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ABSTRACT

Biomedical knowledge is uniquely complex and structured, requiring distinct rea-
soning strategies compared to other scientific disciplines like physics or chem-
istry. Biomedical scientists do not rely on a single approach to reasoning; in-
stead, they use various strategies, including rule-based, prototype-based, and
case-based reasoning. This diversity calls for flexible approaches that accom-
modate multiple reasoning strategies while leveraging in-domain knowledge. We
introduce KGAREVION, a knowledge graph (KG) based agent designed to ad-
dress the complexity of knowledge-intensive medical queries. Upon receiving
a query, KGAREVION generates relevant triplets by using the knowledge base
of the LLM. These triplets are then verified against a grounded KG to filter out
erroneous information and ensure that only accurate, relevant data contribute to
the final answer. Unlike RAG-based models, this multi-step process ensures ro-
bustness in reasoning while adapting to different models of medical reasoning.
Evaluations on four gold-standard medical QA datasets show that KGAREVION
improves accuracy by over 5.2%, outperforming 15 models in handling com-
plex medical questions. To test its capabilities, we curated three new medical
QA datasets with varying levels of semantic complexity, where KGAREVION
achieved a 10.4% improvement in accuracy. The source code is provided at
https://anonymous.4open.science/r/KGARevion-B3B6.

1 INTRODUCTION

Medical reasoning involves making diagnostic and therapeutic decisions while also understanding
the pathology of diseases (Patel et al., 2005). While large language models (LLMs) (OpenAI, 2024;
Dubey et al., 2024; Gao et al., 2024) have demonstrated strong general capabilities, their responses
to medical questions often suffer from incorrect retrieval, missing key information, and misalign-
ment with current scientific and medical knowledge. Additionally, they can struggle to provide
contextually relevant answers that account for specific local contexts, such as patient demographics
or geography, as well as specific areas of biology (Harris, 2023). A major issue lies in these mod-
els’ inability to systematically integrate different types of evidence. Specifically, they have difficulty
combining scientific factual (structured, codified) knowledge derived from formal, rigorous research
with tacit (noncodified) knowledge—expertise and lessons learned—which is crucial for contextu-
alizing and interpreting scientific evidence in relation to the specific modifying factors of a given
medical question (Harris, 2023).

LLM-powered QA models often lack such multi-source and grounded knowledge necessary for
medical reasoning, which requires understanding the nuanced and specialized nature of medical
concepts. Additionally, LLMs trained on general knowledge may struggle to solve medical prob-
lems that demand specialized in-domain knowledge. This shortcoming arises from their inability
to discern subtle, granular differences that are critical in medical contexts. As a result, LLMs face
challenges in complex medical reasoning because such reasoning requires both: 1) simultaneous
consideration of dependencies across multiple medical concepts within an input question, and 2)
precise, local in-domain knowledge of semantically similar concepts that can carry different medi-
cal meanings, as we demonstrate in Fig. 1.

The prevailing strategy to address these challenges is the use of information retrieval tech-
niques, such as retrieval-augmented generation (RAG), which follows a Retrieve-then-Answer
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paradigm (Shi et al., 2024). Although these methods can provide multi-source knowledge from
external databases (Fan et al., 2024), the accuracy of the generated answers depends heavily on the
quality of the retrieved information, making them vulnerable to potential errors (Karpukhin et al.,
2020). Data repositories and knowledge bases these models draw from contain incomplete or incor-
rect information, leading to inaccurate retrieval Adlakha et al. (2024); Thakur et al. (2023). Further,
many RAG-based methods lack post-retrieval verification mechanisms to validate that retrieved in-
formation is factually correct and does not miss key information (Zhao et al., 2023).
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Which pharmacological agents 
are associated with genes or 
proteins that function in relation 
to the rough endoplasmic 
reticulum?
A) Zinc cation

B) Cupric chloride

C) Cupric oxide

D) Copper

Which gene/protein is not 
expressed in both the renal 
tissues and the medial segment 
of the globus pallidus?
A) MYOT

B) MYF5

C) MYOG 
D) MYOD1

Is there an interaction between the 
Heat Shock Protein 70 family that 
acts as a molecular chaperone and 
the gene or protein implicated in 
Retinitis Pigmentosa 59 due to 
DHDDS mutation?
A) HSPA4

B) HSPA8 
C) HSPA1B

D) HSPA1A

ExpertIntermediateBasic

D

D

D

C

A

B

B

A

C

KG

LLM

KG 
agent

KG

LLM

KG 
agent

KG

LLM

KG 
agent

Figure 1: Sample questions from new MedDDx-
Basic, MedDDx-Intermediate, and MedDDx-
Expert datasets.

Knowledge graphs (KGs) of medical concepts
have been widely adopted as a grounded knowl-
edge base to provide precise and specialized
in-domain knowledge for medical QA mod-
els (Qi et al., 2024; Murali et al., 2023; Chan-
dak et al., 2023). While KGs can enhance
the performance of these models, they are of-
ten incomplete. Consequently, approaches that
retrieve medical concepts from a KG based
solely on the presence of direct associations
(edges) between concepts are insufficient. For
instance, concepts representing two proteins
with distinct biological roles may not be di-
rectly connected in the KG, even though these
proteins share similar biological representa-
tions (Menche et al., 2015). To advance LLM-
powered models for knowledge-intensive medical QA, it is essential to develop models that can (1)
consider complex associations between several medical concepts at the same time, (2) systematically
integrate multi-source knowledge, and (3) effectively verify and ground the retrieved information to
ensure contextual relevance and accuracy.

Present work. We introduce KGAREVION, a KG-based LLM agent for complex medical QA that
leverages non-codified knowledge of LLMs and structured, codified knowledge of medical concepts
within KGs. KGAREVION operates through four key actions, Fig. 2. First, KGAREVION prompts
the LLM to generate relevant triplets based on the input question. To ensure the accuracy of the gen-
erated triples and to fully use structured KG, KGAREVION fine-tunes the LLM on a KG completion
task by incorporating pre-trained structural embeddings of triplets as prefix tokens. The fine-tuned
model is then used to evaluate the correctness of generated triplets. Following this, KGAREVION
executes a ‘Revise’ action to correct any erroneous triplets, ultimately identifying the correct an-
swer based on the verified triplets. Given the complexity of medical reasoning, KGAREVION agent
adaptively selects the most appropriate reasoning approach for each input question, enabling a more
nuanced and contextualized QA. This flexibility allows KGAREVION to tackle both multi-choice
and open-ended QA. Our key contributions of KGAREVION are: 1⃝ We develop KGAREVION,
a versatile KG-agent that dynamically adjusts reasoning strategy, leading to 6.75% improvement
when compared to 15 models on seven datasets, including three new challenging datasets; 2⃝ Re-
sults on multiple KGs show that grounding through generated triplets can improve KGAREVION
’s capabilities; 3⃝ Results on both multiple-choice and open-ended setups show that KGAREVION
can effectively handle complex, knowledge-intensive medical QA.

2 RELATED WORK

LLM-based reasoning. General-purpose LLMs (GPT (OpenAI, 2024), LLaMA family (Dubey
et al., 2024; Touvron et al., 2023), Mistral (Jiang et al., 2023)), and LLMs fine-tuned on biomedi-
cal data (BioMedLM (Venigalla et al., 2022), Codex (Liévin et al., 2024), MedAlpaca (Han et al.,
2023), Med-PaLM (Singhal et al., 2023), PMC-LLaMA (Wu et al., 2024a)) are used for medical
reasoning by leveraging their vast embedded knowledge. Other models utilize the open-ended rea-
soning capabilities of LLMs to break down queries into sub-tasks, arriving at the final answer step
by step, such as Chain-of-Though (CoT) (Wei et al., 2024), CODEX COT (Gramopadhye et al.,
2024). However, these methods often struggle with knowledge-intensive medical queries requiring
multi-sources specific knowledge.
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RAG-based models. Self-RAG (Asai et al., 2024) is a pioneering framework that enhances LLM
performance through retrieval and self-reflection. LLM-AMT (Wang et al., 2023b) improves med-
ical question answering by integrating authoritative medical textbooks into LLMs with specialized
knowledge retrieval and self-refinement techniques. Adaptive-RAG (Jeong et al., 2024) introduces
a dynamic RAG framework that adapts retrieval strategies based on question complexity. However,
its accuracy is constrained by the quality of retrieved knowledge (Zhang et al., 2024).

KG-based models. Before the rise of LLMs, several models, such as QAGNN (Yasunaga et al.,
2021), JointLK (Sun et al., 2022), and Dragon (Yasunaga et al., 2022), were developed to tackle
medical queries solely using KGs in an end-to-end manner. However, these methods cannot be eas-
ily applied to questions involving unseen nodes or incomplete knowledge within the graphs. In addi-
tion, KGs, with their structured and reliable information, have driven research toward RAG models
based on graph data, motivating models like GraphRAG (Edge et al., 2024), KG-RAG (Soman et al.,
2023), and MedGraphRAG (Wu et al., 2024b). To improve retrieval accuracy, KG-Rank (Yang et al.,
2024) is introduced to rank retrieved triplets and filter out irrelevant knowledge. Additionally, Gen-
Ground (Shi et al., 2024) uses a Generate-then-Ground pipeline that grounds answers by prompting
LLMs to validate retrieved knowledge. However, all these approaches rely heavily on semantic
dependencies, overlooking the rich structural information within KGs.

Fact-checking Models. The vast amount of generated text has created a growing need for fact-
checking (Graves & Glaisyer, 2012). Early methods relied on manually defined rules to verify
generated statements (Hassan et al., 2014; Wu et al., 2012; Jiang et al., 2011). KGs, as structured
and reliable knowledge bases, have also been utilized for fact-checking by analyzing graph con-
nectivity. These methods (Tunstall-Pedoe, 2010; Shi & Weninger, 2016; Ciampaglia et al., 2015)
validate generated statements by identifying paths between entities mentioned in the statement. Ad-
ditionally, some approaches use popular KG representation learning algorithms for KG completion
tasks to verify the accuracy of statements (Li et al., 2011). With the rise of LLMs, new fact-checking
approaches, e.g. RAG-based models, have emerged to ensure the consistency and reliability of gen-
erated outputs by integrating external evidence retrieval for verifying and supporting LLM-generated
content (Asai et al., 2024).

3 APPROACH

Given is a set of medical questions Q, each question comprising the question stem q, and a set
of candidate answers C. For example, the sample question in Fig. 2a has a stem q = “Which
gene interacts with the Heat Shock Protein 70 family that acts as a molecular chaperone, and is
implicated in Retinitis Pigmentosa 59 due to DHDDS mutation?” along with a set of semantically
related candidate answers C = {HSPA4,HSPA8,HSPA1B,HSPA1A}. The goal is to identify the
correct answer a ∈ C using an LLM (denoted as P ) and a KG (denoted as G). Here, a KG is given
as a set of triplets G = {(h, r, t)}, where each triplet consists of a head entity, a relationship, and a
tail entity. Full notation is listed in Table E.2. Note that in addition to this multi-choice setting, we
consider open-ended reasoning as well (see Results).

To address this problem, we propose to develop an LLM-powered agent framework (Wu et al., 2023;
Li et al., 2023) that leverages various actions (Schick et al., 2023; Shen et al., 2023; Nakano et al.,
2021) to collaboratively perform complex tasks (Tang et al., 2023; Bran et al., 2023; Boiko et al.,
2023). Fig. 2 shows an overview of KGAREVION, which comprises four key actions, including
Generate (§3.1), Review (§3.2), Revise (§3.3), and Answer (§3.3) actions. The Generate action is
responsible for generating triplets related to the input question. The Review action then assesses
the correctness of each generated triplet, while the Revise action corrects any triplet identified as
being incorrect. Finally, the Answer action outputs the final answer based on the triplets identified
as correct by the Review action.

3.1 GENERATE ACTION

The Generate action aims to gather comprehensive structured knowledge from input questions.
Specifically, this action first identifies all medical concepts involved in the input question stem q
and then generates a set of triplets T related to the question based on the extracted medical concepts.
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Aligning Embedding

Instruction: Given a triple from a knowledge graph. 
Each triple consists of  a head entity, a relation, and a 
tail entity. Please determine the correctness of the 
triple and response True or False.

...

Instruction tokensAligned 
embedding

Description dictionary

...Description tokens

Pre-trained 
structural 
embedding

Description: HSPAB interacts with DHDDS, 
indicating a general interaction that may involve 
binding, modulation, or other forms of  molecular 
communication.

(HSPA8, interacts, DHDDS)

Knowledge graph

...

Pre-trained 
embedding

Description tokens

Projection

Matmul

Softmax

Matmul

Token embedding

Norm

Aligned embedding

LLM

FFN

Review

Frozen Trainable

Generate

Answer

Review

Revise

Which gene interactions with the Heat Shock 
Protein 70 family that acts as a molecular 
chaperone,  and is implicated in Retinitis 
Pigmentosa 59 due to DHDDS mutation?

A: HSPA4  B: HSPA8  C: HSPA1B  D: HSPA1A

HSPA8

(HSPA8, interacts, DHDDS)
(Heat shock proteins, play a role, 
retinitis pigmentosa)
(HSPA1A, interactions, DHDDS) ...

(HSPA1B, interactions, DHDDS)
...

N
o 

tri
pl

et

KGARevion

(HSPA8, interacts, DHDDS)
(Heat shock proteins, play a role, 
retinitis pigmentosa)
(HSPA1A, interactions, DHDDS)
 ...

(HSPA8, interacts, DHDDS)
(Heat shock proteins, play a role, 
retinitis pigmentosa)
...

LLM

Loss

LLM

Fine-tuning LLM

Figure 2: a) The overview of KGAREVION. b) The architecture of fine-tuning stage in the Review
action, where embeddings get from KGs are structural embeddings, while concept embeddings from
LLMs.

Depending on the content of each answer candidate a ∈ C, the input questions can be broadly
categorized into two types: choice-aware and non-choice-aware. The answer candidates in the
choice-aware group have specific contents, whereas the ones in the non-choice-aware group only
contain yes-or-no options. These different types of questions require distinct reasoning processes:
choice-aware questions involve analyzing the content of each answer candidate, while non-choice-
aware questions only require focusing on the question stem.

To handle this, the Generate action is designed to prompt the LLM (Ouyang et al., 2022; Wang et al.,
2023a) to follow different procedures for generating relevant triplets according to the type of input
question.

• For choice-aware questions, the Generate action generates triplets based on the contents of each
answer candidate and extracted medical concepts in question stem q;

• For non-choice-aware questions, the Generation action directly generates triplets based on medical
concepts presented in question stem q.

The rationale behind this design is that LLMs have inherent biases in their knowledge, often gener-
ating more detailed information on familiar topics compared to less familiar ones when all answer
candidates are presented simultaneously (Dai et al., 2024). Additionally, this approach helps reduce
the impact of the order in which the answer candidates are presented. The process of the Generate
action can be formulated as:

T =

{
{P (q, ai)}, 1 ≤ i ≤ |C|, if C ̸⊆ {Yes,No,Maybe}
P (q), if C ⊆ {Yes,No,Maybe} (1)

where the LLM is prompted to extracts triplets from the medical concepts involved in input question
stem q.

3.2 REVIEW ACTION

To enable LLMs to accurately judge the correctness of generated triplets, beyond relying solely on
semantic dependencies inferred by LLMs (Shinn et al., 2023), the Review action also leverages the
connections and relationships among various medical concepts contained in KGs. This is achieved
by fine-tuning the LLM on a KG completion task, explicitly integrating entity embeddings learned
from KGs into the LLM. Then the Review action is performed by the fine-tuned LLM to assess the
correctness of triplets generated by the Generate action, as shown in Fig. 2.
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3.2.1 FINE-TUNING STAGE

Generating KG Embeddings and Triplet Descriptions. We use the well-known KG representa-
tion learning method, TransE (Bordes et al., 2013), to learn structural embeddings for both entities
and relations in G. For a triplet (h, r, t) ∈ G, the learned pre-trained embeddings are denoted as
eh ∈ Rd, er ∈ Rd, and et ∈ Rd, where d represents the embedding dimension. These embeddings
are kept fixed.

In addition, we instruct the LLM to generate a description template for each relation r ∈ G. We store
these descriptions in a dictionary D(r), where the key is the relation and the value is its description.
The description dictionary can be found in Appendix Table 8.

Aligning Embedding. Since the embeddings in LLMs are based on token vocabularies (Radford
et al., 2019), LLMs cannot directly interpret pre-trained structural embeddings, as they lack se-
mantic meaning. To make use of the pre-trained structural embeddings, we align them with the
corresponding descriptions to generate new embeddings for the input triplet.

Specifically, given the description D(r) for the input triplet (h, r, t), we denote the embedding of
D(r) obtained from the LLM as X ∈ R|l|×dL , where |l| is the maximum number of tokens and
dL is the embedding dimension in the LLM. Next, we concatenate the embeddings of the head
entity, the relation, and the tail entity, denoted as V = [g(eh); g(er); g(et)] ∈ R3×dL , where
g(·) : Rd → RdL . We then apply an attention block (Vaswani, 2017), followed by a two-layer
feedforward neural network (FFN, as shown in Fig. 2b) to obtain the aligned triplet embedding
matrix Z ∈ R3×dL as follows:

V̂ = V + σ(VXT )X (2)

Z = V̂ + ((φ(V̂)W1))W2 (3)

where σ(·) is the Softmax function, φ(·) represents layer normalization, W1 ∈ RdL×dh and W2 ∈
Rdh×dL are trainable parameters in the two-layer FFN, and dh is the dimension of the hidden layer
in the FFN.

Fine-tuning LLM. After obtaining the aligned embedding Z, we add it to the beginning of the
instruction and fine-tune the LLM using LoRA (Hu et al., 2022) with the next-token prediction
loss (Radford, 2018). The instruction is: ’Given a triplet from a knowledge graph, where each triplet
consists of a head entity, a relation, and a tail entity, please determine if the triplet is correct and
respond with True or False.’ The output should be either True or False.

3.2.2 INFERENCE STAGE

The fine-tuned LLM is then used in the Review action to check the accuracy of each triplet in T ,
which was generated by the Generate action (3.1). Specifically, we first use UMLS codes (Boden-
reider, 2004) to map the entities in the KG and obtain pre-trained structural embeddings for the head
entity, relation, and tail entity, respectively. These embeddings, along with their descriptions and
instructions, are fed into the fine-tuned LLM, which determines whether each triplet is correct or
not.

However, not all entities in the generated triplet (h, r, t) ∈ T can be mapped to entities in KGs. To
address this, the Review action applies a soft constraint rule to distinguish whether the generated
triplet is factually wrong or the result of incomplete knowledge in KGs, as follows:

• Factually Wrong: if we can map h and t to entities in KGs and the output of fine-tuned LLM is
False, then the triplet (h, r, t) is factually wrong and is removed from T .

• Incomplete Knowledge: if we cannot map either h or t to entities in KGs, then the triplet (h, r, t)
is considered incomplete knowledge and is kept.

In this way, the triplet in T can be grouped into two categories, i.e., the True triplet set V and
False triplet set F , where T = V ∪ F and V ∩ F = ∅. Our KGARevion is compatible with any
medical-related KGs (e.g., PrimeKG, OGB-biokg) and LLMs (e.g., LLaMA3-8B, LLaMA3.1-8B).
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3.3 REVISE AND ANSWER ACTIONS

If F has triplets, KGAREVION calls the Revise action to adjust the triplets in F to include more
triplets covering more medical concepts that help with the answering of the input question. The head
and tail entities of the revised triplets are then reviewed by the Review action to make sure that they
are correct and related to the input question. If the Review action outputs “True”, then the revised
triplets are added to the set of True triplets V . Otherwise, KGAREVION continues to call the Revise
action until the max round k (k ≥ 1) is achieved.

After obtaining the set of True triplets from the Review or Revise actions, KGAREVION finally calls
the Answer action to prompt the LLM to select the most suitable answer y from the set of answer
candidates C of input question q based on the triplets in V , where y = P (q, V, C) and y ∈ C.

4 RESULTS

Datasets. We first start with four multi-choice medical QA benchmarks (Xiong et al., 2024a)
(Table 1). In addition, we introduce a new benchmark for multi-choice complex medical QA fo-
cused on differential diagnosis (DDx), named MedDDx. We begin by collecting questions and
corresponding answers from STaRK-Prime (Wu et al., 2024c). For each question, we then se-
lect the top three entities with the highest semantic similarity to serve as additional answer can-
didates. MedDDx comprises a total of 1,769 multi-choice QA samples. Based on the standard
deviation of semantic similarity between answer candidates and the correct answer, we catego-
rize the dataset into three difficulty levels: MedDDx-Basic, MedDDx-Intermediate, and MedDDx-
Expert (The samples in each dataset are shown in Fig. 1, and details are available in Appendix 5).

Datasets Size QA OR

MMLU-Med 1,089 A/B/C/D ✔
MedQA-US 1,273 A/B/C/D ✔
PubMedQA* 500 Yes/No/Maybe ✔
BioASQ-Y/N 618 Yes/No ✔

MedDDx-Basic 483 A/B/C/D ✔
MedDDx-Intermediate 1,041 A/B/C/D ✔
MedDDx-Expert 245 A/B/C/D ✔

Table 1: QA benchmarks and three new Med-
DDx datasets. ‘OR’ indicates whether the
open-ended reasoning evaluation is done.

Baselines. We consider 8 LLM-based reasoning
models, 4 RAG-based models, and 3 KG-based
models. The LLM-based reasoning models in-
clude LLaMA (2-7B/13B, 3-8B, 3.1-8B) (Touvron
et al., 2023; Dubey et al., 2024), Mistral (Jiang
et al., 2023), MedAlpaca (7B) (Han et al., 2023),
PMC-LLaMA (7B) (Wu et al., 2024a), LLaMA3-
OpenBioLLM-8B (Ankit Pal, 2024), and MED-
ITRON (Chen et al., 2023). The RAG-based mod-
els include Self-RAG (Asai et al., 2024), MedRAG
(Xiong et al., 2024b), KG-RAG (Soman et al.,
2023), and KG-Rank (Yang et al., 2024). The KG-based models include QAGNN (Yasunaga et al.,
2021), JointLK (Sun et al., 2022), and Dragon (Yasunaga et al., 2022).

Evaluation setup. We consider two evaluation settings. Multi-choice reasoning: This setting eval-
uates the model’s performances on all collected multi-choice QA datasets. The model is tasked to
select the correct answer to a user input question from a set of candidate answers. Open-ended
reasoning: All candidate answers are masked, meaning that the model has to generate a response
to the input question independently without being presented with a set of candidate answers. The
model produces an answer solely on its own generated response. Additionally, we design two new
evaluation scenarios for each setting to test model abilities in solving complex medical questions by
considering the number of medical concepts and the semantic similarity among answer candidates.
Query complexity scenario (QSS): This is a hard evaluation scenario to test how the model per-
forms with the increase of the number of medical concepts present in a question since the question
often becomes more intricate, requiring more nuanced inferences between concepts to achieve the
correct answer, with the increase of medical concepts. Semantic complexity scenario (CSS): This
is a harder evaluation scenario that tests the model’s ability to identify the correct answer among
semantically similar and closely medically related candidate answers.

4.1 BENCHMARKING KGAREVION UNDER MULTI-CHOICE REASONING SETTING

Table 2 shows the accuracy and variance of KGAREVION and all baselines on all datasets. Eval-
uation on four gold standard medical QA datasets shows that KGAREVION improves the average
accuracy by over 4.8%, outperforming all baselines in handling medical queries.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under Review as a conference paper

Multi-choice Reasoning Established Medical QA Benchmarks MedDDx

Method MMLU-Med MedQA-US PubMedQA* BioASQ-Y/N Basic Intermidate Expert

Metrics Acc. (std) Acc. (std) Acc. (std) Acc. (std) Acc. (std) Acc. (std) Acc. (std)
LLaMA2-7B 0.376 (.006) 0.281 (.004) 0.448 (.010) 0.568 (.006) 0.215 (.030) 0.198 (.004) 0.192 (.012)
LLaMA2-7B (CoT) 0.318 (.005) 0.251 (.002) 0.465 (.011) 0.547 (.011) 0.289 (.010) 0.265 (.006) 0.229 (.023)
Mistral-7B 0.634 (.004) 0.477 (.007) 0.400 (.002) 0.644 (.001) 0.412 (.003) 0.356 (.003) 0.375 (.007)
Mistral-7B (CoT) 0.634 (.003) 0.474 (.002) 0.372 (.005) 0.651 (.002) 0.404 (.010) 0.368 (.023) 0.379 (.027)
MedAlpaca-7B 0.600 (.004) 0.401 (.001) 0.333 (.015) 0.493 (.034) 0.399 (.012) 0.325 (.004) 0.311 (.009)
MedAlpaca-7B (CoT) 0.603 (.004) 0.399 (.003) 0.315 (.015) 0.485 (.025) 0.395 (.007) 0.321 (.011) 0.312 (.010)
PMC-LLaMA-7B 0.207 (.011) 0.247 (.004) 0.179 (.007) 0.346 (.017) 0.087 (.015) 0.086 (.002) 0.079 (.006)
PMC-LLaMA-7B (CoT) 0.204 (.008) 0.208 (.002) 0.125 (.014) 0.208 (.002) 0.088 (.002) 0.077 (.004) 0.063 (.005)
LLaMA3-8B 0.634 (.005) 0.566 (.004) 0.586 (.008) 0.654 (.005) 0.428 (.015) 0.319 (.002) 0.306 (.009)
LLaMA3-8B (CoT) 0.651 (.003) 0.552 (.003) 0.574 (.002) 0.681 (.002) 0.434 (.010) 0.368 (.004) 0.313 (.003)
Llama3-OpenBioLLM-8B 0.636 (.005) 0.383 (.003) 0.350 (.026) 0.623 (.005) 0.238 (.004) 0.235 (.011) 0.229 (.020)
Llama3-OpenBioLLM-8B (CoT) 0.571 (.003) 0.295 (.002) 0.283 (.001) 0.646 (.004) 0.370 (.013) 0.330 (.001) 0.327 (.011)
LLaMA3.1-8B 0.677 (.007) 0.563 (.006) 0.596 (.009) 0.687 (.006) 0.434 (.018) 0.368 (.002) 0.306 (.021)
LLaMA3.1-8B (CoT) 0.681 (.005) 0.549 (.003) 0.600 (.005) 0.706 (.002) 0.439 (.017) 0.393 (.005) 0.322 (.014)
LLaMA2-13B 0.442 (.002) 0.253 (.004) 0.252 (.004) 0.455 (.002) 0.286 (.003) 0.338 (.006) 0.317 (.006)
LLaMA2-13B (CoT) 0.415 (.002) 0.354 (.005) 0.232 (.006) 0.422 (.003) 0.309 (.005) 0.263 (.013) 0.243 (.016)

QAGNN 0.317 (.003) 0.450 (.005) 0.439 (.033) 0.644 (.002) 0.295 (.003) 0.265 (.002) 0.253 (.003)
JointLK 0.288 (.005) 0.472 (.003) 0.468 (.007) 0.640 (.007) 0.247 (.004) 0.250 (.003) 0.244 (.004)
Dragon 0.319 (.003) 0.475 (.002) 0.472 (.005) 0.646 (.003) 0.286 (.003) 0.247 (.005) 0.240 (.004)

Self-RAG (7B) 0.322 (.019) 0.380 (.028) 0.534 (.028) 0.594 (.012) 0.238 (.007) 0.199 (.037) 0.224 (.045)
Self-RAG (13B) 0.502 (.004) 0.408 (.020) 0.331 (.158) 0.646 (.050) 0.249 (.010) 0.290 (.018) 0.266 (.031)
KG-Rank (13B) 0.452 (.005) 0.362 (.011) 0.305 (.019) 0.503 (.015) 0.253 (.021) 0.256 (.013) 0.234 (.010)
KG-RAG (8B) 0.516 (.005) 0.343 (.001) 0.429 (.017) 0.662 (.005) 0.434 (.021) 0.413 (.007) 0.391 (.004)
MedRAG (70B) 0.579 (.015) 0.487 (.014) 0.574 (.022) 0.719 (.018) 0.365 (.008) 0.348 (.011) 0.327 (.003)

KGAREVION (LLaMA3, w/o Review) 0.621 (.002) 0.528 (.003) 0.556 (.002) 0.713 (.004) 0.310 (.006) 0.334 (.004) 0.313 (.008)
KGAREVION (LLaMA3, w/o Revise) 0.657 (.004) 0.594 (.006) 0.562 (.002) 0.723 (.005) 0.386 (.008) 0.372 (.004) 0.327 (.003)
KGAREVION (LLaMA3, k = 1) 0.703 (.004) 0.610 (.010) 0.562 (.002) 0.744 (.003) 0.473 (.008) 0.404 (.006) 0.395 (.003)
KGAREVION (LLaMA3, k = 2) 0.696 (.006) 0.616 (.008) 0.566 (.002) 0.723 (.010) 0.457 (.006) 0.414 (.006) 0.395 (.005)
KGAREVION (LLaMA3, k = 3) 0.678 (.006) 0.628 (.002) 0.590 (.005) 0.737 (.007) 0.469 (.008) 0.451 (.004) 0.411 (.005)
Improvement over best baseline +5.2% +6.2% +0.4% +6.3% +3.9% +8.3% +3.2%
KGAREVION (LLaMA3.1, w/o Review) 0.695 (.006) 0.546 (.002) 0.560 (.004) 0.736 (.003) 0.298 (.015) 0.299 (.003) 0.327 (.006)
KGAREVION (LLaMA3.1, w/o Revise) 0.716 (.006) 0.573 (.005) 0.568 (.011) 0.749 (.003) 0.392 (.012) 0.337 (.006) 0.352 (.005)
KGAREVION (LLaMA3.1, k = 1) 0.734 (.004) 0.618 (.002) 0.619 (.004) 0.763 (.001) 0.483 (.013) 0.457 (.010) 0.409 (.005)
KGAREVION (LLaMA3.1, k = 2) 0.720 (.003) 0.616 (.005) 0.656 (.006) 0.745 (.005) 0.396 (.003) 0.454 (.008) 0.342 (.004)
KGAREVION (LLaMA3.1, k = 3) 0.716 (.004) 0.620 (.003) 0.638 (.004) 0.749 (.003) 0.469 (.012) 0.411 (.010) 0.447 (.005)
Improvement over best baseline +5.3% +5.7% +3.8% +4.4% +4.4% +4.4% +5.6%

Table 2: The accuracy of KGAREVION and all baselines on four gold standard and three newly
created datasets under multi-choice reasoning settings. The value highlighted in Blue indicates the
best result among LLM-based reasoning models with a size smaller than 8B, including LLaMA3-
8B, while Red marks the top value among LLaMA3.1-8B and other types of baselines. std means
the standard deviation under three runs.

Results under QSS. Fig. 3a illustrates the trends of KGAREVION alongside the top-performing
baselines as the number of medical concepts increases. It can first be observed that KGAREVION
outperforms baselines of the same size, regardless of the number of medical concepts involved.
Moreover, KGAREVION maintains stable performance as the number of medical concepts increases
and even improves when processing questions with n = 6, compared to those with n = 5. In contrast,
baseline models struggle with complex questions containing 5 or 6 medical concepts. Such an
observation indicates that KGAREVION advances in handling complex medical questions involving
multiple medical concepts.

Results under CSS. As seen in Table 2, evaluations on three difficult levels in MedDDx indicate
that KGAREVION exhibits a strong ability in handling differential diagnosis questions that request
professional and accurate knowledge. In addition, the obtained results also show that KGAREVION
excels in identifying the correct answer among semantically similar answer candidates since it im-
proves the accuracy on MedDDx-Expert by 3.2% and 5.6% with LLaMA3-8B and LLaMA3.1-8B
as the backbone LLM, respectively.

4.2 BENCHMARKING KGAREVION UNDER OPEN-ENDED REASONING SETTING

We transform multiple-choice questions into descriptive, open-ended ones to better simulate real-
world medical scenarios, where such inquiries are more common (see details in Appendix A.3).
This adjustment requires our model to generate responses without predefined choices, encouraging
holistic reasoning and the integration of diverse knowledge sources. By removing answer choices,
we can more effectively assess the reasoning ability of KGAREVION in complex medical situations,
resulting in a more realistic evaluation of its capabilities. Table 3 shows the accuracy and variance
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Figure 3: The accuracy of KGAREVION and pure LLMs with the medical concepts increase under
a) multi-choice reasoning setting and b) open-ended reasoning setting.

Open-ended Reasoning Open-ended inquiries without pre-defined choices MedDDx-No-Opt (Open-ended)

Method MMLU-Med MedQA-US PubMedQA* BioASQ-Y/N Basic Intermediate Expert

Metrics Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc. Acc. ∆Acc.
LLaMA2-7B 0.328 (-0.048) 0.302 (+0.021) 0.546 (+0.098) 0.625 (+0.057) 0.286 (+0.071) 0.305 (+0.107) 0.302 (+0.110)
LLaMA2-7B (CoT) 0.362 (+0.044) 0.243 (-0.008) 0.418 (-0.047) 0.642 (+0.095) 0.265 (-0.024) 0.270 (+0.005) 0.280 (+0.051)
Mistral-7B 0.591 (-0.043) 0.412 (-0.065) 0.344 (-0.056) 0.629 (-0.015) 0.249 (-0.163) 0.228 (-0.128) 0.273 (-0.102)
Mistral-7B (CoT) 0.583 (-0.051) 0.398 (-0.076) 0.212 (-0.160) 0.657 (+0.006) 0.245 (-0.159) 0.232 (-0.136) 0.286 (-0.093)
PMC-LLaMA-7B 0.073 (-0.134) 0.082 (-0.165) 0.090 (-0.089) 0.139 (-0.201) 0.249 (+0.162) 0.191 (+0.105) 0.232 (+0.153)
PMC-LLaMA-7B (CoT) 0.080 (-0.124) 0.079 (-0.129) 0.092 (-0.033) 0.125 (-0.083) 0.220 (+0.132) 0.245 (+0.168) 0.228 (+0.165)
LLaMA3-8B 0.595 (-0.039) 0.458 (-0.108) 0.532 (-0.054) 0.672 (+0.018) 0.343 (-0.085) 0.314 (-0.005) 0.317 (+0.011)
LLaMA3-8B (CoT) 0.608 (-0.043) 0.449 (-0.103) 0.562 (-0.012) 0.714 (+0.033) 0.289 (-0.145) 0.304 (-0.064) 0.327 (+0.014)
Llama3-OpenBioLLM-8B 0.324 (-0.312) 0.157 (-0.226) 0.157 (-0.193) 0.324 (-0.299) 0.016 (-0.222) 0.006 (-0.229) 0.008 (-0.221)
Llama3-OpenBioLLM-8B (CoT) 0.398 (-0.173) 0.146 (-0.149) 0.100 (-0.183) 0.142 (-0.539) 0.098 (-0.272) 0.084 (-0.246) 0.108 (-0.219)
LLaMA3.1-8B 0.607 (-0.070) 0.551 (-0.012) 0.514 (-0.082) 0.694 (+0.007) 0.322 (-0.112) 0.289 (-0.079) 0.335 (+0.029)
LLaMA3.1-8B (CoT) 0.697 (+0.016) 0.563 (+0.014) 0.572(-0.028) 0.706 (-0.000) 0.306 (-0.133) 0.294 (-0.099) 0.315 (-0.007)
LLaMA2-13B 0.348 (-0.094) 0.283 (+0.030) 0.218 (-0.034) 0.421 (-0.034) 0.190 (-0.096) 0.123 (-0.215) 0.153 (-0.164)
LLaMA2-13B (CoT) 0.311 (-0.104) 0.267 (-0.087) 0.266 (+0.034) 0.471 (+0.049) 0.269 (-0.040) 0.268 (+0.005) 0.282 (+0.039)

Self-RAG (7B) 0.256 (-0.066) 0.235 (-0.145) 0.316 (-0.218) 0.379 (-0.215) 0.167 (-0.071) 0.246 (+0.047) 0.213 (-0.011)
Self-RAG (13B) 0.309 (-0.193) 0.297 (-0.111) 0.438 (+0.107) 0.539 (-0.107) 0.212 (-0.037) 0.232 (-0.058) 0.226 (–0.040)
KG-Rank (13B) 0.151 (-0.301) 0.189 (-0.173) 0.203 (-0.102) 0.188 (-0.315) 0.127 (-0.126) 0.133 (-0.123) 0.133 (-0.101)
KG-RAG (8B) 0.310 (-0.206) 0.290 (-0.053) 0.316 (-0.113) 0.359 (-0.303) 0.216 (-0.218) 0.220 (-0.193) 0.213 (-0.178)

KGAREVION (LLaMA3, w/o Review) 0.645 (+0.024) 0.609 (+0.081) 0.552 (-0.004) 0.701 (-0.012) 0.400 (+0.090) 0.360 (+0.026) 0.356 (+0.043)
KGAREVION (LLaMA3, w/o Revise) 0.668 (+0.011) 0.626 (+0.032) 0.572 (+0.010) 0.716 (-0.007) 0.426 (+0.040) 0.403 (+0.031) 0.412 (+0.085)
KGAREVION (LLaMA3, k = 1) 0.687 (-0.016) 0.628 (+0.018) 0.578 (+0.016) 0.730 (-0.014) 0.465 (-0.008) 0.430 (+0.026) 0.428 (+0.033)
KGAREVION (LLaMA3, k = 2) 0.682 (-0.014) 0.638 (+0.022) 0.566 (-0.000) 0.736 (+0.013) 0.527 (+0.070) 0.463 (+0.049) 0.489 (+0.094)
KGAREVION (LLaMA3, k = 3) 0.696 (+0.018) 0.632 (+0.004) 0.572 (-0.018) 0.733 (-0.004) 0.489 (+0.020) 0.411 (-0.040) 0.429 (+0.018)
Improvement over best baseline +8.8% +18.0% +1.6% +2.2% +18.4% +14.9% +16.2%
KGAREVION (LLaMA3.1, w/o Review) 0.659 (-0.036) 0.526 (-0.020) 0.556 (-0.004) 0.726 (-0.010) 0.457 (+0.159) 0.435 (+0.136) 0.439 (+0.112)
KGAREVION (LLaMA3.1, w/o Revise) 0.695 (-0.021) 0.626 (+0.053) 0.556 (-0.012) 0.736 (-0.013) 0.489 (+0.097) 0.436 (+0.099) 0.451 (+0.099)
KGAREVION (LLaMA3.1, k = 1) 0.720 (-0.014) 0.644 (+0.026) 0.560 (-0.059) 0.757 (-0.006) 0.469 (-0.014) 0.454 (-0.003) 0.437 (+0.028)
KGAREVION (LLaMA3.1, k = 2) 0.704 (-0.016) 0.636 (+0.020) 0.572 (-0.084) 0.734 (-0.011) 0.469 (+0.073) 0.446 (-0.008) 0.432 (+0.090)
KGAREVION (LLaMA3.1, k = 3) 0.712 (-0.004) 0.639 (+0.019) 0.562 (-0.076) 0.748 (-0.001) 0.449 (-0.020) 0.470 (+0.059) 0.451 (+0.004)
Improvement over best baseline +2.4% +8.1% +0.0% +4.9% +16.7% +17.6% +11.6%

Table 3: The accuracy of KGAREVION and baselines on four gold standard and three newly created
datasets under open-ended reasoning settings. The value highlighted in Blue indicates the best
result among LLM-based reasoning models with a size smaller than 8B, including LLaMA3-8B,
while Red marks the top value among LLaMA3.1-8B and other types of baselines. ∆Acc. denotes
the difference in performance between the open-ended and multiple-choice reasoning settings.

across all datasets. The variance here denotes the difference in accuracy compared with that in the
multi-choice reasoning setting.

Results under QSS. Fig. 3b shows the accuracy obtained by pure LLM and KGAREVION with the
increase of medical concepts under open-ended reasoning setting. Compared to pure LLMs in the
open-ended reasoning setting, KGAREVION shows a significant improvement in handling complex
medical reasoning tasks involving more than 4 medical concepts and a comparable performance in
questions with less than 3 medical concepts.

Results under CSS. To evaluate the model’s ability to solve complex medical QA with differential
diagnosis, we compare KGAREVION and all baselines on newly created datasets, as shown in Table
3. KGAREVION still achieves the best performance in the open-ended reasoning setting. In ad-
dition, compared with the results in multi-choice reasoning setting, KGAREVION performs better.
On the one hand, such a result demonstrates the strong ability of KGAREVION in the open-ended
reasoning setting. On the other hand, it also indicates that these semantically candidates may affect
the reasoning process to a certain extent.
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4.3 ABLATION ANALYSES

Effect of the ‘Review’ action. As shown in Table 2, 3, and Fig. 4 (KGAREVION (w/o Review)
vs. KGAREVION (w/o Revise))), the Review action plays an important role in answering medical
questions under two settings, which improves the average accuracy across all datasets by 3.3% and
3%, respectively. Fig. 4 shows that the Review action has a more pronounced effect on the Med-
DDx dataset than the four gold-standard datasets under two settings, suggesting that its integration
enhances the model’s ability to tackle complex medical questions. Furthermore, the Review action
leads to greater accuracy improvements in the four gold-standard datasets under the open-ended rea-
soning setting compared to the multiple-choice reasoning setting. This highlights the significance of
verifying generated answers, particularly in an open-ended reasoning setup.
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Figure 4: The results of ablation studies across all
datasets under two settings.

Number of refinement rounds in the ‘Revise’
action. The Revise action is designed to en-
hance accuracy by correcting erroneous triplets
until they are verified as true by the Review ac-
tion. Tables 2 and 3, and Fig. 4 demonstrate its
positive impact on KGAREVION across both
settings. Specifically, Figure 4 indicates that
the Review action significantly improves per-
formance on MedDDx dataset, yielding aver-
age enhancements of 9% and 4% in accuracy
for both settings compared to questions in the
gold-standard datasets. Additionally, we in-
vestigate the impact of the number of revision
rounds across all datasets in both settings, as
shown in Table 2 and 3. The results indicate that KGAREVION can achieve optimal performance
with k = 1 on most of datasets in the multi-choice reasoning setting. However, it benefits from addi-
tional iterations when addressing complex questions, such as those in the MedDDx-Expert dataset.
In the open-ended reasoning setting, KGAREVION typically requires more iterations to arrive at the
correct answer.

4.4 VERSATILITY OF KGAREVION

KGAREVION can be used with different LLMs. KGAREVION is a versatile agent that can be
implemented with a variety of LLMs. We implement KGAREVION using three distinct models:
LLaMA3-8B, LLaMA3.1-8B, and GPT-4o. The averaged results across all datasets, as shown in
Fig. 5a, demonstrate the effectiveness of KGAREVION’s architecture, consistently improving the
performance of the backbone LLMs by 6%, 7%, and 2%, respectively.
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Figure 5: a) Performance of KGAREVION with
different backbone LLMs across all datasets. b)
Performance of KGAREVION with different KGs
used in the fine-tuning stage of the Review action.

KGAREVION can be used with different
medical KGs. The Review action in KGARE-
VION grounds the generated triplets using
KGs. To evaluate the impact of different KGs
(see details in Appendix B.5), we implement
KGAREVION with two comprehensive KGs
and assess its performance across all datasets,
as shown in Fig. 5b. The results show that
KGAREVION is not sensitive to the choice of
knowledge bases, highlighting its robustness
and generalizability, despite PrimeKG (Chan-
dak et al., 2023) being much larger than OGB-
biokg (Hu et al., 2020). This robustness arises
because KGs are used only in the Review action
to verify generated triplets rather than as a source for retrieving knowledge. This also explains why
KGAREVION outperforms KG-based RAG models, which heavily rely on the chosen KGs, whereas
KGAREVION uses comprehensive KGs simply to ensure that the generated triplets are aligned with
medical knowledge.
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4.5 SENSITIVITY ANALYSES

Recent studies have revealed that LLMs can be surprisingly sensitive to both how candidate answers
are ordered and indexed in multi-choice setups (Zheng et al., 2023; Pezeshkpour & Hruschka, 2023).
These studies found that LLMs are not robust multiple-choice selectors and exhibit order sensitivity,
favoring answers at the first position (Li et al., 2024). To investigate this issue, we examine how
the order and indexing of answers affect model performance. We evaluate KGAREVION using
LLaMA3-8B and LLaMA3.1-8B as the backbone and compare its performance with their LLM-
only counterparts across all datasets (details are provided in Appendix B.4.1). Fig. 6 illustrates the
changes in accuracy when the order or labels of the candidate answers are altered.

Ordering of candidate answers in multi-choice setups. Fig. 6a shows that pure LLMs are sen-
sitive to answer order, with an average accuracy shift of 8.4% for LLaMA3-8B and 16.0% for
LLaMA3.1-8B. In contrast, KGAREVION demonstrates significantly greater robustness to answer
order. This robustness is primarily due to KGAREVION’s ability to fairly evaluate each answer
using the Generate action, effectively mitigating the impact of answer order on model performance.
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Figure 6: |∆Accuracy| of LLMs and
KGAREVION when changing order or relabel-
ing index.

Indexing of candidate answers in multi-choice
setups. The accuracy of pure LLMs shows a sub-
stantial shift when relabeling answers from ABCD
to EFGH, as illustrated in Fig. 6b. Specifically,
the average accuracy shift is 8.1% for LLaMA3-
8B and 12.9% for LLaMA3.1-8B. In contrast, our
agent KGAREVION significantly improves the
stability of these LLMs, reducing the accuracy loss
to 2.59% and 3.86%, respectively. This finding
further highlights the robustness of KGAREVION.

4.6 CASE STUDIES

KGARevion

KGARevion

Question: Which diseases resemble or stem from 19q13.11 deletion 
syndrome and partial chromosome 19 deletions in terms of  shared 
symptoms or genetic links?

A: partial deletion of  chromosome 19
B: partial deletion of  the short arm of  chromosome 19
C: partial deletion of  the long arm of  chromosome 19
D: partial deletion of  the long arm of  chromosome 18

Generated Triplets are:
['19q13.11 deletion syndrome', 'linked to', 'partial chromosome 19 deletions'], 
['partial chromosome 19 deletions', 'associated with', 'diseases'],
['19q13.11 deletion syndrome', 'associated with', 'diseases']

Generate

● ['19q13.11 deletion syndrome', 'linked to', 'partial chromosome 19 deletions']
● Output: True

● ['partial chromosome 19 deletions', 'associated with', 'diseases'] 
● Output: False

● ['19q13.11 deletion syndrome', 'associated with', 'diseases']
● Output: True

Review

Revised Triplet is: 
['partial deletion of  the long arm of  chromosome 19', 'associated with', 
'19q13.11 deletion syndrome and partial chromosome 19 deletions']

Revise

● ['partial deletion of  the long arm of  chromosome 19', 'associated with', 
'19q13.11 deletion syndrome and partial chromosome 19 deletions']

● Output: True

Review

Answer

C: partial deletion of  the long arm of  chromosome 19

Question: Which diseases resemble or stem from 19q13.11 deletion 
syndrome and partial chromosome 19 deletions in terms of  shared 
symptoms or genetic links?

   Generated Triplets are:
● ['19q13.11 deletion syndrome', 'linked to', 'partial deletion of  chromosome 19']
● ['partial chromosome 19 deletions', 'associated with', 'physical disabilities']
● ['19q13.11 deletion syndrome', 'associated with', 'partial deletion of  

chromosome 19']
● ['partial deletion of  chromosome 19', 'associated with', 'diseases'], 
● ['19q13.11 deletion syndrome', 'shared symptoms with', 'diseases']
● ['partial deletion of  chromosome 19', 'shared symptoms with', 'diseases']
● ['19q13.11 deletion syndrome', 'genetic link with', 'partial deletion of  

chromosome 19'], 
● ['partial deletion of  chromosome 19', 'genetic link with', 'diseases'],

Generate

Review Revise

● ['19q13.11 deletion syndrome', 'linked to', 'partial deletion of  chromosome 19'], 
● ['partial deletion of  the long arm of  chromosome 19', 'linked to', 'diseases'], 
● ['19q13.11 deletion syndrome', 'associated with', 'partial deletion of  the long 

arm of  chromosome 19'], 
● ['partial deletion of  the long arm of  chromosome 19', 'associated with', 

'diseases'], 
● ['19q13.11 deletion syndrome', 'shared symptoms with', 'diseases'], 
● ['19q13.11 deletion syndrome', 'genetic link with', 'partial deletion of  

chromosome 19'], 
● ['partial deletion of  the long arm of  chromosome 19', 'genetic link with', 

'diseases'],

Answer

Answer: partial deletion of  the long arm of  chromosome 19

......

......

Figure 7: The reasoning process of KGAREVION
under multi-choice setting (Left) and open reason-
ing setting (Right).

Fig. 7 illustrates the reasoning process of
KGAREVION in both settings, using the same
input question. In both cases, KGAREVION
arrives at the correct answer, but the reasoning
processes differ. In the open reasoning setting,
KGAREVION requires more iterations to revise
triplets and guide the reasoning compared to the
multiple-choice setting. Additionally, the ver-
ified correct triplets provide a reasoning path
that helps explain the final answer, such as ’par-
tial deletion of the long arm of chromosome 19
→ associated with → 19q13.11 deletion syn-
drome and partial chromosome 19 deletions →
associated with → disease’.

5 CONCLUSION

Medical reasoning presents unique challenges
that require integrating multi-source, grounded,
and specialized domain knowledge. In this work, we introduced KGAREVION, a KG-based LLM
agent that addresses these challenges by combining the non-codified knowledge of LLMs with the
structured, codified knowledge of medical concepts stored in KGs. Through its adaptive reason-
ing and mechanisms for generating, verifying, and revising knowledge, KGAREVION can handle
complex medical QA. Experiments across multiple-choice and open-ended tasks, using a variety of
datasets—including challenging new benchmarks—demonstrate KGAREVION’s ability to system-
atically improve accuracy. By grounding LLM-generated knowledge in KGs, KGAREVION ensures
contextual relevance and reliability, making it a valuable tool for knowledge-intensive medical QA.
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A DATASETS

A.1 GOLD STANDARD MULTI-CHOICE MEDICAL QA DATASET

In this work, we use four well-known multi-choice medical QA datasets to evaluate the model per-
formance, including two medical examination QA datasets (MMLU-Med, MedQA-US) and two
biomedical research QA datasets (PubMedQA*, BioASQ-Y/N). These datasets are derived from
(Xiong et al., 2024a). The samples in these datasets are shown in Table 4.

Dataset Name Sample

MMLU-Med
Which of the following best describes the structure that collects urine in the
body?

A: Bladder B: Kidney C: Ureter D: Urethra

MedQA-US
A microbiologist is studying the emergence of a virulent strain of the virus. After
a detailed study of the virus and its life cycle, he proposes a theory: Initially,
a host cell is co-infected with 2 viruses from the same virus family. Within
the host cell, concomitant production of various genome segments from both
viruses occurs. Ultimately, the different genome segments from the viruses are
packaged into a unique and novel virus particle. The newly formed virus particle
is both stable and viable and is a new strain from the virus family that caused the
outbreak of infection. Which of the following viruses is capable of undergoing
the above-mentioned process?

A: Epstein-Barr virus B: Human immunodeficiency virus C: Rotavirus D: Vac-
cinia virus

PubMedQA*
Is anorectal endosonography valuable in dyschesia?

A: yes B: no C: maybe

BioASQ-Y/N
Can losartan reduce brain atrophy in Alzheimer’s disease?

A: yes B: no

Table 4: Examples of four widely used medical QA datasets

A.2 NEWLY CREATED MEDICAL QA DATASET – MEDDDX

MedDDx is a newly constructed dataset designed to test model performance on semantically com-
plex answers. The motivation behind creating this dataset is twofold:

• While large language models (LLMs) can perform QA tasks, they often rely heavily on
semantic dependencies, making it difficult for them to identify the correct answer among
semantically similar answer candidates;

• In real-world medical scenarios, researchers often focus on identifying subtle differences
between similar molecules, particularly in treatment or diagnostic settings. For instance,
proteins may share similar names but have significantly different structures and functions,
making it crucial to distinguish these differences to be able to provide accurate answers
(see Table 5 for an example).

Because of these reasons, we construct MedDDx, a multi-choice medical QA dataset that focuses on
answering semantically complex multi-choice QA. These questions are sourced from STaRK-Prime
(Wu et al., 2024c), which provides both the questions and their corresponding answers. We extract
questions with a single correct answer from the STaRK-Prime testing set and transform them into
the multi-choice format. To generate three strong alternative answer candidates, we use semantic
similarity to increase the difficulty, selecting the top three entities that have the highest semantic
similarity as the correct answer. The semantic embeddings used for this process are derived from
text-embedding-ada-002 model from OpenAI.
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Dataset Name Sample

Basic
Can you recommend medications effective against peptic ulcer disease that also
suppress Helicobacter pylori in the stomach?

A: Rebamipide B: Ecabet C: Bendazac D: Nepafenac

Intermediate
Can you recommend medications that treat both eosinophilic pneumonia and a
parasitic worm infection?

A: Thiabendazole B: Albendazole C: Diethylcarbamazine D: Triclabendazole

Expert
Which genes or proteins are expressed exclusively in the pericardium and not in
either the dorsal or ventral regions of the thalamus?

A: ADH1A B: ADH1C C: ADH4 D: ADH1B

Table 5: Examples of four widely used medical QA datasets.

Figure 8: The distribution of the standard deviation of semantic similarities between answer candi-
dates and the correct answer. A lower value indicates greater similarity among the answers.

The semantic similarity is calculated using cosine similarity. We also compute the standard devia-
tion of semantic similarity between the correct answer and the other three candidates. The density
distribution of these values is shown in Fig. 8. Based on this distribution, we divide the queries into
three complexity groups using quantile analysis: MedDDx-Expert (0-0.02), MedDDx-Intermediate
(0.02-0.04), and MedDDx-Basic (>0.04).

A.3 CONVERSION OF MULTI-CHOICE TYPE QUESTIONS TO DESCRIPTIVE TYPE

The conversion of multi-choice questions to descriptive ones is aimed to evaluate real-world medical
scenarios where open-ended inquiries are prevalent. To achieve this, we modify the question by
adding more descriptive terms, as shown in Table 6.

B IMPLEMENTATION DETAILS

B.1 EXPERIMENT ENVIRONMENTS

Hardware. All experiments are conducted on a machine equipped with 4 NVIDIA H100. We
use 1 NVIDIA H100 to implement baselines with small LLMs. In the fine-tuning stage, we use 4
NVIDIA H100 to fine-tune the review module.
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Multi-Choice type Open-ended type
Which of the following best describes the

structure that collects urine in the body?
What best describes the structure that col-

lects urine in the body?

A: Bladder B: Kidney C: Ureter D: Urethra

A microbiologist is studying the emergence
of a virulent strain of the virus. Af-
ter a detailed study of the virus and its
life cycle, he proposes a theory: Ini-
tially, a host cell is co-infected with 2
viruses from the same virus family. ......
Which of the following viruses is capable

of undergoing the above-mentioned process?

A microbiologist is studying the emergence
of a virulent strain of the virus. After a de-
tailed study of the virus and its life cycle, he
proposes a theory: Initially, a host cell is co-
infected with 2 viruses from the same virus
family. ...... Which virus is capable of un-
dergoing the above-mentioned process?

A: Epstein-Barr virus B: Human immunode-
ficiency virus C: Rotavirus D: Vaccinia virus

Table 6: Examples of conversation of multi-choice type question to descriptive type.

Software. We implement KGAREVION using Python 3.9.19, PyTorch 2.3.1, Transformers 4.43.1,
and Tokenizers 0.19.1. All LLMs adopted in this study are downloaded from Hugging Face, except
for OpenAI models.

B.2 FINE-TUNING DETAILS

During the fine-tuning stage, we first split PrimeKG Chandak et al. (2023) into two parts: a training
set and a testing set, in a ratio of 8:2. We use LoRA to fine-tune the LLMs on a single machine
equipped with 4 NVIDIA H100 GPUs for knowledge graph completion tasks in the Review action.

For hyperparameter tuning, we use grid search to identify the optimal parameter combinations by
evaluating the fine-tuned model’s performance on the knowledge graph completion task using the
testing set. Specifically, we focus on the parameter r in LoRA training and the batch size during the
fine-tuning stage. The values explored for r are 16, 32, 64, 128, while the tested batch sizes bz are
128, 256, 512, 1024. The best parameters identified are r = 32, bz = 256.

B.3 IMPLEMENTATION DETAILS OF BASELINE MODELS

All the results reported in this paper are averaged over multiple runs with different random seeds.
For consistency and reproducibility, we select three commonly used seeds: 42, 777, and 1234.

B.3.1 IMPLEMENTATION DETAILS OF BASELINE MODELS UNDER MULTI-CHOICE SETTING

LLM-based Reasoning Models. We evaluate these LLMs across all datasets in two distinct set-
tings: the traditional inference setting and the CoT inference setting, using the Transformers package
(v 4.31.1) with default parameters. The prompts used for evaluation are provided in D.1.

KG-based Models. Since the baseline models are trained in an end-to-end way, they cannot be
applied directly. To ensure fairness, we train these three models on a collective dataset called MedM-
CQA, which contains 4182 question-answering samples, and then evaluate them on all datasets used
in this study. In addition, we utilize PrimeKG as the knowledge base for all three methods to con-
struct subgraphs for each sample in both the training and evaluation stages. For knowledge graph
processing, we follow the same procedure as JointLK, converting each entity in the KG to its cor-
responding UMLS code and retrieving entities that match those in the question to construct the
subgraph for each question. In the case of Dragon, since it requires a pre-training stage, we first
complete its pre-training on the MedMCQA dataset and then directly infer the model on all datasets
adopted in this study. We set the epoch number for all three models as 20. All other parameters were
derived from the original publications.
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RAG-based Models. We implement the Self-RAG with Llama2-7B/13B with VLLM (v 0.4.3).
We set the temperature in SamplingParams as the default value as their original LLMs. MedRAG
is implemented using the original code repository. We adopt Llama2-70B as its backbone model,
’textbooks’ as corpus, and MedCPT as retriever. KG-RAG is implemented with the same KG as in
KGAREVION, which is PrimeKG and is utilized only during the inference stage. For KG-Rank, we
report the results using its original backbone model, which is Llama2-13B and adopt the MedCPT
as the ranking method due to limitations with the Cohere API.

B.3.2 IMPLEMENTATION DETAILS OF BASELINE MODELS UNDER
OPEN-ENDED REASONING SETTING

To test baseline models under the open-ended reasoning setting, we add a new module for both
LLM-based reasoning models and RAG-based models. In terms of KG-based models, they could
not be deployed under the open-ended reasoning setting due to their model architectures, as shown
in D.2.

For each model in the other two groups, we first get a response to the input descriptive query and
then adopt the same LLM as their original design to match the response to the content of the correct
answer without considering the input question.

B.4 IMPLEMENTATION DETAILS OF SENSITIVITY ANALYSIS

B.4.1 EFFECT OF ANSWER ORDER/INDEX

To assess the sensitivity of each model to the answers’ order, we swap the positions of two options.
For datasets with four options, the order is changed from ABCD to BCAD. For three-option datasets,
the order is adjusted from ABC to CAB, and for two-option datasets, it is reversed from AB to BA. It
is important to note that we alter the order along with the corresponding content, not just the answer
labels. To test the model sensitivity to the answers’ index, we relabel the answer indices from ABCD
to EFGH. The question obtained after changing the order or the index is presented in Table 7.

Sample

Original
Which of the following best describes the structure that collects urine in the body?

A: Bladder B: Kidney C: Ureter D: Urethra

Changing Order
Which of the following best describes the structure that collects urine in the body?

B: Kidney C: Ureter A: Bladder D: Urethra

Relabeling Index
Which of the following best describes the structure that collects urine in the body?

E: Bladder F: Kidney G: Ureter H: Urethra

Table 7: Examples of four widely used medical QA datasets.

B.5 IMPLEMENTATION DETAILS OF ADAPTABILITY ANALYSIS

To show the flexibility of KGAREVION, we further conduct adaptability analysis by implementing
the model with different backbones and KGs. Overall, in this work, we test the KGAREVION with
two KGs (i.e., PrimeKG and OGB-biokg). Their details are as follows:

PrimeKG (Chandak et al., 2023) is a precision medicine-oriented knowledge graph that provides a
holistic view of diseases. PrimeKG integrates 20 high-quality resources to describe 17,080 diseases
with 4,050,249 relationships representing ten major biological scales, including disease-associated
protein perturbations, biological processes and pathways, anatomical and phenotypic scale, and the
entire range of approved and experimental drugs with their therapeutic action, considerably expand-
ing previous efforts in disease-rooted knowledge graphs.

The OGB-biokg (Hu et al., 2020) dataset contains 5 types of entities: diseases (10,687 nodes),
proteins (17,499), drugs (10,533 nodes), side effects (9,969 nodes), and protein functions (45,085
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nodes). There are 51 types of directed relations connecting two types of entities, including 38 kinds
of drug-drug interactions, 8 kinds of protein-protein interaction, as well as drug-protein, drug-side
effect, and function-function relations.

C KGAREVION

C.1 IMPLEMENTATION DETAILS IN REVISE ACTION

The Revise action is carried out by providing an instruction to an unfine-tuned LLM, such as
LLaMA3.1-8B, instead of retraining the model. The instruction directs the LLM to correct the
”False” triplet identified by the Review action by modifying either the head or tail entity.

• Input of False Triplets The Revise action begins by receiving False triplets, such as
(HSPA1A, interactions, DHDDS), which were flagged as False by the Review action.

• Instruction to the LLM The system then provides an instruction to the LLM, telling it that
the given triplet is incorrect. The instruction asks the LLM to revise the triplet, replacing
either the head or tail entity, and to generate a corrected triplet that is relevant to the input
query. For example, the instruction could be: ”The following triplet is incorrect: (HSPA1A,
interactions, DHDDS). Please revise it to a correct triplet related to the input query.” The
details of Instruction is available in D.3

• Revised Triplet Generation Simultaneously, the LLM is prompted to output the revised
triplet in a specified format, such as a JSON structure: {’Revised Triplets’: (HSPA1B,
interactions, DHDDS)}.

• Review of Revised Triplet Once the revised triplet is generated, KGARevion sends it to
the Review action for validation. The Review action checks the correctness of the newly
generated triplet.

• Iterative Revision ProcessIf the revised triplet is identified as True by the Review action,
it is passed on to the Answer action for final output. If the revised triplet is still identified as
False, it is sent back to the Revise action for further modification. This process repeats until
either a True triplet is identified or the maximum number of revision rounds is reached.

C.2 IMPLEMENTATION DETAILS IN ANSWER ACTION

The Answer action is performed by prompting an unfine-tuned LLM, such as LLaMA3.1-8B, instead
of retraining the model. This approach mirrors the Revise action, allowing the system to leverage
pre-trained models without the need for additional training.

• Input of Verified Triplets The input to the Answer action consists of all triplets that have
been verified as True by the Review actions.

• Instruction to the LLM Once the verified triplets are received, KGARevion sends an
instruction to the LLM. This instruction directs the LLM to generate the final answer based
on the provided triplets.

• Final Answer Generation The LLM receives all True triplets and outputs the final answer
based on those verified True triplets.

D PROMPTS

D.1 PROMPT TEMPLATE FOR EVALUATING BASELINE MODELS UNDER MULTI-CHOICE
REASONING SETTING

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under Review as a conference paper

The following is a multiple-choice medical question. Please select and provide the correct
answer from options ‘A’, ‘B’, ‘C’ or ‘D’.

Question: {question}
Answer:

Prompts for Evaluating LLMs

The following is a multiple-choice medical question. Let’s think step by step. Please select and
provide the correct answer from options ‘A’, ‘B’, ‘C’ or ‘D’.

Question: {question}
Answer:

Prompts for Evaluating LLMs with CoT

D.2 PROMPT TEMPLATE FOR EVALUATING BASELINE MODELS UNDER OPEN REASONING
SETTING

The following are medical questions. Please generate a response for input question.

Question: {question}
Answer:

Prompts for Evaluating LLMs

The following are medical questions. Let’s think step by step. Please generate a response for
input question.

Question: {question}
Answer:

Prompts for Evaluating LLMs with CoT

Given a context, please select the most match answer from options by using ’A’, ’B’, ’C’, and
’D’.

Context: {context}
Options: {options}
Answer:

Prompts for Evaluating LLMs

D.3 PROMPT TEMPLATE IN KGAREVION

The Generate action is implemented with two prompts. One is responsible for identifying medical
concepts involved in question stem, the other is for generating triplets.
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### Instruction:

Given the following multiple-choice question, extract all relevant medical entities contained
within the question stem. Identify and extract all medical entities, such as diseases, proteins,
genes, drugs, phenotypes, anatomical regions, treatments, or other relevant medical entities.
Ensure that the extracted entities are specific and medically relevant. If no medical entities
are found in a particular part, return an empty list for that section. Only return the extracted
entities in JSON format with the key ”medical terminologies” and the value is a list of extracted
entities.

### Input:

Question: {question}
### Response:

Prompts for Generate Action

### Instruction:

Given the following question stem, medical terminologies, and options, generate a set of re-
lated undirected triplets. Each triplet should consist of a head entity, a relation, and a tail
entity. The relations should describe meaningful interactions or associations between the en-
tities, particularly in a medical or biomedical context. Use the query stem and the medical
entities contained each option to extract triplets that are relevant to the query and can answer
the query correctly. Each triplet should be in the format: (Head Entity, Relationship, Tail En-
tity). Since the triplets are undirected, the order of Head Entity and Tail Entity does not imply
any directional relationship between them. The relationship should be one of the following:
[’protein protein’, ’carrier’, ’enzyme’, ’target’, ’transporter’, ’contraindication’, ’indication’,
’off-label use’, ’synergistic interaction’, ’associated with’, ’parentchild’, ’phenotype absent’,
’phenotype present’, ’side effect’, ’interacts with’, ’linked to’, ’expression present’, ’expres-
sion absent’]. Ensure that each entity in the triplet is specific and concise, such as diseases,
proteins, conditions, symptoms, drugs, treatments, anatomical parts, or other relevant medical
entities.

Generate 1-3 triplets for each option, focusing on the ones most relevant to answering the query.

Only return the generated triplets in a structured JSON format with the key as ”Triplets” and
the value as a list of triplets. The format should be: ”Triplets”: [(Head Entity, Relationship,
Tail Entity), (Head Entity, Relationship, Tail Entity)]

### Input:

Question: {query stem}
Medical Terminologies: {medical terminologies}
Options: {option}
### Response:

Prompts for Generate Action
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Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

### Instruction:

Given a triple from a knowledge graph. Each triple consists of a head entity, a relation, and
a tail entity. Taking (PHYHIP, protein protein, KIF15) as an example, it means that protein
PHYHIP has an interaction with protein KIF15. Please determine the correctness of the triple
and response True or False. Please directly output ’True’ or ’False’.

### Input:

{triplet}
### Response:

Prompts for Review Action

### Instruction:

Given the following triplet consisting of a head entity, relation, and tail entity, please review
and revise the triplet to ensure it is correct and helpful for answering given question. The
revision should focus on correcting the head entity, relation, or tail entity as needed to make
the triplet accurate and relevant. The triplet should follow the format (head entity, relation, tail
entity). Ensure that the revised triplet is factually accurate and contextually appropriate. The
relation should clearly define the relationship between the head entity and the tail entity. If no
changes are necessary, return the original triplet.

Only return the revised triplet in JSON format with the key ’Revised Triplets’ and the value as
the corrected triplet. The format should be: ”Revised Triplets”: [(Head Entity, Relationship,
Tail Entity)]

### Input:

Triplets: t

Questions: q

### Response:

Prompts for Revise Action
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E TABLES

E.1 DESCRIPTION TEMPLATE

Relation Description
protein protein Protein {A} interacts with protein {B}, indicating that the two proteins directly

or indirectly associate with each other to perform a biological function.
carrier {A} acts as a carrier for {B}, facilitating its transport or delivery to specific

locations within the body or within a cell
enzyme {A} functions as an enzyme that catalyzes a reaction involving {B}, converting

it into a different molecule or modifying its structure
target {A} serves as a target for {B}, meaning that {B} binds to or interacts with {A}

to exert its biological effect.
transporter {A} is a transporter that facilitates the movement of {B} across cellular mem-

branes or within different compartments of the body.
contraindication The interaction between {A} and {B} is contraindicated, meaning that the pres-

ence of one molecule may have adverse effects or reduce the efficacy of the other
indication {A} is indicated for the treatment or management of a condition associated with

{B}, suggesting that {A} has a therapeutic role related to {B}
off-label use {A} is used off-label in relation to {B}, meaning it is utilized in a manner not

specifically approved but based on clinical judgment.
synergistic interaction {A} and {B} interact synergistically, where their combined effect is greater

than the sum of their individual effects
associated with {A} is associated with {B}, indicating a relationship or correlation between the

two, often in the context of disease or biological processes
parent-child {A} is related to {B} in a parent-child relationship, where {A} gives rise to or

influences the formation of {B}
phenotype absent The interaction between {A} and {B} results in the absence of a specific phe-

notype, indicating that the normal trait is not expressed
phenotype present The interaction between {A} and {B} results in the presence of a specific phe-

notype, indicating that a particular trait is expressed
side effect The interaction between {A} and {B} can cause a side effect, where the pres-

ence of one molecule leads to unintended and possibly adverse effects
interacts with {A} interacts with {B}, indicating a general interaction that may involve bind-

ing, modulation, or other forms of molecular communication.
linked to {A} is linked to {B}, suggesting a connection or association between the two

molecules, often in a biological or pathological context.
expression present {A} is expressed in the presence of {B}, indicating that the existence or activity

of {B} leads to or correlates with the expression of {A}
expression absent {A} is not expressed in the presence of {B}, indicating that the existence or

activity of {B} suppresses or does not correlate with the expression of {A}

Table 8: The description templates
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E.2 NOTATIONS

Variable Description

Q A set of medical queries
q One question stem in Q
C A set of answer candidates for one question stem
a Correct answer in C for the question q
P A large language model
G Knowledge graph
h A head entity in one triplet
r A relationship in one triplet
t A tail entity in one triplet
T A set of triplets generated in the Generation action
ai One answer candidate in C
M A set of medical concepts in q
eh Pre-trained embeddings of h
er Pre-trained embeddings of r
et Pre-trained embeddings of t
d Dimension of pre-trained embeddings
f The fine-tuned model used in Review action
b Bool value that determining the correctness of triplet
D The description dictionary for relationship r
|l| The max length of description tokens
dL The dimension of token embeddings in LLM
X Token embedding matrix with the shape of |l| × dp obtained from P
g A linear layer to map the dimension of pre-trained embeddings d to that of token embeddings dp

V The triplet embedding matrix
Z Aligned triplet embedding matrix

σ(·) The Softmax function
φ(·) The layer normalization function

W1 and W2 Trainable parameters in the two layer forward neural network
dh The dimension of hidden layers in the two layer forward neural network
s An instruction to the LLM
V True triplet set determined by Review action
F False triplet set determined by Review action
k Max round of iterative review and revise actions
y Predicted answer from the Answer action

Table 9: Additional notation.
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