracting 064

patterns to obtain high in-distribution accuracies, 065

they are very fragile against small changes in the in- 066

put distributions, which is likely a consequence of 067

relying on superficial cues instead of truly solving 068

the reasoning task. 069

2 Task and Data 070

RuleTaker (Clark et al., 2020; Tafjord et al., 2020) 071

is a dataset for studying deductive reasoning over 072

narrative texts, formulated as a question-answering 073

problem. The inference rules are explicitly pro- 074

vided instead of implicitly inferred as in read- 075

ing comprehension datasets (Baradaran et al., 076

2020). Each example in the dataset is a quadruple 077

(theory, question, answer, proof), where theory 078
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If something needs the tiger 
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Q
ue

st
io

n 

The tiger sees the lion. 

Q
ue

st
io

n 

The tiger sees the lion. 

A
ns

w
er

 

 True 

A
ns

w
er

 

Unknown 

	

Figure 1: Left: an example of a syllogism (depth-
1) in the RuleTaker dataset. Right: adversarial the-
ory replaces the term “sees” with the term “needs”;
this changes the label to unknown (an example of Re-
placeMid adversary).

includes a number of facts and rules; question is a079

declarative sentence to prove; answer is true if ques-080

tion deductively follows from the theory, false if it081

is wrong based on the theory, and unknown under082

the open-world assumption (OWA) if it cannot be083

inferred to be true or false; and proof includes the084

statements in theory that contribute to the answer.085

The dataset contains up to 5 depths of inference086

to prove the answers. Each theory has at least one087

question in each depth. Depth-0 refers to a lookup088

question and depth-1 refers to a syllogism. A syl-089

logism is a common form of deductive reasoning090

which involves exactly two premises (Khemlani091

and Johnson-Laird, 2012). The anchor term that092

is present in both premises is called the middle-093

term. Figure 1 (left) shows a syllogism from the094

RuleTaker dataset.095

Table 1 shows the statistics of depth-0 and depth-096

1 samples in the dataset. In the next section, we097

introduce the settings to evaluate the robustness of098

the transformers-based models train on this data in099

adversarial situations.100

3 Evaluation Settings101

We first introduce the partial input setting in which102

a model is trained on some parts of the input which103

are not informative-enough for reasoning. It is104

used to investigate the existence of biases in the105

RuleTaker dataset. We then introduce three dif-106

ferent adversaries to evaluate the performance of107

transformer-based reasoners in adversarial settings.108

3.1 Partial input109

A generalizable model should base its decision on110

the essential parts of the input, which we define as111

those segments that, if removed, the model should 112

not be able to reasonably produce the output. For 113

instance, in the natural language inference task, 114

where the goal is to determine the entailment rela- 115

tionship between a premise and a hypothesis, both 116

parts are essential, such that the model should not 117

be able to produce a sensible output without each 118

of them. By partial input we mean the input with 119

some of its essential parts removed. The high ac- 120

curacy of a model trained on the partial inputs re- 121

veals the existence of some superficial cues, also 122

known as dataset biases, which can be exploited 123

by the model (Gururangan et al., 2018). This 124

results in solving the dataset instead of the task, 125

which is highlighted by high in-distribution accu- 126

racy and substantially lower out-of-distribution per- 127

formance. 128

To evaluate the performance of transformers- 129

based reasoners on partial inputs, we train a BERT 130

(Devlin et al., 2019) and a RoBERTa (Liu et al., 131

2019) classifier just on the question part of the 132

input, ignoring the theory which is obviously an 133

essential part. As we show in §4, the classifier ob- 134

tains an accuracy which is significantly higher than 135

the chance level on this partial input data, which 136

reveals the existence of exploitable biases in Rule- 137

Taker dataset. 138

3.2 Adversaries 139

To determine whether transformers’ reasoning is 140

limited to simple patterns, we introduce adversaries 141

by altering the test set of the RuleTaker dataset. 142

Consider the example in Figure 1 in which the the 143

label is changed from true to unknown when one 144

word is changed in the theory. 145

We define three adversary functions that 146

modify the theory and answer in an example 147

(theory, question, answer, proof). To ensure 148

that the functions generate valid examples, a hu- 149

man labeler evaluates some random generated in- 150

stances (§4). We just target depth-1 examples. All 151

theories in depth-1 contain a syllogism. Syllogistic 152

reasoning has two conditions: 1) The middle-term 153

should convey the same meaning in the premises.1 154

2) The middle-term should not come with modify- 155

ing terms in one of the premises. 156

To check the sensitivity of the RuleTaker-trained 157

model to the first condition, the ReplaceMid func- 158

tion replaces the middle-term with another term. To 159

1In a more general definition, the semantic meaning of the
middle-term in one premise can be a synonym, hypernym, or
hyponym of the other.
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RuleTaker RuleTaker Replace Add Change Adversarial
train set test set Mid Mid Polarity test set

All 69616 20210 1914 360 708 2982
True 18016 5214 - - 708 708
False 18016 5214 - - - -
Unknown 33584 9782 1914 360 - 2274

Table 1: RuleTaker dataset and adversarial data statistics.

check the sensitivity to the second condition, the160

AddMid function adds a new term to the middle-161

term. The added term is not included in the refer-162

ence theory, but it is selected from the RuleTaker163

dataset. So, under the OWA, AddMid modifies164

the true labels to unknown. Refer to Figure 2 for165

an illustration of these steps. We also introduce166

ChangePolarity function to examine the sensitivity167

of the models to the negation of the premises. All168

three mentioned functions use a three-step proce-169

dure to generate sentences that are similar to the170

original premises in theory, but lead to different171

answers. We will provide more details in the fol-172

lowing.173

• ReplaceMid. To create an adversarial exam-174

ple for a question, we focus on facts and rules175

in the proof of the answer. The ReplaceMid176

function modifies an example with true label177

by replacing the middle-term in the second178

premise with a new selected word. After this179

change, the first and second premises do not180

match, and the label will not be true. On the181

other hand, as noted earlier, the added term is182

not included in the reference theory. So, there183

is no other sentence in theory that matches184

the adversary sentence, gives more informa-185

tion about it, or contradicts with the original186

answer. Therefore, under OWA, the label of187

the adversarial example would be unknown.188

Figure 1 (right) shows an example of this ad-189

versary.190

• AddMid. This function changes the middle-191

term by adding extra items to it. In some true192

questions, the first premise includes two facts.193

Here again, the first and second premises do194

not match, and because there is no other sen-195

tence in theory to match the adversary sen-196

tence or give more information about it, we ex-197

pect the label to be unknown. Figure 2 shows198

an example of this adversary.199

• ChangePolarity. This function works on ex- 200

amples with false label by negating the second 201

premise. Because the adversary sentence con- 202

tradicts with the original sentence, we expect 203

the false label to be changed to true. 204

Table 1 includes the statistics of the adversarial 205

dataset. The aggregation of instances generated 206

by ReplaceMid, AddMidd, and ChangePolarity 207

functions constitutes the adversarial test set. Each 208

dataset is split into 80/20% training and test sets, 209

respectively. To make sure that after manipulating 210

the data, the original answer cannot be obtained 211

through an alternative proof, we only used the part 212

of the original test set that has single proofs. 213

4 Results and Discussion 214

In this section, we present and discuss the results 215

of evaluations introduced in §3. In all experiments, 216

we utilized Google Colab platform which provides 217

GPU Tesla K80. 218

Dataset Bias The partial input line in Table 2 219

shows the results of training BERT and RoBERTa 220

models just on the question part of the input (de- 221

tailed in §3.1). The obtained accuracies are obvi- 222

ously higher than chance-level baseline which is 223

33.3%. This reveals the existence of dataset biases 224

which can be exploited by models to obtain high 225

accuracies without solving the task. Note that this 226

experiment does not prove that the models neces- 227

sarily exploit these biases (Amirkhani and Pilehvar, 228

2021). If the models base their decision on these su- 229

perficial cues, they cannot generalize to adversarial 230

settings, which is examined in the following. 231

Adversarial Evaluation Table 2 shows the accu- 232

racy of the BERT and RoBERTa models against 233

all three adversaries. According to this table, the 234

transformers-based models trained on the Rule- 235

Taker dataset are significantly fragile against adver- 236

saries introduced in §3.2. For instance, AddMid ad- 237

versary decreases the accuracy of RoBERTa model 238
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Step 1: Extract the proof 
Input: $answer$; $question$=Harry is blue?; $context$ =Dave is quiet. Fiona is blue. Harry is furry. Harry is green. 
Harry is kind. Harry is quiet. Harry is young. Green, young people are blue. If Dave is furry then Dave is cold. If 
someone is furry and cold then they are green. 

Output: $answer$ = True; $proof$ = [triple4 triple7 → rule1] 

Harry is green. Harry is young. Green, young people are blue. 
Step 2: Generate adversary sentence 

Green, young and rough people are blue. 
Step 3: Replace in original theory 

Input: $answer$; $question$ =Harry is blue? ; $context$ =Dave is quiet. Fiona is blue. Harry is furry. Harry is green. 
Harry is kind. Harry is quiet. Harry is young. Green, young and rough people are blue. If Dave is furry then Dave is 
cold. If someone is furry and cold then they are green. 

Output: $answer$ = Unknown; $proof$ = [rule1 ← FAIL] 

Figure 2: An example of the AddMid adversary procedure.

from 97.55% to 61.39%. ReplaceMid is even more239

effective, where it drops accuracy to 36.62%. Low240

accuracy of BERT under ChangePolarity function241

verifies its insensitivity to negation, which has also242

been reported in previous research (Ettinger, 2020).243

Failure Analysis Investigating the adversarial244

cases that fool the model shows that for Re-245

placeMid adversary, in 99.42% of cases, the model246

outputs the same label produced for attack-free247

instance. This ratio is 97.10% for the AddMid ad-248

versary. This finding is in line with the known fact249

that NLP models are overly stable and do not real-250

ize that a small change can completely change the251

meaning of one sentence (Jia and Liang, 2017).252

Human Evaluation To ensure that the generated253

adversarial instances are valid and trivial for hu-254

mans, we randomly sampled and labeled 50 exam-255

ples of AddMid, ReplaceMid, and ChangePolarity256

instances. We also added some attack-free records257

from the original dataset to make the datasets more258

natural. The results of this human evaluation pre-259

sented in Table 3 show that the instances are com-260

pletely trivial for humans, while BERT model has261

a considerable low accuracy on them.262

5 Conclusions263

In this paper, we evaluated the recent success of264

transformers-based models in reasoning over natu-265

ral language texts (Clark et al., 2020; Tafjord et al.,266

2020). We first showed that there are some dataset267

biases in the RuleTaker dataset which are likely268

to be exploited by the models to obtain fake high269

accuracies. Then, three adversarial functions were270

RoBERTa BERT
Acc. Acc.

RuleTaker train set 97.29 80.00
RuleTaker test set 97.55 79.25
Partial input 52.27 52.33
Adversarial test set 67.10 58.71
ReplaceMid 36.62 70.68
AddMid 61.39 69.44
ChangePolarity 99.01 21.23

Table 2: Accuracy of BERT-base and RoBERTa-
base models in different settings (random baseline is
33.3%).

Sub Records BERT Human
Datasets without Acc. Acc.

attack
ReplaceMid 17.53% 68.63 100
AddMid 13.46% 65.86 100
ChangePolarity 69.23% 41.06 100

Table 3: Human evaluation on random subsets of adver-
sarial instances.

introduced to investigate true reasoning capabilities 271

of the learned models. We observed that the learned 272

models are significantly fragile against minimal ad- 273

versarial changes. This illustrates that transformers 274

partly use non-generalizable patterns to perform 275

reasoning, highlighting the need for developing 276

more robust real reasoners. 277

4



References278

Zeinab Aghahadi and Alireza Talebpour. 2021.279
Language-based syllogistic reasoning using deep280
neural networks. Cognitive Semantics, 8(2).281

Hossein Amirkhani and Mohammad Taher Pilehvar.282
2021. Don’t discard all the biased instances: Inves-283
tigating a core assumption in dataset bias mitigation284
techniques. In Proceedings of the 2021 Conference285
on Empirical Methods in Natural Language Process-286
ing: Findings.287

Razieh Baradaran, Razieh Ghiasi, and Hossein288
Amirkhani. 2020. A survey on machine read-289
ing comprehension systems. arXiv preprint290
arXiv:2001.01582.291

Chandra Bhagavatula, Ronan Le Bras, Chaitanya292
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-293
nah Rashkin, Doug Downey, Wen-tau Yih, and Yejin294
Choi. 2019. Abductive commonsense reasoning. In295
International Conference on Learning Representa-296
tions.297

Peter Clark, Oyvind Tafjord, and Kyle Richardson.298
2020. Transformers as soft reasoners over language.299
In Proceedings of the Twenty-Ninth International300
Joint Conference on Artificial Intelligence (IJCAI-301
20).302

Randall Davis. 1979. Interactive transfer of expertise:303
Acquisition of new inference rules. Artificial intelli-304
gence, 12(2):121–157.305

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and306
Kristina Toutanova. 2019. Bert: Pre-training of deep307
bidirectional transformers for language understand-308
ing. In NAACL-HLT (1).309

Allyson Ettinger. 2020. What bert is not: Lessons from310
a new suite of psycholinguistic diagnostics for lan-311
guage models. Transactions of the Association for312
Computational Linguistics, 8:34–48.313

Suchin Gururangan, Swabha Swayamdipta, Omer314
Levy, Roy Schwartz, Samuel Bowman, and Noah A315
Smith. 2018. Annotation artifacts in natural lan-316
guage inference data. In Proceedings of the 2018317
Conference of the North American Chapter of the318
Association for Computational Linguistics: Human319
Language Technologies, Volume 2 (Short Papers),320
pages 107–112.321

Robin Jia and Percy Liang. 2017. Adversarial exam-322
ples for evaluating reading comprehension systems.323
In Proceedings of the 2017 Conference on Empiri-324
cal Methods in Natural Language Processing, pages325
2021–2031.326

Sangeet S. Khemlani and Philip N. Johnson-Laird.327
2012. Theories of the syllogism: A meta-analysis.328
Psychological bulletin, 138 3:427–57.329

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-330
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,331

Luke Zettlemoyer, and Veselin Stoyanov. 2019. 332
Roberta: A robustly optimized bert pretraining ap- 333
proach. arXiv preprint arXiv:1907.11692. 334

Varun Manjunatha, Nirat Saini, and Larry S Davis. 335
2019. Explicit bias discovery in visual question an- 336
swering models. In Proceedings of the IEEE/CVF 337
Conference on Computer Vision and Pattern Recog- 338
nition, pages 9562–9571. 339

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter 340
Clark. 2020. Proofwriter: Generating implications, 341
proofs, and abductive statements over natural lan- 342
guage. arXiv preprint arXiv:2012.13048. 343

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 344
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 345
Kaiser, and Illia Polosukhin. 2017. Attention is all 346
you need. In Advances in neural information pro- 347
cessing systems, pages 5998–6008. 348

5


