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Abstract— We present a method to manipulate unknown
objects in-hand using tactile sensing without relying on a
known object model. In many cases, vision-only approaches
may not be feasible; for example, due to occlusion in cluttered
spaces. We address this limitation by introducing a method to
reorient unknown objects using tactile sensing. It incrementally
builds a probabilistic estimate of the object shape and pose
during task-driven manipulation. Our approach uses Bayesian
optimization to balance exploration of the global object shape
with efficient task completion. To demonstrate the effectiveness
of our method, we apply it to a simulated Tactile-Enabled Roller
Grasper, a gripper that rolls objects in hand while collecting
tactile data. We evaluate our method on an insertion task with
randomly generated objects and find that it reliably reorients
objects while significantly reducing the exploration time.

I. INTRODUCTION
This work studies how robots can reorient objects in-

hand with limited prior knowledge about object shape and
using only tactile sensing. Existing works have primarily
focused on in-hand manipulation using vision [1]–[6], but
vision based approaches struggle when the object is heavily
occluded. Tactile sensing does not suffer from this problem,
but object reorientation with tactile sensing is challenging
because tactile data gives information about the object shape
for only a small contact patch area. In addition, the object
may have only a limited set of features that the tactile sensor
can detect to distinguish between different locations on the
object, and the object may shift slightly in-between tactile
readings, which increases uncertainty regarding the location
of these readings.

We seek to overcome some of these challenges by lever-
aging the Tactile-Enabled Roller Grasper [7]. This gripper
rolls objects in hand and continuously collects tactile data
on the surface of the rollers. Staying in contact with the
object reduces uncertainty between tactile measurements, and
enables us to piece together a sequence of local contact
patches into a global estimate of the object’s shape. Given
this gripper, we propose a method to reorient unknown
objects by incrementally building a probabilistic estimate
of the object’s shape during manipulation. Our method
leverages Bayesian optimization [8] to strategically trade off
exploration of the global object shape with efficient task
completion. We demonstrate our approach on a simulated
Tactile-Enabled Roller Grasper as shown in Fig. 1.
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Fig. 1: Left: Simulation of the Tactile-Enabled Roller Grasper demonstrating
a sequence of exploration steps that lead to successful insertion. Right: The
Tactile-Enabled Roller Grasper that we simulate and that inspired our work.

We evaluate our approach on an insertion task. Insertion
tasks are ubiquitous in many environments, such as assembly
tasks in factories, dense box packing in warehouses, and
plugging cables in the home. As a result, insertion tasks
continue to be heavily studied in robotics [9]–[15]. In this
paper, we focus on finding the correct object orientation that
will allow the object to fit into a target hole. The robot has
access to a parameterization of the hole’s contour, which
gives the robot a well defined reorientation target without
revealing the 3D-shape of the object, ensuring that our
assumption that the robot is working with an unseen object
holds. We evaluate our method in simulation on a set of
randomly generated objects and find that our method reliably
completes the insertion task while significantly reducing the
exploration time needed to do so.

II. APPROACH

Our approach consists of three parts: shape estimation,
task oriented exploration, and in-hand reorientation. Shape
estimation and task oriented exploration are performed iter-
atively before the final in-hand reorientation.

Fig. 2: A high-level overview of our method.



A. Local shape estimation from tactile images

To estimate object shape, the Roller Grasper rolls the
object in-hand and gathers joint position, X ∈ R7, and a
tactile height map, I ∈ RW×H , at each time step.

We approximate the shape of the object by using the
joint position data to estimate the transformation between
the depth maps. Because the object occasionally slips on the
roller surface, these estimates are noisy. We use ICP between
local pairs of depth maps to reduce this noise and improve
the fidelity of the reconstruction.

Additionally, once the object has rotated at least 180
degrees, the rollers encounter regions of the object that have
already been scanned by the other roller. When we detect
this loop closure, we use graph optimization [16] to align
the two sets of point clouds.

B. Global shape representation with Gaussian processes

Because the proprioception and tactile data collected by
the Roller Grasper only give us partial information about
the object shape, we use a Gaussian process (GP) to build a
probabilistic estimate of the overall shape. We parameterize
the surface of the object by spherical coordinates θ, ϕ, r. We
use a GP to model the function f(θ, ϕ) = r that represents
the distance from the center of the object to its surface along
a ray parameterized by θ, ϕ. This GP model lets us predict
the mean f̄(xxx∗) and variance V[f(xxx∗)] of the distance to the
object’s surface along any ‘query’ ray xxx∗ :=(θ∗, ϕ∗).

Formally, GP
(
m(·), k(·, ·)

)
is a model defined by a prior

mean function m(·) and kernel function k(·, ·). The prior
m(·) is usually taken as zero. The kernel encodes similarity
between inputs: a large k(xxxi,xxxj) implies that observing the
value ri = f(xxxi) for input xxxi would have a large influence
on our estimate for f(xxxj) for input xxxj . We can compute the
posterior mean and variance using:

f̄∗ := f̄(xxx∗) := kkkT∗ (K + σ2
nI)

−1rrr, (1)

V[f∗] := V[f(xxx∗)] := k(x∗, x∗)− kkkT∗ (K + σ2
nI)

−1kkk∗ (2)

We obtain rrr,K,k∗k∗k∗ from the N points of the object’s point
cloud {xxxi :=(θi, ϕi), ri}i=1..N reconstructed so far. rrr ∈ RN

is a vector with distances from the object’s center to its
surface (with entries ri,i=1..N ). K ∈RN×N is a matrix with
entries k(xxxi,xxxj)i,j=1..N ; kkk∗ ∈ RN is a vector with entries
k(xxx∗,xxxi).

We use the Squared Exponential kernel function and
leverage the GP marginal likelihood to estimate the kernel
hyperparameters and the noise parameter σn automatically.
See [17] for further details. Fig. 4 shows an example of
incrementally building an object’s shape estimate with a GP.

C. Task Oriented Exploration

We use Bayesian Optimization (BO) to guide our explo-
ration of the object shape in order to efficiently identify
regions of the object that are important for completing
the insertion task. We construct a task oriented acquisition
function for BO that selects the next target cross section
of the object to explore during in-hand manipulation. The

aim is to select targets to reduce the uncertainty over the
object shape globally, but focus on the promising regions
and avoid over-exploring parts of the object unlikely to be
useful for successful insertion. In contrast to related work
that focuses on uniformly minimizing uncertainty for overall
shape reconstruction [18], [19], we use the task objective
to achieve targeted exploration. Below we describe how we
construct the task oriented acquisition function for BO.

We represent the orientation of the object with a discrete
set of euler angles α, β, γ. Our goal is to evaluate the
likelihood of insertion for each orientation. We start with
a probabilistic estimate of the object model. This model is a
Gaussian Process (GP) described in Section II-B, which al-
lows us to obtain estimates along any ray θ, ϕ of the distance
to the object surface R(θ, ϕ) ∼ N (f̄ ,V[f ]) in a spherical
coordinate system. For each orientation, we decompose the
GP object model into horizontal cross sections of uniform
width parameterized by height l as shown in Fig. 3.

Fig. 3: Overview of our object evaluation: For each orientation (α, β, γ),
we split the object into a set of horizontal cross sections of uniform width,
parameterized by height l. Each cross section is assigned a probabilistic
score using Monte Carlo sampling, reflecting the expected interference
between the hole and the cross section. This interference is measured as
the minimum signed distance between the hole’s contour and the sampled
object contour.

Next, we evaluate the likelihood that each cross section
will fit into the hole. We start by projecting the GP’s cross
section to the x-y plane. We parameterize the object’s pro-
jected contour and the hole’s contour with polar coordinates
θ, robj contour(θ) and θ, rhole(θ) respectively. In order for the
object to fit into the hole, we need robj contour < rhole ∀θ ∈
[−π, π]. We define each section score as

Ssection(α, β, γ, l) = min
θ

rhole(θ)− robj contour(θ) (3)

This score represents the worst location on the object
for fit, and a negative score indicates that the object will
not fit through the hole. For a given object orientation, the
likelihood that the object will fit into the hole is upper-
bounded by the worst section, so we set the orientation score
to be

Sori(α, β, γ) = min
l

Ssection(α, β, γ, l) (4)

We use Monte Carlo sampling from the GP describing
the object’s surface, R(θ, ϕ) ∼ N (f̄ ,V[f ]), to estimate



the object’s contour robj contour(θ) = max
ϕ

r(θ, ϕ) cos(ϕ) and

obtain a probabilistic estimate of these scores.
We use these scores to select the next section of the

object to explore. Given that each section is parameterized
by α, β, γ, l, we decompose this process into first selecting
the best orientation α, β, γ and then selecting the height l.

Intuitively, we trade off between selecting an orientation
that is most likely to position the object to fit through the
hole according to the current model (exploitation), and the
orientation with the most uncertainty about its fit (explo-
ration). We can use the mean and standard deviation of S
to construct the following acquisition function, based on the
Upper Confidence Bound (UCB) function [20]:

UCB(α, β, γ) = µSori(α, β, γ) + λσSori(α, β, γ), (5)

where λ is a hyperparameter that controls the preference
between exploitation and exploration. To select the next
orientation, we maximize Equation 5 to obtain α∗, β∗, γ∗.

Next, we choose the horizontal section of the object in the
selected orientation (α∗, β∗, γ∗). Here, we trade off between
selecting the horizontal section that is most likely to overlap
the hole (exploitation) and the horizontal section with the
most uncertainty (exploration). This ensures that we tend
to examine the ‘worst’ sections of our ‘best’ orientations.
This is motivated by the need to examine the sections in
the ‘best’ orientation that are most likely to collide with the
hole and cause task failure. If such ‘worst’ sections still fit,
the entire object in this orientation is likely to fit into the
hole. Formally, we select the parameter l∗ (which defines
the placement of the section to consider on the vertical axis)
by maximizing the following function:

UCBα∗,β∗,γ∗(l) =− µSsection(α∗,β∗,γ∗)(l) (6)
+ λσSsection(α∗,β∗,γ∗)

(l)

D. In-hand reorientation

We use the velocity controller from [3] to determine
the rollers’ pitch angles θL,pitch, θR,pitch and rollers’ angular
velocities ωL,roll, ωR,roll that are necessary to achieve the
desired angular velocity of the object. The controller assumes
that the object is a sphere, but we find that by adding
compliance to the opening of the Roller Grasper, we can
reorient a broader set of object shapes.

Due to torsional friction between the rollers and the
object, when the roller grasper changes its pitch angle, the
object may inadvertently rotate with the roller. This rotation
is undesirable because it is hard to control the effects of
torsional friction, and it prevents changing roller orientation
relative to the object. To mitigate this, we use extrinsic
dexterity [21] and lightly press the object against an external
surface when changing the pitch angle of the rollers to
prevent object rotation.

III. EXPERIMENTAL EVALUATION

A. Simulated task oriented exploration

To evaluate our BO-based task guided exploration strategy,
we measure the insertion task success rate and number of

Fig. 4: A demonstration of the reorientation procedure, where each row
corresponds to one exploration step. The first column shows the section the
roller selects to explore. The second column shows the simulated Roller
Grasper rolling the object in hand along the selected section. The third
column demonstrates the collected point cloud from the tactile images
after using ICP and graph optimization. The fourth column shows the
probabilistic object model described by the GP and trained from the
collected tactile data.

Fig. 5: The object set used for evaluation.

required exploration steps using 15 objects and 72 initial
grasping points per object. An exploration step consists of a
complete rotation of the object along a selected cross section.

Simulation environment. The simulation environment is
built in PyBullet [22]. First, an object is instantiated in-
hand with a random orientation sampled from a uniform
distribution. Next the rollers roll the object in-hand and
collect tactile data. When a closed loop is detected, the roller
stops and proceeds to the next section determined by the
selected algorithm. The exploration process stops when the
insertion error is less than 3mm.

Object set. Fig. 5 shows the 15 different objects we used
for evaluation, generated by randomly combining either one,
two, or three randomly-transformed basic 3D shapes. The
target hole shape is generated by projecting the object onto
a plane and verifying that the object can fit in the hole in
only one orientation. This ensures that our algorithm must be
accurately reconstructing the object shape to solve the task.
The maximum object width is 5cm.

Methods we compare.

1) Our method that uses Bayesian optimization to trade
off between exploration and task completion, with λ
optimized over a hold-out set of objects (λ = 500).

2) Random: selects sections for exploration from a uni-
form random distribution

3) Exploit-only: without considering uncertainty, selects
the object orientation that is most likely to allow



Fig. 6: Number of exploration steps required for successful object insertion
using different algorithms in simulation. The boxplot indicates the 25th
percentile, median, and 75th percentile over the 15 objects tested.

insertion and picks the section in that orientation that
is most likely to cause a failure. This is equivalent to
our BO algorithm with λ = 0.

4) Explore-only: selects the object orientation and section
with the most uncertainty. This is equivalent to our BO
algorithm with λ → ∞.

The maximum exploration time allowed is 10 steps.
Quantitative results. Each result is evaluated over 15

objects with 72 initial grasping points. All methods are able
to perform with a high success rate given enough exploration
steps > 98%. However, our BO-based exploration strategy
consistently requires fewer exploration steps (Fig. 6). Over
the randomly-generated set of objects, our BO approach
performs better than exploit-only (p < 0.01), explore-only
(p < 0.01), and the random baseline (p < 0.001). All p-
values were computed using the paired-samples t-test.

Shape reconstruction. While shape reconstruction is not
the explicit objective of our algorithm, we still demonstrate
that qualitatively, we end up recovering a meaningful ap-
proximation of global object shape as an auxiliary benefit of
minimizing the task-driven objective (Fig. 8).

B. Sensitivity analysis for noise

Noise in the reconstructed point cloud. Noisy depth
images and a noisy prior estimate on the object’s motion due
to slipping could cause poor object reconstruction results. To
evaluate the tolerance to poor object reconstruction, we add
i.i.d. zero-mean Gaussian noise to the reconstructed point
cloud before fitting the GP model. As shown in Fig. 7
(left), while the success rate deteriorates in all methods as
noise increases, our method outperforms others in the low-
to-medium noise regimes. For high-noise regime our method
performs similarly to the exploit-only baseline.

Noise in the depth image from the tactile sensor To eval-
uate the tolerance to noisy depth images, we add i.i.d. zero-
mean Gaussian noise to the simulated depth images used for
ICP reconstruction. Unlike adding noise to the reconstructed
model, adding noise to depth images makes it harder for ICP
to reconstruct the object model. Fig. 7 (right) demonstrates
that while adding noise to the depth images affects the
performance of all methods, our method has a significant
advantage in the low-to-medium noise regimes. When the
standard deviation of the noise is smaller than 4 mm, our
method can still reach a success rate above 80%. Higher
noise levels can lead to a noticeable performance drop, at
which point our method achieves comparable performance

Fig. 7: Steps to finish the exploration with i.i.d. noise. Each bar is evaluated
over 5 objects with 72 different initial grasping points.

Fig. 8: Qualitative visualization of the shape reconstruction.

to our baselines. This is because our method depends on
making informed guesses of where to explore next based on
the model’s current estimate of the object shape. With high
levels of noise, the shape estimate becomes very inaccurate,
and our algorithm no longer has enough information to make
an informed guess of where to explore next.

Hardware implications Our simulation study provides
instructive feedback for deployment of our approach on
the Tactile-Enabled Roller Grasper hardware. The Tactile-
Enabled Roller Grasper used in this study is a novel gripper
that is still under development. We empirically estimate the
approximate noise of the depth image to be at least 7mm.
Fig. 7 demonstrates that at this level of precision, the BO
algorithm’s benefit over a simpler strategy is limited. Our
primary takeaway is that the gripper’s sensor noise needs to
be reduced by replacing the 3D printed plastic links with
stiffer materials and reducing the backlash in the joints to
improve the gripper’s proprioception. Additionally, adding a
third roller is needed to enable the rollers to change pitch
angle without experiencing high shear forces that degrade
the GelSight surface. The existing two roller design requires
a high normal force when changing pitch angle to avoid
dropping the object which causes high shear forces.

IV. CONCLUSION

We present a method to reorient unknown objects with
tactile sensing that does not rely on vision. We perform in-
hand simultaneous 3D shape reconstruction and localization,
and outline an efficient strategy based on Bayesian optimiza-
tion to select regions of the object to explore to ensure quick
task completion. We demonstrate the efficacy of this method
on the insertion task, suggesting its possible broad utility in
tactile manipulation.
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