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Abstract001

CLIP is one of the most popular foundational002
models and is heavily used for many vision-003
language tasks. However, little is known004
about the inner workings of CLIP. While re-005
cent work has proposed decomposition-based006
interpretability methods for identifying textual007
descriptions of attention heads in CLIP, the im-008
plications of conceptual consistency in these009
text labels on interpretability and model perfor-010
mance has not been explored. To bridge this011
gap, we study the conceptual consistency of012
text descriptions for attention heads in CLIP-013
like models. We conduct extensive experiments014
on six different models from OpenAI and Open-015
CLIP which vary by size, type of pre-training016
data and patch size. We propose Concept Con-017
sistency Score (CCS), a novel interpretability018
metric that measures how consistently individ-019
ual attention heads in CLIP models align with020
specific concepts. To assign concept labels to021
heads, we use in-context learning with Chat-022
GPT, guided by a few manually-curated exam-023
ples, and validate these labels using an LLM-024
as-a-judge approach. Our soft-pruning experi-025
ments reveal that high CCS heads are critical026
for preserving model performance, as pruning027
them leads to a significantly larger performance028
drop than pruning random or low CCS heads.029
Notably, we find that high CCS heads capture030
essential concepts and play a key role in out-of-031
domain detection, concept-specific reasoning,032
and video-language understanding. Moreover,033
we prove that high CCS heads learn spurious034
correlations amplifying social biases. These re-035
sults position CCS as a powerful interpretabil-036
ity metric exposing the paradox of performance037
and social biases in CLIP models.038

1 Introduction039

Large-scale vision-language (VL) models such as040

CLIP (Radford et al., 2021) have significantly ad-041

vanced state-of-the-art performance in vision tasks042

in recent years. Consequently, CLIP has been ex-043

tensively used as a foundational model for down- 044

stream tasks such as video retrieval, image gen- 045

eration, and segmentation (Luo et al., 2022; Liu 046

et al., 2024; Brooks et al., 2023; Esser et al., 2024; 047

Kirillov et al., 2023). This has enabled the construc- 048

tion of compositional models combining CLIP with 049

other foundation models, thereby increasing the 050

functionality of CLIP while also adding complexity 051

to the overall model structure. However, as these 052

models gain prominence in real-world applications, 053

their embedded social biases (Howard et al., 2024; 054

Hall et al., 2023; Seth et al., 2023) have emerged 055

as a critical concern with potentially harmful down- 056

stream consequences. Despite the growing body 057

of work documenting these biases, a fundamental 058

question remains unanswered: what mechanisms 059

within these models’ architectures drive both their 060

impressive capabilities and problematic shortcom- 061

ings? 062

Recent interpretability advances (Gandelsman 063

et al.) have made initial progress by decomposing 064

CLIP’s image representations into contributions 065

from individual attention heads, identifying text 066

sequences that characterize different heads’ seman- 067

tic roles. However, this approach provides only a 068

partial view into CLIP’s inner workings, leaving a 069

critical missing piece: systematic understanding of 070

the visual concepts encoded at the attention head 071

level—and how these concepts underpin both the 072

model’s strengths and its social failures. 073

Our work addresses this critical gap through a 074

novel interpretability framework we call “concep- 075

tual consistency”. This framework systematically 076

analyzes which visual concepts are learned by indi- 077

vidual attention heads and how consistently these 078

concepts are processed throughout the model’s ar- 079

chitecture. First, we identify interpretable struc- 080

tures within the individual heads of the last four 081

layers of the model using a set of text descriptions. 082

To accomplish this, we employ the TEXTSPAN al- 083

gorithm (Gandelsman et al.), which helps us find 084
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the most appropriate text descriptions for each head.085

After identifying these text descriptions, we as-086

sign labels to each head representing the common087

property shared by the descriptions. This label-088

ing process is carried out using in-context learning089

with ChatGPT. We begin by manually labeling five090

pairs of text descriptions and their corresponding091

concept labels, which serve as examples. These ex-092

amples are then used to prompt ChatGPT to assign093

labels for the remaining heads.094

Leveraging the resulting text descriptions and095

concept labels of attention heads, we introduce096

the Concept Consistency Score (CCS), a new in-097

terpretability metric that quantifies how strongly098

individual attention heads in CLIP models align099

with specific concepts. Using GPT-4o, Gemini100

and Claude as automatic judges, we compute CCS101

for each head and classify them into high, mod-102

erate, and low categories based on defined thresh-103

olds. A key contribution of our work is our tar-104

geted soft-pruning experiments which show that105

heads with high CCS are essential for maintaining106

model performance; pruning these heads causes a107

significantly larger performance drop compared to108

pruning any other heads. We also show that high109

CCS heads are not only crucial for general vision-110

language tasks but are especially important for out-111

of-domain detection and targetted concept-specific112

reasoning. Additionally, our experiments in video113

retrieval highlight that high CCS heads are equally114

vital for temporal and cross-modal understanding.115

Moreover, we demonstrate that high CCS heads116

often encode spurious correlations, contributing to117

social biases in CLIP models. Selective pruning118

of these heads can reduce such biases without the119

need for fine-tuning. Together, these results expose120

a fundamental paradox: while high-CCS heads are121

indispensable for strong model performance, they122

are simultaneously key contributors to undesirable123

biases.124

2 Related Work125

Early research on interpretability primarily concen-126

trated on convolutional neural networks (CNNs)127

due to their intricate and opaque decision-making128

processes (Zeiler and Fergus, 2014; Selvaraju et al.,129

2017; Simonyan et al., 2014; Fong and Vedaldi,130

2017; Hendricks et al., 2016). More recently, the in-131

terpretability of Vision Transformers (ViT) has gar-132

nered significant attention as these models, unlike133

CNNs, rely on self-attention mechanisms rather134

than convolutions. Researchers have focused on 135

task-specific analyses in areas such as image clas- 136

sification, captioning, and object detection to un- 137

derstand how ViTs process and interpret visual in- 138

formation (Dong et al., 2022; Elguendouze et al., 139

2023; Mannix and Bondell, 2024; Xue et al., 2022; 140

Cornia et al., 2022; Dravid et al., 2023). One of the 141

key metrics used to measure interpretability in ViTs 142

is the attention mechanism itself, which provides 143

insights into how the model distributes focus across 144

different parts of an image when making deci- 145

sions (Cordonnier et al., 2019; Chefer et al., 2021). 146

This has led to the development of techniques that 147

leverage attention maps to explain ViT predictions. 148

Early work on multimodal interpretability, which 149

involves models that handle both visual and textual 150

inputs, probed tasks such as how different modali- 151

ties influence model performance (Cao et al., 2020; 152

Madasu and Lal, 2023) and how visual semantics 153

are represented within the model (Hendricks and 154

Nematzadeh, 2021; Lindström et al., 2021). Aflalo 155

et al. (Aflalo et al., 2022) explored interpretability 156

methods for vision-language transformers, examin- 157

ing how these models combine visual and textual in- 158

formation to make joint decisions. Similarly, Stan 159

et al. (Stan et al., 2024) proposed new approaches 160

for interpreting vision-language models, focusing 161

on the interactions between modalities and how 162

these influence model predictions. Our work builds 163

upon and leverages the methods introduced by Gan- 164

delsman et al., 2024) to interpret attention heads, 165

neurons, and layers in vision-language models, pro- 166

viding deeper insights into their decision-making 167

processes. 168

3 Quantifying interpretability in CLIP 169

models 170

3.1 Preliminaries 171

In this section, we describe our methodology, start- 172

ing with the TEXTSPAN (Gandelsman et al.) algo- 173

rithm and its extension across all attention heads 174

in multiple CLIP models using in-context learning. 175

TEXTSPAN associates each attention head with rel- 176

evant text descriptions by analyzing the variance 177

in projections between head outputs and candidate 178

text representations. Through iterative projections, 179

it identifies distinct components aligned with dif- 180

ferent semantic aspects. While effective at linking 181

heads to descriptive text spans, TEXTSPAN does 182

not assign explicit concept labels. In the next sec- 183

tion, we detail our method for labeling the concepts 184
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Figure 1: Figure shows the steps of computing Concept Consistency Score for each head.

High CCS (CCS = 5) Moderate CCS (CCS = 3) Low CCS (CCS ≤ 1)

L23.H11 (“People”) L23.H0 (“Material”) L21.H6 (“Professions”)
Playful siblings Intrica wood carvingte Photo taken in the Italian pizzerias
A photo of a young person Nighttime illumination thrilling motorsport race
Image with three people Image with woven fabric design Urban street fashion
A photo of a woman Image with shattered glass reflections An image of a Animal Trainer
A photo of a man A photo of food A leg
L22.H10 (“Animals”) L11.H0 (“Locations”) L10.H6 (“Body parts”)
Image showing prairie grouse Photo taken in Monument Valley A leg
Image with a donkey Majestic animal colorful procession
Image with a penguin An image of Andorra Contemplative monochrome portrait
Image with leopard print patterns An image of Fiji Graceful wings in motion
detailed reptile close-up Image showing prairie grouse Inviting reading nook
L23.H5 (“Nature”) L11.H11 (“Letters”) L9.H2 (“Textures”)
Intertwined tree branches A photo with the letter J Photo of a furry animal
Flowing water bodies A photo with the letter K Closeup of textured synthetic fabric
A meadow A swirling eddy Eclectic street scenes
A smoky plume A photo with the letter C Serene beach sunset
Blossoming springtime blooms awe-inspiring sky Minimalist white backdrop

Table 1: Examples of high, moderate and low CCS heads.

Model Kappa SC (ρ) Kendall (τ)

ViT-B-32-OpenAI 0.821 0.737 0.781
ViT-B-16-LAION 0.813 0.773 0.737
ViT-L-14-OpenAI 0.827 0.751 0.758

Table 2: Results between human judgment and LLM
judgment on CCS labelling. SC denotes Spearman’s
correlation.

learned by individual CLIP heads.185

3.2 Concept Consistency Score (CCS)186

We introduce the Concept Consistency Score (CCS)187

as a systematic metric for analyzing the concepts188

(properties) learned by transformer layers and atten-189

tion heads in CLIP-like models. This score quan-190

tifies the alignment between the textual represen-191

tations produced by a given head and an assigned192

concept label. Figure 1 illustrates our approach,193

with the following sections detailing each step in194

computing CCS.195

3.2.1 Extracting Text Representations 196

From each layer and attention head of the CLIP 197

model, we obtain a set of five textual outputs, 198

denoted as {T1, T2, T3, T4, T5}, referred to as 199

TEXTSPANs. These outputs serve as a textual ap- 200

proximation of the concepts encoded by the head. 201

3.2.2 Assigning Concept Labels 202

Using in-context learning with ChatGPT, we ana- 203

lyze the set of five TEXTSPAN outputs and infer a 204

concept label Ch that best represents the dominant 205

concept captured by the attention head h. This en- 206

sures that the label is data-driven and reflects the 207

most salient pattern learned by the head. 208

3.2.3 Evaluating Concept Consistency 209

To assess the consistency of a head with respect to 210

its assigned concept label, we employ three state-of- 211

the-art foundational models, GPT-4o, Gemini 1.5 212

pro and Claude Sonnet as external evaluators. For 213

each TEXTSPAN Ti associated with head h, GPT- 214
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4o determines whether it aligns with the assigned215

concept Ch. The Concept Consistency Score (CCS)216

for head h is then computed as:217

CCS(h) =
5∑

i=1

⊮ [Ti aligns with Ch]218

where ⊮[·] is an indicator function that returns 1219

if Ti to be consistent with Ch, and 0 otherwise.220

To ensure a high standard of reliability, we define221

consistency strictly—only if all three LLM judges222

independently rate Ti as consistent with Ch. This223

requirement for unanimous agreement minimizes224

the influence of individual model biases or variabil-225

ity in judgment (Liu and Zhang, 2025), thereby226

enhancing the robustness and trustworthiness of227

the overall concept consistency score.228

We define CCS@K as the fraction of attention229

heads in a CLIP model that have a Concept Con-230

sistency Score (CCS) of K. This metric provides a231

global measure of how many heads strongly encode232

interpretable concepts. A higher CCS@K value233

indicates that a greater proportion of heads exhibit234

strong alignment with a single semantic property.235

Mathematically, CCS@K is defined as:236

CCS@K =
1

H

H∑
h=1

⊮ [CCS(h) = K]237

where H is the total number of attention heads238

in the model, CCS(h) is the Concept Consistency239

Score of head h, ⊮[·] is an indicator function that240

returns 1 if CCS(h) = K, and 0 otherwise. This241

metric helps assess the overall interpretability of242

the model by quantifying the proportion of heads243

that consistently capture well-defined concepts. Ta-244

ble 1 shows the examples of heads with different245

CCS scores.246

Next, we categorize each attention head based247

on its Concept Consistency Score (CCS) into three248

levels: high, moderate, and low. A head is consid-249

ered to have a high CCS if all of its associated text250

descriptions align with the labeled concept, indi-251

cating that the head is highly specialized and likely252

encodes features relevant to that concept. Moder-253

ate CCS heads exhibit partial alignment, with three254

out of five text descriptions matching the concept255

label, suggesting that they capture the concept to256

some extent but not exclusively. In contrast, low257

CCS heads have zero or only one matching descrip-258

tion, implying minimal relevance and indicating259

that these heads are largely unrelated to the given 260

concept. This categorization provides insight into 261

the degree of concept selectivity exhibited by indi- 262

vidual attention heads. Table 1 shows examples of 263

different types of CCS heads. 264

3.3 Evaluating LLM Judgment Alignment 265

with Human Annotations 266

In the previous section, we introduced the Concept 267

Consistency Score (CCS), computed using three 268

LLM judges as an external evaluator. This raises an 269

important question: Are LLM evaluations reliable 270

and aligned with human assessments? To investi- 271

gate this, we conducted a human evaluation study 272

comparing LLM-generated judgments with human 273

annotations. We selected 100 TEXTSPAN descrip- 274

tions from three different models, along with their 275

assigned concept labels, and asked one of the au- 276

thors to manually assess the semantic alignment 277

between each span and its corresponding label. 278

Table 2 reports the agreement metrics between 279

human and LLM evaluations, including Cohen’s 280

Kappa, Spearman’s ρ, and Kendall’s τ. The Kappa 281

values exceed 0.8, indicating extremely substantial 282

agreement, while the correlation scores consistently 283

surpass 0.7, confirming strong alignment. These re- 284

sults validate the use of LLMs as reliable evaluators 285

in concept consistency analysis. The high agree- 286

ment with human judgments suggests that LLMs 287

can effectively assess semantic coherence, offering 288

a scalable alternative to manual annotation. In the 289

next section, we introduce the tasks and datasets 290

used in our experiments. 291

3.4 Experimental Setting 292

3.4.1 Tasks 293

Image classification: CIFAR-10 (Krizhevsky 294

et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), 295

Food-101 (Bossard et al., 2014), Country-211 296

(Radford et al., 2021) and Oxford-pets (Parkhi 297

et al., 2012). 298

Out-of-domain classification: Imagenet-A 299

(Hendrycks et al., 2021b) and Imagenet-R 300

(Hendrycks et al., 2021a). 301

Video retrieval: MSRVTT (Xu et al., 2016), 302

MSVD (Chen and Dolan, 2011), DiDeMo 303

(Anne Hendricks et al., 2017). 304

Bias: FairFace (Karkkainen and Joo, 2021), 305

SocialCounterFactuals (Howard et al., 2024). 306
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Model CIFAR-10 CIFAR-100 FOOD-101

Original High CCS Low CCS Original High CCS Low CCS Original High CCS Low CCS

ViT-B-32-OpenAI 75.68 71.31 73.61 65.08 56.07 62.39 84.01 73.42 82.12
ViT-B-32-datacomp 72.07 70.50 70.43 54.95 53.14 53.72 41.66 38.13 40.77

ViT-B-16-OpenAI 78.10 63.93 76.44 68.22 51.70 65.38 88.73 76.35 87.36
ViT-B-16-LAION 82.82 78.91 75.38 76.92 65.55 72.51 86.63 67.54 81.4

ViT-L-14-OpenAI 86.94 86.29 85.97 78.28 75.66 77.55 93.07 90.75 92.79
ViT-L-14-LAION 88.29 86.48 88.19 83.37 80.07 83.25 91.02 86.45 90.35

Table 3: Accuracy comparison of various CLIP models on CIFAR-10, CIFAR-100 and FOOD-101 datasets.
The values represent original accuracy, performance after pruning high-CCS heads, and performance after
pruning low-CCS heads.

3.4.2 Models307

For experiments we use the following six founda-308

tional image-text models: ViT-B-32, ViT-B-16 and309

ViT-L-14 pretrained from OpenAI-400M (Radford310

et al., 2021) and LAION2B (Schuhmann et al.,311

2022). Next, we discuss in detail the results from312

the experiments.313

4 Results and Discussion314

4.1 Interpretable CLIP Models: The Role of315

CCS.316

In this section we examine the role of the Con-317

cept Consistency Score (CCS) in revealing CLIP’s318

decision-making process, focusing on the question:319

How does CCS provide deeper insights into the320

functional role of individual attention heads in in-321

fluencing downstream tasks? To explore this, we322

perform a soft-pruning analysis by zeroing out at-323

tention weights of heads with extreme CCS val-324

ues—specifically, high CCS (CCS = 5) and low325

CCS (CCS ≤ 1). This approach disables selected326

heads without modifying the model architecture.327

As shown in Table 3, pruning high-CCS heads con-328

sistently causes significant drops in zero-shot clas-329

sification performance across CIFAR-10, CIFAR-330

100 and FOOD-101 while pruning low-CCS heads331

has a minimal effect. This performance gap demon-332

strates that CCS effectively identifies heads encod-333

ing critical, concept-aligned information, making334

it a reliable tool for interpreting CLIP’s internal335

decision-making mechanisms.336

We further observe notable variations in prun-337

ing sensitivity across model architectures. ViT-B-338

16 models suffer the most from high-CCS head339

pruning, implying a reliance on a smaller number340

of specialized heads. In contrast, ViT-L-14 mod-341

els show greater resilience, suggesting more dis-342

tributed representations. Among smaller models,343

OpenAI-trained models experience larger perfor-344

mance drops than OpenCLIP models when high- 345

CCS heads are pruned. However, in larger models 346

like ViT-L-14, OpenCLIP variants show a slightly 347

higher degradation. These patterns reveal that CCS 348

not only identifies functionally important heads but 349

also captures model-specific and training-specific 350

differences in how conceptual knowledge is orga- 351

nized and utilized within CLIP architectures. 352

4.2 High CCS vs random heads pruning 353

In the previous section, we showed that attention 354

heads with high Concept Consistency Scores (CCS) 355

are crucial to CLIP’s performance. To validate 356

whether these heads are truly more important than 357

others, we perform a controlled comparison against 358

random pruning. Specifically, we randomly prune 359

the same number of attention heads—excluding 360

high-CCS heads—and repeat this across five seeds, 361

averaging the results. As illustrated in Figure 2, 362

pruning high-CCS heads consistently causes a sig- 363

nificantly larger drop in zero-shot accuracy com- 364

pared to random pruning across datasets and model 365

variants. In contrast, random pruning results in only 366

minor performance degradation, highlighting the 367

functional importance of high-CCS heads. Interest- 368

ingly, we also find that larger CLIP models show 369

a smaller performance gap between high-CCS and 370

random pruning, suggesting that larger architec- 371

tures may be more robust due to greater redundancy 372

or more distributed representations. These findings 373

support CCS as a reliable and interpretable met- 374

ric for identifying concept-relevant heads and offer 375

deeper insights into how CLIP organizes concep- 376

tual information. 377

4.3 High CCS heads are crucial for 378

out-of-domain (OOD) detection 379

While our earlier experiments primarily focused on 380

in-domain datasets such as CIFAR-10 and CIFAR- 381

100 to validate the Concept Consistency Score 382
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(a) CIFAR-10 (b) CIFAR-100 (c) Food-101

Figure 2: Zero-shot performance comparison for CIFAR-10, CIFAR-100, and Food-101 datasets under
different pruning strategies. For random pruning, results are averaged across five runs.

Model

Country-211 Oxford-pets ImageNet-A ImageNet-R

Original
High
CCS

Low
CCS Original

High
CCS

Low
CCS Original

High
CCS

Low
CCS Original

High
CCS

Low
CCS

ViT-B-32-OpenAI 17.16 11.46 16.3 50.07 46.66 48.96 31.49 20.24 28.72 69.09 54.47 64.45
ViT-B-32-datacomp 4.43 4.37 4.37 26.48 25.98 25.33 4.96 4.59 4.65 34.06 31.6 32.47

ViT-B-16-OpenAI 22.81 10.72 21.79 52.72 49.12 51.89 49.85 25.49 47.27 77.37 55.52 74.84
ViT-B-16-LAION 20.45 7.49 16.87 65.79 48.48 49.81 37.97 25.27 27.44 80.56 66.32 71.73

ViT-L-14-OpenAI 31.91 23.21 30.63 61.79 62.04 62.08 70.4 68.15 69.2 87.87 86.56 86.97
ViT-L-14-LAION 26.41 16.38 25.66 54.1 56.12 57.16 53.8 42.44 52.93 87.12 82.22 86.94

Table 4: Accuracy comparison of various CLIP models on Country-211, Oxford-pets, ImageNet-A and
ImageNet-R datasets. The values represent original accuracy, performance after pruning high-CCS heads,
and performance after pruning low-CCS heads.

Figure 3: Zero-shot results on Country-211 (location)
dataset.

(CCS), understanding model behavior under out-of-383

domain (OOD) conditions is a critical step toward384

evaluating models’ robustness. Table 4 demon-385

strates the results on ImageNet-A and ImageNet-R386

datasets respectively. From the table, we observe387

that pruning heads with high CCS scores leads to a388

substantial degradation in model performance, un-389

derscoring the critical role these heads play in the390

model’s decision-making process. Notably, the391

Figure 4: Zero-shot results on CIFAR-10 (Objects)
dataset.

ViT-B-16-OpenAI model exhibits the most pro- 392

nounced drop in performance upon pruning high 393

CCS heads, suggesting that this model relies heav- 394

ily on a smaller set of concept-specific heads for 395

robust feature representation consistent with the 396

observations previously. These results demonstrate 397

that CCS is a powerful metric for identifying at- 398

tention heads that encode essential, generalizable 399

concepts in CLIP models. 400
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(a) MSRVTT (b) MSVD (c) DIDEMO

Figure 5: Zero-shot performance comparison of unpruned (original) model, pruning high CSS, low CSS and
random heads on video retrieval task.

4.4 High CCS heads are crucial for401

concept-specific tasks.402

To investigate the functional role of high Con-403

cept Consistency Score (CCS) heads, we conduct404

concept-specific pruning experiments. In these ex-405

periments, we prune heads with high CCS scores406

corresponding to a target concept (e.g., locations)407

and evaluate the model’s performance on tasks408

aligned with that concept, such as location clas-409

sification. In contrast, we also prune heads asso-410

ciated with unrelated concepts (e.g., animals) and411

assess the resulting impact on task performance.412

Our results indicate that pruning high CCS heads413

leads to a significant drop in task performance, val-414

idating that these heads encode essential concept-415

relevant information. For instance, in the ViT-B-416

16 model, pruning location heads results in a sub-417

stantial decrease in location classification accuracy418

from 22.81% to 14.09%, as shown in Figure 3. Con-419

versely, pruning heads corresponding to unrelated420

concepts has little effect on performance, demon-421

strating the concept-specific nature of high CCS422

heads, as illustrated in Figure 4.423

In more general classification tasks, object-424

related heads consistently exhibit a greater impact425

on performance than location or color heads. For426

example, in the ViT-B-32 model, pruning object-427

related heads leads to a more noticeable accu-428

racy drop (from 87.6% to 86.02%) compared to429

pruning location or color heads, which result in430

smaller reductions (87.02% and 87.22%, respec-431

tively). This underscores the greater importance432

of object-related features in vision tasks. Larger433

models, such as ViT-L-14, demonstrate a more ro-434

bust performance to pruning, with smaller accuracy435

drops when pruning concept-specific heads, sug-436

gesting that these models employ more distributed437

and redundant representations. For instance, prun-438

ing object-related heads in ViT-L-14 reduces accu-439

racy only marginally, from 92.1% to 91.25%, with 440

negligible effects from pruning location and color 441

heads. These results not only confirm the effective- 442

ness of CCS as an interpretability tool but also show 443

that high CCS heads are critical for concept-aligned 444

tasks and provide significant insights into how con- 445

cepts are represented within CLIP-like models. 446

4.5 Impact of CCS pruning on zero-shot video 447

retrieval. 448

To further assess the importance of high CCS heads 449

for downstream tasks, we conducted a series of 450

zero-shot video retrieval experiments on three pop- 451

ular datasets: MSRVTT, MSVD, and DIDEMO 452

under different pruning strategies. Figure 5 shows 453

the results of this experiment. Notably, pruning 454

high CCS (Concept Consistency Score) heads con- 455

sistently leads to a substantial drop in performance 456

across all datasets, demonstrating their critical role 457

in preserving CLIP’s retrieval capabilities. For in- 458

stance, on MSRVTT and MSVD, high CCS prun- 459

ing significantly underperforms compared to low 460

CCS and random head pruning, which show much 461

milder performance degradation. Interestingly, low 462

CCS and random head pruning maintain perfor- 463

mance much closer to the original unpruned model, 464

indicating that not all attention heads contribute 465

equally to model competence. This consistent trend 466

across datasets highlights that heads with high CCS 467

scores are essential for encoding concept-aligned 468

information necessary for accurate zero-shot video 469

retrieval. 470

4.6 CLIP’s high-CCS heads encode features 471

that drive social biases. 472

Previously, we established that high-CCS heads 473

in CLIP models are crucial for image and video 474

tasks and pruning them leads to significant drop 475

in performance. Now, we investigate if these high 476

CCS heads learn spurious features leading to so- 477

7



Model

Race Gender

Original
High
CCS Original

High
CCS

ViT-B-32-OpenAI 61.75 60.47 41.24 41.11
ViT-B-32-datacomp 49.2 48.32 21.35 20.97

ViT-B-16-OpenAI 64.61 55.55 40.19 38.21
ViT-B-16-LAION 59.21 56.72 43.55 43.11

ViT-L-14-OpenAI 59.28 59.75 34.7 32.23
ViT-L-14-LAION 61.92 55.59 43.02 39.17

Table 5: Comparison of original and high-CCS prun-
ing on FairFace dataset for race and gender.. We
used MaxSkew (K=900) as the metric.

Model

Race Gender

Original
High
CCS Original

High
CCS

ViT-B-32-OpenAI 3.65 2.43 4.05 1.22
ViT-B-16-OpenAI 2.43 1.22 0.81 2.03
ViT-L-14-OpenAI 2.03 0.81 2.42 1.62

Table 6: Comparison of original and high-CCS soft-
pruning on SocialCounterFactuals dataset for race
and gender.. We used MaxSkew (K=12 for race, K=4
for gender) as the metric.

cial biases. For this, we perform soft pruning ex-478

periment on FairFace and SocialCounterFactuals479

datasets. Here given neutral text prompts of 104480

occupations1, we measure MaxSkew across race481

and gender in the datasets. Tables 5 and 6 show482

the results on FairFace and SocialCounterFactuals483

datasets respectively.484

On the FairFace dataset, pruning high-CCS485

heads consistently reduces the MaxSkew values for486

both race and gender across all models. For exam-487

ple, in the ViT-B-16-OpenAI model, pruning high-488

CCS heads drops the race MaxSkew from 64.61489

to 55.55 and the gender MaxSkew from 40.19 to490

38.21. Similar reductions are observed across all491

ViT-B and ViT-L variants. These drops, although492

modest in some cases, indicate a consistent trend:493

high-CCS heads are contributing disproportion-494

ately to skewed model predictions. The effect is495

even more evident on the SocialCounterfactuals496

dataset, where MaxSkew values drop substantially497

upon pruning high-CCS heads. For instance, in498

ViT-B-32-OpenAI, the gender MaxSkew falls from499

4.05 to 1.22, and race MaxSkew from 3.65 to 2.43.500

Similar reductions occur for other ViT variants,501

with some pruned models showing more than 50%502

decrease in bias.503

These results reveal a fundamental paradox at504

1List of occupations and prompts can be foudn in Ap-
pendix

the heart of CLIP models: high-CCS heads, while 505

critical for strong performance in tasks such as 506

classification, retrieval, and concept alignment, are 507

also the primary contributors to social bias. This 508

paradox emerges from CLIP’s contrastive learning 509

objective, which optimizes alignment between im- 510

ages and their paired text across large, uncurated 511

datasets. In doing so, the model often absorbs and 512

amplifies spurious correlations between visual fea- 513

tures and demographic attributes. High-CCS heads, 514

by virtue of their consistent focus on semantically 515

aligned regions, become particularly susceptible 516

to reinforcing these correlations. Pruning these 517

heads leads to a notable reduction in model bias, 518

as shown in our experiments, but also comes at the 519

cost of reduced performance—a clear trade-off be- 520

tween fairness and utility. This performance-bias 521

paradox underscores the complex role of high-CCS 522

heads: they are both enablers of semantic under- 523

standing and carriers of learned stereotypes. The 524

CCS metric, in this context, provides a valuable 525

lens for navigating this tension. It not only aids 526

in interpreting model behavior but also offers a 527

lightweight intervention—soft-pruning—that miti- 528

gates bias without requiring expensive fine-tuning. 529

5 Conclusion 530

In this work, we proposed Concept Consistency 531

Score (CCS), a novel interpretability metric that 532

quantifies how consistently individual attention 533

heads in CLIP-like models align with semanti- 534

cally meaningful concepts. Through extensive soft- 535

pruning experiments, we demonstrated that heads 536

with high CCS are essential for maintaining model 537

performance, as their removal leads to substantial 538

performance drops compared to pruning random or 539

low CCS heads. Our findings further highlight that 540

high CCS heads are not only critical for standard 541

vision-language tasks but also play a central role in 542

out-of-domain detection and concept-specific rea- 543

soning. Moreover, experiments on video retrieval 544

tasks reveal that high CCS heads are crucial for 545

capturing temporal and cross-modal relationships, 546

underscoring their broad utility in multimodal un- 547

derstanding. In addition, we demonstrated that 548

high-CCS heads learn spurious correlations lead- 549

ing to social biases and pruning them mitigates that 550

harmful behaviour without the need for further fine- 551

tuning. Thus, CCS provides an wholistic view of 552

interpretability proving the paradox performance 553

vs social biases in CLIP. 554
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6 Limitations555

In this work, we experimented primarily on CLIP556

models. Although CCS metric established the fun-557

damental paradox of performance vs social biases558

we haven’t proved for other vision language mod-559

els. Hence, we leave extending for more vision560

language models for future work. Another limita-561

tion is the use of LLM models for concept labelling562

and judging which requires robust manual verifi-563

cation to limit any inconsistencies. Hence, scaling564

our work to much bigger models with more layers565

and heads can be a limitation.566
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A Concept Consistency Scores (CCS) for774

CLIP models.775

We measure CCS@K for all values of K i.e776

K ∈ [0, 5]. Table 7 presents the Concept Consis-777

tency Score (CCS) distribution across various CLIP778

models, categorized by architecture size, patch779

size, and pre-training data. Several noteworthy780

trends emerge from this analysis. First, models pre-781

trained on larger and more diverse datasets (e.g.,782

OpenCLIP-LAION2B) tend to exhibit a higher pro-783

portion of heads with CCS@5, indicating that a784

greater number of transformer heads are aligned785

with semantically meaningful concepts. For in-786

stance, the ViT-L-14 model trained on LAION2B787

shows the highest CCS@5 score of 0.328, suggest-788

ing that approximately 32.8% of heads are consis-789

tently associated with a single concept, reflecting790

strong concept alignment in these models.791

Second, smaller models such as ViT-B-32792

trained on OpenAI-400M demonstrate a signifi-793

cantly lower CCS@5 score (0.167) and a higher794

proportion of heads with lower CCS values (e.g.,795

CCS@0 = 0.021), indicating weaker alignment of796

heads to consistent concepts. This observation im-797

plies that larger models with richer pre-training798

data are better at learning concept-specific repre-799

sentations, a key requirement for robust and inter-800

pretable multimodal reasoning.801

Interestingly, when comparing models with the802

same architecture but different pre-training corpora,803

such as ViT-B-32 (OpenAI-400M vs. OpenCLIP-804

datacomp), we observe a higher CCS@5 score for805

datacomp (0.229) than OpenAI-400M (0.167), sug-806

gesting that dataset composition significantly af-807

fects the emergence of interpretable heads.808

Moreover, progressive increases in CCS from809

CCS@0 to CCS@5 show how concept alignment810

varies within each model. For instance, while ViT-811

L-14 (OpenCLIP-LAION2B) has a low CCS@0812

of 0.016, it steadily increases to a high CCS@5813

of 0.328, suggesting that although a few heads are814

poorly aligned, a substantial fraction are highly815

consistent in capturing specific concepts.816

In summary, these results demonstrate that the817

CCS metric effectively captures differences in con-818

ceptual alignment across models of varying size819

and pre-training datasets. Models with larger ca-820

pacities and richer pre-training datasets tend to ex-821

hibit higher concept consistency, offering better822

interpretability and potentially stronger generaliza-823

tion abilities. This analysis underscores the value of824

CCS as a diagnostic tool for evaluating and compar- 825

ing the internal conceptual representations learned 826

by CLIP-like models. 827
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Model Model size Patch size Pre-training data CCS@0 CCS@1 CCS@2 CCS@3 CCS@4 CCS@5

CLIP B 32 OpenAI-400M 0.021 0.062 0.167 0.271 0.312 0.167
CLIP B 32 OpenCLIP-datacomp 0.104 0.062 0.208 0.189 0.208 0.229
CLIP B 16 OpenAI-400M 0.021 0.062 0.125 0.292 0.292 0.208
CLIP B 16 OpenCLIP-LAION2B 0.062 0.062 0.105 0.25 0.25 0.271
CLIP L 14 OpenAI-400M 0.062 0.109 0.172 0.204 0.203 0.25
CLIP L 14 OpenCLIP-LAION2B 0.016 0.031 0.109 0.219 0.297 0.328

Table 7: Concept Consistency Score (CCS) for CLIP models.

ViT-B-32-OpenAI
L8.H11 (Descriptive), L9.H2 (Objects), L9.H3 (Descriptions), L10.H8 (Locations), L11.H1
(Objects), L11.H5 (Colors), L11.H7 (Objects), L11.H9 (Locations)

ViT-B-32-datacamp
L8.H1 (Objects), L8.H3 (Subjects), L8.H10 (Objects), L9.H3 (Subjects), L9.H10 (Objects),
L10.H7 (Locations), L10.H11 (Objects), L11.H3 (Colors), L11.H4 (Colors), L11.H9
(Colors), L11.H10 (Objects)

ViT-B-16-OpenAI
L8.H5 (Visual), L8.H8 (Visual), L10.H5 (Subjects), L10.H7 (Settings), L11.H0 (Creative),
L11.H3 (Settings), L11.H4 (Stylistic), L11.H6 (Locations), L11.H7 (Colors), L11.H11
(Animals)

ViT-B-16-LAION
L8.H6 (Descriptions), L8.H7 (Descriptions), L9.H0 (Themes), L9.H1 (Aesthetics), L9.H3
(Descriptive), L10.H5 (Artwork), L10.H10 (Locations), L11.H0 (Locations), L11.H2 (De-
scriptions), L11.H6 (Locations), L11.H7 (Objects), L11.H8 (Objects), L11.H10 (Colors)

ViT-L-14-OpenAI
L20.H2 (Locations), L20.H12 (Descriptions), L21.H0 (Locations), L21.H1 (Locations),
L21.H8 (Expressions), L21.H13 (Locations), L21.H15 (Locations), L22.H1 (Objects),
L22.H2 (Locations), L22.H5 (Locations), L22.H9 (Subjects), L22.H13 (Animals),
L22.H15 (Locations), L23.H4 (Objects), L23.H10 (Locations), L23.H11 (Colors)

ViT-L-14-LAION
L20.H4 (Subjects), L20.H14 (Descriptions), L21.H0 (Colors), L21.H1 (Locations), L21.H5
(Descriptive), L21.H9 (Colors), L21.H11 (Locations), L22.H0 (Patterns), L22.H1 (Shapes),
L22.H3 (Objects), L22.H5 (Visual), L22.H6 (Animals), L22.H8 (Letters), L22.H10 (Col-
ors), L22.H12 (Landscapes), L22.H13 (Locations), L23.H4 (People), L23.H5 (Nature),
L23.H6 (Locations), L23.H8 (Colors), L23.H9 (Descriptive)

Table 8: Full List of high-CCS heads of all CLIP models.
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ViT-B-32-OpenAI
L8.H1 (Artistic), L8.H2 (Objects), L8.H6 (Photography), L8.H9 (Styles), L8.H10 (Per-
spective), L9.H1 (Subjects), L9.H11 (Settings), L10.H0 (Objects), L10.H3 (Locations),
L10.H7 (Locations), L11.H6 (Descriptions), L11.H10 (Locations), L11.H11 (Locations)

ViT-B-32-datacamp
L8.H0 (Environments), L8.H7 (Creativity), L9.H6 (Colors), L10.H5 (Art), L10.H6 (De-
scriptions), L10.H8 (Locations), L10.H9 (Descriptions), L11.H2 (Subjects), L11.H8 (Qual-
ities)

ViT-B-16-OpenAI
L8.H1 (Artistic), L8.H2 (Photography), L8.H4 (Styles), L8.H6 (Artwork), L8.H7 (Pho-
tography), L8.H9 (Light), L9.H4 (Photography), L9.H6 (Artforms), L9.H10 (Elements),
L10.H3 (Locations), L10.H8 (Colors), L10.H9 (Artwork), L11.H5 (Objects), L11.H8
(Effects)

ViT-B-16-LAION
L8.H0 (Locations), L8.H8 (Text), L8.H9 (Photography), L9.H7 (Artistic), L9.H8 (Settings),
L9.H11 (Descriptions), L10.H2 (Nature), L10.H3 (Location), L10.H7 (Expressions),
L11.H3 (Settings), L11.H9 (Numbers), L11.H11 (Letters)

ViT-L-14-OpenAI
L20.H0 (Locations), L20.H3 (Locations), L20.H7 (Communication), L20.H8 (Vehicles),
L20.H10 (Locations), L21.H4 (Photography), L21.H6 (People), L21.H10 (Locations),
L22.H3 (Countries), L22.H12 (Professions), L23.H3 (Patterns), L23.H9 (Creativity),
L23.H15 (Visual)

ViT-L-14-LAION
L20.H0 (Locations), L20.H1 (Locations), L20.H2 (Locations), L20.H8 (Locations),
L20.H9 (Locations), L20.H11 (Aesthetics), L20.H15 (Descriptions), L21.H12 (Photogra-
phy), L21.H14 (Locations), L22.H9 (Activities), L22.H14 (Colors), L22.H15 (Emotions),
L23.H0 (Materials), L23.H3 (Settings)

Table 9: Full List of medium-CCS heads of all CLIP models.

ViT-B-32-OpenAI
L8.H5 (Patterns), L9.H9 (Ambiance), L11.H0 (Diverse), L11.H8 (Word)

ViT-B-32-datacamp
L8.H2 (Images), L8.H4 (Varied), L8.H9 (Varied), L9.H4 (Variety), L9.H5 (Professions),
L11.H0 (Diverse), L11.H1 (Varied), L11.H11 (Settings)

ViT-B-16-OpenAI
L8.H0 (Diversity), L9.H3 (Locations), L10.H6 (Body parts), L11.H2 (Perspective)

ViT-B-16-LAION
L8.H4 (Variety), L8.H5 (Varied), L8.H10 (Diverse), L9.H2 (Textures), L10.H6 (Photogra-
phy), L10.H8 (Traits)

ViT-L-14-OpenAI
L20.H1 (Diverse), L20.H4 (Diversity), L20.H6 (Items), L20.H15 (Diverse), L21.H2 (Di-
versity), L21.H3 (Diverse), L22.H0 (Occupations), L22.H4 (Settings), L22.H6 (Weather),
L22.H14 (Items), L23.H5 (Diversity)

ViT-L-14-LAION
L20.H13 (Photography), L21.H6 (Professions), L23.H1 (Diverse)

Table 10: Full List of low-CCS heads of all CLIP models.
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Occupations

biologist, composer, economist, mathematician, model, poet, reporter, zoologist, artist,
coach, athlete, audiologist, judge, musician, therapist, banker, ceo, consultant, prisoner,
assistant, boxer, commander, librarian, nutritionist, realtor, supervisor, architect, priest,
guard, magician, producer, teacher, lawyer, paramedic, researcher, physicist, pediatrician,
surveyor, laborer, statistician, dietitian, sailor, tailor, attorney, army, manager, baker, re-
cruiter, clerk, entrepreneur, sheriff, policeman, businessperson, chief, scientist, carpenter,
florist, optician, salesperson, umpire, painter, guitarist, broker, pensioner, soldier, astro-
naut, dj, driver, engineer, cleaner, cook, housekeeper, swimmer, janitor, pilot, mover,
handyman, firefighter, accountant, physician, farmer, bricklayer, photographer, surgeon,
dentist, pianist, hairdresser, receptionist, waiter, butcher, videographer, cashier, technician,
chemist, blacksmith, dancer, doctor, nurse, mechanic, chef, plumber, bartender, pharmacist,
electrician

Table 11: Full list of occupations used for evaluating biases on FairFace and SocialCounterFactuals datasets.

Prompt Example
A <occupation> A biologist

A photo of <occupation> A photo of biologist
A picture of <occupation> A picture of biologist
An image of <occupation> An image of biologist

Table 12: Prompts used for measuring biases on FairFace and SocialCounterFactuals datasets.
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