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ABSTRACT

This paper studies the problem of zero-shot text-attributed graph learning, which
aims to generate high-quality node representations in unseen text-attributed graphs.
Recent approaches usually utilize large language models (LLMs) instead of graph
neural networks (GNNs) to extract semantics due to their strong generalization
ability, which could neglect the intrinsic geometric structure. Towards this end,
we propose a novel approach named Prototypical Mutual Prompting Enhancement
(PURE) for zero-shot text-attributed graph learning. The core of our PURE is to
generate high-quality prompts using prototypical learning to combine the advan-
tages of both language models and graph models. In particular, we first utilize
dual graph pre-training from both instance and informativeness perspectives to
generate a generalizable GNN. Then, we incorporate the frozen language and
graph models into a mutual prompt learning framework. On the one hand, we
extract node tokens with geometric relationships using the graph model, which
will be sent to multiple prototypical projections to enhance the understanding of
the language model. On the other hand, we extract graph information and task
descriptions using the language model, which serves as instruction for the graph
models. Extensive experiments on both node classification and link predictions
validate the effectiveness of PURE compared to competing baselines.

1 INTRODUCTION

Graph serves as a versatile data structure for effectively capturing intricate relationships and dependen-
cies. A notable variation is the Text-Attributed Graph (TAG), where textual information, such as node
or edge descriptions, is incorporated into the graph to enhance its data representation. This integration
makes TAGs particularly valuable in various domains, including social network analysis (Backstrom
& Leskovec, 2011) and recommender systems (Wang et al., 2020). Graph models, especially Graph
Neural Networks (GNNs), have achieved remarkable performance and become a de facto approach
for graph-based machine learning. Despite great success, these graph models are usually trained or
fine-tuned for a particular dataset or task, struggling to maintain consistent performance when applied
to new datasets or tasks (Ju et al., 2023; Li et al., 2024).

Fortunately, the emergence of Large Language Models (LLMs) has significantly advanced the zero-
shot capabilities of machine learning models. By leveraging vast amounts of encoded pre-existing
knowledge, LLMs can effectively generalize to new datasets or tasks, making them highly adaptable
across various fields. For instance, in the natural language processing (NLP) field, models like
GPT-4 (Achiam et al., 2023) and Llama (Touvron et al., 2023) unify all the tasks as a generative
paradigm, allowing them to handle tasks they have never seen before. In the computer vision (CV)
field, models such as CLIP (Radford et al., 2021) employ a retrieval-based approach, mapping images
and textual descriptions into a shared embedding space to enable zero-shot recognition of new images
by comparing their similarity to textual labels. However, since LLMs are designed for sequential
text modeling, directly applying them to graph-related tasks presents new challenges, particularly in
encoding the structural information of graphs.

In recent years, leveraging the strength of LLMs for graph models has sparked growing interest. LLM
as Enhancer (Yu et al., 2023; Chen et al., 2024c; Liu et al., 2024) leverages language models instead
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of traditional shallow embedding methods like Bag of Words (BoW) to enrich the graph feature
space. These approaches have shown promising performance since their effectiveness in capturing
semantic nuances, but they are still constrained by their reliance on GNNs for final predictions. LLM
as Aligner (Wen & Fang, 2023) further maps both graph and corresponding text modalities into a
shared embedding space, focusing on transferring pre-trained models within the same graph. In
contrast, LLM as Predictor (Guo et al., 2023; Fatemi et al., 2023) directly translates graph data into
plain texts suitable for LLMs and uses them for specific predictions, leveraging zero-shot capabilities
of LLM for graph tasks.

Despite the promising performance of these methods, formalizing a framework for zero-shot graph
learning remains challenging since two questions are required to tackle: ❶ How to leverage the
GNN to generate the transferable representation of the intrinsic graph structure? Graphs inherently
contain complex structural dependencies that traditional LLMs may not capture effectively. The
GNN model needs to be fine-tuned to generate strong expressive embeddings that can be generalized
across tasks and domains. ❷ How to integrate the transferable representation into LLM that works
effectively for zero-shot graph learning? Unlike structured graph models, LLMs operate on sequential
text-based inputs. This presents a challenge in aligning graph-generated embeddings, which capture
the structural dependencies of the graph, with the LLM model to ensure that the graph’s information
is effectively interpreted and utilized by the LLM for zero-shot learning tasks.

Towards this end, in this paper, we propose a novel approach named Prototypical MUtual PRompting
Enhancement (termed PURE), which combines the advantages of both GNNs and LLMs to generate
high-quality prompts for zero-shot text-attributed graph learning. Specifically, we first perform the
dual graph pre-training, which considers two perspectives. The instance view focuses on learning
node representations based on immediate neighbors to capture the structural relationships in the graph.
The informativeness view emphasizes identifying and leveraging the parts most relevant to the LLM
token embeddings for alignment between the two models. Then, we integrate the frozen graph and
language models into a mutual prompt learning framework. On the one hand, the graph model extracts
node tokens with geometric relationships, which are then passed through prototypical projections
to transform the graph into a more comprehensible format to enhance the LLM model. On the
other hand, the LLM processes graph-related information and task descriptions, providing high-level
instructions as the prompt to enhance the graph model. This mutual prompting not only improves the
interaction between models but also boosts the overall zero-shot graph learning performance.

The contribution of the paper can be summarized as follows: (1) New Connection. We pioneer a
new perspective to utilize prompt learning to combine the advantages of both language models and
graph models for zero-shot text-attributed graph learning. (2) Novel Methodology. Our PURE not
only leverages graph models to extract geometric relationships for language model prompting, but
also generates text-based prompting using prototypical projections for graph model enhancement.
(3) Extensive Experiments. Extensive experiments on both node classification and link predictions
validate the superiority of our proposed PURE. Our code is available at https://anonymous.
4open.science/r/PURE.

2 RELATED WORK

2.1 PROMPT LEARNING FOR GNNS

Prompt learning for GNNs has evolved from simple feature augmentation to increasingly sophis-
ticated designs. Early works introduced learnable prompt tokens to node features for pre-training
alignment (Fang et al., 2022; Shirkavand & Huang, 2023), later extended with multiple prompt
tokens for greater flexibility (Fang et al., 2024). Subsequent approaches diversified the prompt
space: view-specific prompts (Gong et al., 2023), subgraph-based or task-specific prompts (Sun
et al., 2023; Huang et al., 2024), and edge-level prompt tuning such as EdgePrompt, which learns
prompt vectors for edges to enhance message passing (Fu et al., 2025). In parallel, benchmark efforts
like ProG standardize evaluation of diverse prompting methods (Zi et al., 2024), while theoretical
analyses explain prompting’s ability to approximate graph transformations (Wang et al., 2024b).
Specialized frameworks target particular settings, including heterogeneous graphs (HetGPT (Ma et al.,
2024)), dual-task prompting during pre-training (ULTRA-DP (Chen et al., 2023)), and self-adaptive
prompts leveraging pre-training components (Self-Pro (Gong et al., 2024)). However, GNNs’ limited
parameter capacity compared to LLMs still restricts their ability to fully exploit prompt learning. Our
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work addresses this by constructing GNN prompts through interaction with LLMs, enabling GNNs to
benefit from the capacity of LLMs.

2.2 GRAPH ALIGNMENT WITH LLMS

Integrating LLMs with graph-structured data combines their generalization and relational reasoning
abilities. A common approach converts graphs into textual representations for LLM input (Guo et al.,
2023; Chen et al., 2024b; Liu et al., 2024), but often loses structural properties. Recent works (Tang
et al., 2024a;b; Chai et al., 2023; Fatemi et al., 2023) instead use GNNs as structural encoders to
align graph data with LLMs. Molecular graph–text integration follows a similar trend, with MolCA
and InstructMol bridging molecular structures and natural language via contrastive and multi-task
pretraining (Liu et al., 2023; Cao et al., 2023). Recently, other approaches have enhanced GNN–LLM
synergy by injecting language semantics to improve structural representations and by incorporating
structured knowledge directly into LLMs via GNNs (Li et al., 2025a;b). Beyond alignment, large
models can also act as controllers for automated GNN design. LLM4GNAS (Gao et al., 2025)
integrates an LLM into the Graph Neural Architecture Search process to automate feature engineering
and hyperparameter optimization. Despite these advances, most methods rely on unidirectional
alignment, limiting integration and joint optimization. We propose a mutual prompting framework
enabling bidirectional exchange between GNNs and LLMs, enhancing alignment and generalization.

3 NOTATIONS & PROBLEM DEFINITION

Notations. Let a graph be denoted as G = (V, E ,A,X), where V is the node set with N nodes and
E ⊆ V × V is the edge set. We use the adjacency matrix A ∈ {0, 1}N×N to describe the structural
information of the graph, where Auv = 1 if (u, v) ∈ E , otherwise Auv = 0. The node feature
matrix is given by X ∈ RN×F , where each row xv ∈ RF corresponds to the F -dimensional vector
containing attribute information of node v. For the node classification task, each node v is assigned a
label yv ∈ Y .

Graph Neural Networks. Graph Neural Networks (GNNs) have become a foundational framework
for learning effective representations of graph-structured data. By employing a message-passing
paradigm, GNNs iteratively update node representations by embedding both the graph topology
and node features. Specifically, at the l-th layer, each node v ∈ V aggregates information from its
neighbors Nv and combines it with its previous-layer embedding h

(l−1)
v for update:

z(l)
v = C(l)

(
z(l−1)
v ,A(l)

({
z(l−1)
u

}
u∈Nv

))
, (1)

where A(l) and C(l) are the two functions that aggregate and combine embedding from the
neighborhood. By iteratively stacking L message-passing layers, the node representation can be
Z = {z(L)

1 , . . . , z
(L)
N } ∈ RN×FG , where FG denotes the representation dimension.

Zero-Shot Graph Learning. Recently, zero-shot learning has been developed in areas like image and
text data, enabling models to generalize to new classes or tasks without relying on labeled data from
the target domain. In this work, we aim to study zero-shot learning for graph data, with a particular
emphasis on cross-dataset and cross-task scenarios. For cross-dataset zero-shot learning, we train a
classification model on a fully labeled source graph Gs and test it on a completely different target
graph Gt, where Gs ∩ Gt = ∅ and Ys ∩ Yt = ∅. For cross-task zero-shot learning, we directly apply
the model trained on the node classification task to the link prediction task without any fine-tuning.

4 THE PROPOSED PURE

4.1 FRAMEWORK OVERVIEW

The overview of our proposed zero-shot graph learning framework is illustrated in Figure 1. By pre-
training the GNN model and aligning it with the LLM through mutual prompting, the PURE is capable
of exhibiting substantial zero-shot learning abilities in both cross-dataset and cross-task scenarios.
Our PURE framework consists of two phases. The GNN model is first pre-trained with the LLM’s
token embeddings from both instance and informativeness perspectives to capture graph structural
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Figure 1: The overall framework of the proposed PURE. The framework consists of two phases: (1)
Dual graph pre-training captures instance-level structural relationships and informativeness-aware
semantic alignment with LLM token embeddings. (2) Mutual prompt learning enables iterative
enhancement where GNN-derived tokens guide LLM understanding through prototypical projections,
while LLM-generated instructions enhance GNN performance via specialized prompt experts.

relationships while identifying and leveraging the parts relevant to the LLM token embeddings for
alignment between the two models (see Section 4.2). Then, we align the GNN with the LLM in an
iterative mutual prompt learning manner to effectively transfer knowledge between the two models.
On the one hand, we extract node tokens with geometric relationships and pass these tokens through
prototypical projections, which transform the graph into a more comprehensible format to enhance the
LLM model. On the other hand, the LLM processes graph-related information and task descriptions,
generating high-level instructions as prompts to further enhance the graph model (see Section 4.3).

4.2 DUAL GRAPH PRE-TRAINING FOR GENERALIZABLE GNNS

In this part, we introduce a graph pre-training strategy to capture the transferable node representations
suitable for alignment with LLMs. In general, there are several efforts proposed to construct self-
supervised pretext tasks for pre-training GNNs, especially contrastive methods (Zhu et al., 2020),
which offer broader applicability and overlapping task sub-spaces for better knowledge transfer.

Instance-aware Pre-training. Given the training graph, we adopt the Removing Edges (RE) and
Masking Node Features (MF) strategies to generate two different graph views. For the RE strategy,
we generate a random masking matrix R̃ ∈ {0, 1}N×N , with each entry sampled from a Bernoulli
distribution R̃ij ∼ B(1− pr) to mask edges with probability pr, which can be computed as:

Ã = A ◦ R̃. (2)

where ◦ denotes the Hadamard product. Similarly, for the MF strategy, we generate a random masking
vector m̃ ∈ RF from another Bernoulli distribution m̃i ∼ B(1 − pm) with probability pm. The
masked node feature X̃ can be:

X̃ = [x1 ◦ m̃; · · · ;xN ◦ m̃]T. (3)

The two views of the graph can be generated as G̃1 = (Ã1, X̃1) and G̃2 = (Ã2, X̃2). Then, we
encode the two graph views to get the node embeddings, denoted as:

Z∗ = fGNN(Ã
∗, X̃∗), ∗ ∈ {1, 2}, (4)

where Z∗ = {z∗
1 , . . . ,z

∗
N} ∈ RN×FG . We further employ a contrastive objective to distinguish the

embeddings of the same node in two different views from those of other nodes:

ℓ(z1
v , z

2
v) = log

( ϕ(z1
v , z

2
v)∑N

u=1ϕ(z
1
v , z

1
u)+

∑
u̸=vϕ(z

1
v , z

2
u)

)
, (5)
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where ϕ(zu, zv) = exp(zu · zv/τ) with temperature parameter τ . The objective from the instance
perspective is:

Lins =
1

2N

N∑
v=1

[ℓ(z1
v , z

2
v) + ℓ(z2

v , z
1
v)]. (6)

Informativeness-aware Pre-training. Since a notable discrepancy exists between the node represen-
tations and the semantic space of LLMs, we introduce informativeness-aware contrastive learning
with token embeddings to bridge this gap. Specifically, we employ principal component analysis
(PCA) to extract the top P principal components C ∈ RP×FL from the token embeddings of LLMs,
where FL is the token embedding dimension. These components represent the directions that maxi-
mize variance in token embeddings and serve as coordinate axes for aligning node representations
with the textual embedding space. We then map the node representations to the space as:

Z∗ = Z∗ ×CT. (7)

In practice, we set FG = FL to facilitate mapping. And we break the independence between nodes to
conduct the informativeness-aware contrastive learning:

Linfo =
1

FL

FL∑
i=1

ϕ(u1
i ,u

2
i )∑FL

j=1[ϕ(u
1
i ,u

1
j ) + ϕ(u1

i ,u
2
j )]

, (8)

where (Z∗)T = {u∗
1, . . . ,u

∗
P } ∈ RP×N . The final objective for token-aligned graph pre-training is:

L =
1

2
(Lins + Linfo) (9)

4.3 PROTOTYPICAL PROMPT LEARNING FOR MUTUAL ENHANCEMENT

The advent of LLMs has provided a new approach for graph learning. However, existing re-
search (Huang et al., 2023) suggests that LLMs alone are insufficient for fully comprehending
the graph data. Thus, given the pre-trained GNN, we aim to learn transferable prompts that enable
effective mutual alignment between the GNN and LLM models.

Geometric Prompting for Language Model. To enable the LLM to capture graph data more
effectively and enhance its performance in zero-shot graph learning tasks, we introduce a new graph-
guided prompt tuning that includes specially designed instructions. Here, the instruction can be
divided into two parts. We first provide the context to describe the graph information and then
introduce the goal of the task. For the graph information, the encoded graph representations from the
pre-trained GNN are utilized to construct the soft prompt. We further add the node’s text attribute to
enhance the LLMs’ understanding. The graph information in the instructions can be presented as
follows: ⟨graph⟩ is/are the representation(s) of a paper/two papers/a paper set with the following
information: Title: First paper:{title1} . . . \n, where ⟨graph⟩ and {title1} denote the placeholders for
both graph representation and text description inputs. Given the intricate nature of graphs and their
diverse semantics, relying on a single prompt instruction may fail to cover the entire prompt space,
thereby limiting the model’s ability to capture the full spectrum of information on the targeted task. To
address this, we introduce a set of GNN prototypes to characterize the entire prompt space, dividing it
into several homogeneous regions, with each region being handled by a specialized prototype. Given
the dual graph pre-training, the linear projector is sufficient to capture the mapping relationship:

Hv = {h1
v, . . . ,h

K
v }, hk

v = fG,k
Linear(zv), (10)

where Hv ∈ RK×FL with K distinct space, hk
v ∈ RFL is the projected k-th node embedding for the

LLM, fG,k
Linear(·) denote the k-th linear project function. In this way, we replace ⟨graph⟩ with K token

embeddings as the soft prompt for the LLM, and the output token can be seen as diverse experts for
the prompt of the GNN model. For the task descriptions, we directly add the question and alternative
answers for the task to construct the instruction. Take the node classification task as an example. The
instruction can be formulated as follows: Which category does this paper belong to? Please directly
choose the most likely answer from the following categories: {ans}, where {ans} here represents all
the alternative answers and varies across datasets.

5
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Language Prompting for Graph Model. Since the LLM encodes both graph information and task
descriptions, its semantic richness can be utilized to guide the generation of graph prompts that
emphasize class-specific representations. Specifically, let hk ∈ RFL represent the k-th output token
corresponding to ⟨graph⟩ in the LLM. We apply an additional projector to map hk to the k-th soft
graph prompt pk, which can be defined as:

P = {p1, . . . ,pK}, pk = fL1,k
Linear(hk), (11)

where P ∈ RK×FL , fL1

Linear(·) denote the k-th linear projectors. The output tokens can be seen as
diverse experts for the prompt of the GNN model. We then introduce a gating mechanism with a
router model that decides how the input should be directed to the appropriate soft prompt, depending
on the relevant semantic context. The prototypical weight of the k-th prompt can be:

wk(zv) =
[
Softmax(fR

Linear(zv) ◦ (1 + δ))
]
k
, (12)

where δ ∼ N (0, 1) denotes the scaled Gaussian noise to encourage exploration of inputs over diverse
prompts. The final soft prompt is utilized as the weighted combination of the prompt set, which is
defined as follows:

x′
v = [xv;w

TP ],xv,p = fL2

Linear(x
′
v), (13)

where w ∈ RK = {w1, . . . , wK}, [x;y] here denotes the concatenation operation between x and
y. Note that through K prompt experts, we can allow each expert to focus on and specialize in a
specific region to enable the model’s generalization. xv,p denote the prompted node feature. Note
that through K prompt experts, we can allow each expert to focus on and specialize in a specific
region to enable the model’s generalization.

Regularization to Mitigate Collapse. To prevent a trivial solution where only one group of experts
is consistently selected, we introduce two additional regularizations. For the geometric prompting in
the LLM model, we enforce that the projected K token embeddings are independent of each other by
introducing a constraint of orthogonality between each token. The independent loss can be:

Lind =
1

N

∑
v∈V

|HvH
T
v − I|, (14)

where | · | is the L1 norm and I denotes the identify matrix. For language prompting in the GNN
model, the importance loss of each expert can be:

Imp(w)k =
∑
v∈V

(wk(zv)), Limp = CV(Imp(w))2, (15)

where CV(·) represents the coefficient of variation. Here the importance loss measures the variation
of routing probabilities and enforces each expert to be similarly important.

4.4 MODEL TRAINING AND EVALUATION

To facilitate the iterative mutual prompt tuning between the GNN and LLM models, we first utilize
the embedding layer of Vicuna-7B-v1.5 (Zheng et al., 2023) to encode raw text as node features,
followed by dual graph contrastive learning from both instance and informativeness perspectives
to pre-train the GNN model. During each time of mutual alignment tuning, we freeze the GNN
model, leverage the prompted node feature matrix Xp, and train the corresponding linear projectors,
along with a prompt router, using the dual graph pre-training loss (Equation 9) and the relevant
regularization (Equation 14) for language prompting in the GNN model. Then, we in turn freeze the
LLM model and directly train the linear projector on the downstream-specific task within the same
dataset, as well as the corresponding regularization (Equation 15) for the geometric prompting in
the LLM model. We denote the number of iterative mutual alignment tuning times as I . Finally, we
evaluate the model performance on unseen datasets and tasks.

4.5 THEORETICAL ANALYSIS OF PURE

Here, we provide a theoretical analysis of PURE, demonstrating that the lack of a mixture of prompting
expert strategies can limit the model’s ability to capture task complexity, introducing bias in the
promoted node feature matrix Xp.
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Table 1: Cross-dataset zero-shot accuracy on citation and e-commerce datasets (bold highlights the
best result across all methods, while underline highlights the second-best results).

Model Pubmed Cora Children History Photo Sports
MLP 0.323± 0.027 0.021± 0.006 0.029± 0.037 0.080± 0.041 0.110± 0.070 0.042± 0.021

GNN as Predictor
GCN 0.288± 0.092 0.017± 0.004 0.030± 0.018 0.063± 0.042 0.103± 0.047 0.042± 0.025
GraphSAGE 0.316± 0.058 0.014± 0.007 0.008± 0.007 0.195± 0.206 0.056± 0.055 0.051± 0.015
GAT 0.343± 0.064 0.016± 0.004 0.086± 0.084 0.172± 0.098 0.050± 0.027 0.142± 0.138
DGI 0.329± 0.103 0.026± 0.009 0.082± 0.035 0.218± 0.168 0.224± 0.127 0.049± 0.017
GKD 0.399± 0.033 0.042± 0.008 0.202± 0.064 0.339± 0.138 0.166± 0.086 0.208± 0.077
GLNN 0.390± 0.011 0.031± 0.006 0.187± 0.012 0.283± 0.102 0.140± 0.019 0.317± 0.048
NodeFormer 0.308± 0.093 0.018± 0.007 0.048± 0.022 0.168± 0.127 0.073± 0.015 0.165± 0.057
DIFFormer 0.361± 0.071 0.029± 0.014 0.129± 0.030 0.275± 0.171 0.311± 0.025 0.306± 0.131
OFA 0.314± 0.059 0.130± 0.019 0.064± 0.086 0.052± 0.049 0.340± 0.026 0.101± 0.071

LLM as Predictor
Vicuna-7B-v1.5 0.719± 0.010 0.156± 0.001 0.270± 0.011 0.363± 0.001 0.378± 0.004 0.370± 0.001
Vicuna-7B-SPT 0.768± 0.036 0.168± 0.018 0.227± 0.015 0.281± 0.088 0.350± 0.061 0.230± 0.018
GraphGPT-std 0.701 0.126 - - - -
GraphGPT-cot 0.521 0.181 - - - -
LLaGA 0.793± 0.036 0.168± 0.032 0.199± 0.007 0.146± 0.067 0.276± 0.069 0.352± 0.033
TEA-GLM 0.839± 0.013 0.164± 0.010 0.271± 0.010 0.528± 0.058 0.497± 0.027 0.404± 0.010
PURE 0.845± 0.010 0.173± 0.008 0.275± 0.015 0.594± 0.050 0.520± 0.015 0.436± 0.024

TEA-GLM PURE(Iteration0) PURE(Iteration1)

(a) GNN Features

TEA-GLM PURE(Iteration0) PURE(Iteration1)

(b) LLM Features

Figure 2: t-SNE visualization of node embeddings on the History dataset.

For clarity, let Yp denote the promoted node feature matrix derived from a single prompt instruction,
and Y M

p represent the matrix obtained using mixed prompt instructions. The true node feature
matrices are denoted as:

Xp = (X,p) and XM
p = (X,P ),

where p is one of K prompt instructions in the set P , and P−1 is the set of prompt instructions
excluding p. We assume the true promoted node feature matrix Y M

p is linearly related to XM
p :

Y M
p = XM

p W = XpW1 + P−1W2,

where W is the weight matrix learned by the neural network, and W1 and W2 are sub-matrices of
W . This linear relationship reflects that the mixed prompt instructions are computed as the inner
product of routed prompts and probability values, i.e., w⊤P , and a linear projector fL2

Linear(·).
The following theorem highlights the potential bias introduced when using a single prompt instruction.
Theorem 4.1. Under the MSE loss, using a single prompt instruction introduces bias in the predicted
promoted node feature matrix Yp relative to the true promoted matrix Y M

p :

Y M
p − Yp = (I −Xp(X

⊤
p Xp)

−1X⊤
p )P−1W2,

where I −Xp(X
⊤
p Xp)

−1X⊤
p is a projection matrix.

The proof of our Theorem 4.1 can be found in Appendix B. Theorem 4.1 shows that without mixed
prompting, the bias in Yp arises from the projection matrix and the weight matrix W2. This bias
occurs because a single prompt instruction fails to capture the full complexity of the task. By
leveraging diverse mixed prompt strategies, this bias can be significantly reduced, enabling the model
to more accurately approximate the true promoted node feature matrix.

5 EXPERIMENTS

We conduct experiments on eight widely-used datasets spanning two distinct domains: citation
networks (Arxiv (Hu et al., 2020), Pubmed (He et al., 2023), and extended Cora (Wen & Fang, 2023))
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Figure 3: Cross-task link prediction AUC across e-commerce datasets.

and e-commerce graphs from the TAG benchmark (Yan et al., 2023) (Children, History, Computer,
Photo, and Sports). Each dataset is split into training and test sets following the methodology
outlined in TEA-GLM (Wang et al., 2024a). We compare PURE with several baselines, including
traditional non-graph neural network approaches (MLP), supervised graph neural network methods
(GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018a)),
self-supervised methods (DGI (Veličković et al., 2018b)), graph knowledge distillation frameworks
(GKD (Yang et al., 2022), GLNN (Zhang et al., 2021)), graph transformer networks (NodeFormer (Wu
et al., 2022), DIFFormer (Wu et al., 2023)), large language models (Vicuna-7B-v1.5 (Zheng et al.,
2023)), and state-of-the-art models with transfer and zero-shot capabilities (OFA (Liu et al., 2024),
GraphGPT (Tang et al., 2024a), LLaGA (Chen et al., 2024a), TEA-GLM (Wang et al., 2024a)).
Additional details are provided in Appendix D.

5.1 CROSS-DATASET ZERO-SHOT PERFORMANCE

Setting. We train the model on the Arxiv dataset (citation domain) and the Computer dataset (e-
commerce domain) for node classification, and directly test performance on other datasets within
the same domain without any fine-tuning. For GNN-based methods, we preserve the pretrained
backbone from the source dataset and only retrain the classifier on the target dataset for prediction.
For GraphGPT (Tang et al., 2024a), we report the results of citation datasets provided by the paper.
Table 1 shows the zero-shot accuracy on citation and e-commerce datasets.

Performance Comparison. From the results, we have three observations. Firstly, PURE consistently
outperforms competing GNN and LLM predictors across multiple datasets, demonstrating its strong
transferability without additional training. Secondly, GNN-based methods struggle in zero-shot
settings due to their dependence on source graph structures, limiting generalization to domains
with different graph properties. While OFA performs well on citation datasets, its performance
on e-commerce datasets is hindered by the diverse nature of product types, which challenges its
adaptability. In contrast, LLMs excel by leveraging rich pretrained semantic knowledge, enabling
them to handle unseen domains better. Finally, PURE outperforms both Vicuna-v1.5 and Vicuna-SPT
due to its two innovative strategies: (1) Iterative Mutual Alignment Tuning, which facilitates iterative
optimization through mutual alignment between GNNs and LLMs, and (2) Mixture of Prompt Expert,
which leverages specialized LLM prompts to enhance the performance of GNNs.

Visualization. To better understand the learned representations, we visualize the node embeddings of
GNN and LLM features for the History dataset using t-SNE, as shown in Figure 2. Since the GNN is
not trained with a classification loss, its role is primarily to capture structural information, resulting
in a relatively uniform feature distribution. In the initial iteration, the GNN features closely resemble
those of TEA-GLM, indicating minimal differentiation. However, after iterative mutual alignment
tuning, the GNN features exhibit noticeable clustering patterns, suggesting that mutual prompting
effectively integrates text-related features into the GNN representations.

5.2 CROSS-TASK ZERO-SHOT PERFORMANCE

Settings. We test the model’s performance on the link prediction task across all e-commerce datasets
after training on the Computer dataset for node classification. The Area Under Curve (AUC) is used
as the evaluation metric. The experimental results are summarized in Figure 3.

Performance Comparison. Our proposed PURE achieves state-of-the-art performance across all
domains, demonstrating strong generalization capabilities for cross-task zero-shot learning. The
results reveal three key observations: (1) Pure language model variants (Vicuna) and graph-agnostic
approaches (OFA) exhibit fundamental limitations, either ignoring graph topology or suffering from
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Table 2: Ablation study of different variants on all datasets.
Variants Pubmed Cora Children History Photo Sports
PURE w/o fG

Linear(·) 0.711↓0.134 0.162↓0.011 0.243↓0.032 0.373↓0.221 0.257↓0.263 0.289↓0.147
PURE w/o Linfo 0.807↓0.038 0.151↓0.022 0.263↓0.012 0.497↓0.097 0.465↓0.055 0.405↓0.031
PURE w/o Lins 0.819↓0.026 0.152↓0.021 0.268↓0.007 0.368↓0.226 0.519↓0.001 0.382↓0.054
PURE w/o Iteration 0.835↓0.010 0.163↓0.010 0.270↓0.005 0.538↓0.056 0.508↓0.012 0.403↓0.033
PURE 0.845 0.173 0.275 0.594 0.520 0.436

negative transfer, highlighting the necessity of unified modality interaction; (2) Existing graph-text
alignment methods show limited capacity to model complex cross-modal dependencies, which often
fail to capture the intricate interplay between structural and semantic features, particularly in tasks
requiring fine-grained reasoning; (3) While baseline methods show inconsistent performance across
domains, PURE maintains robust accuracy by dynamically balancing semantic and structural signals.
The results validate that explicit modeling of modality interplay, rather than simple alignment or
isolated adaptation, drives effective cross-task transfer in graph-language learning.

5.3 ABLATION STUDY

To validate the contribution of core components in PURE, we design four variants:(1) PURE w/o
fG

Linear(·): Removes the linear projection layer between GNN and LLM, directly feeding raw GNN
outputs to LLM; (2) PURE w/o Linfo: Disables feature-wise graph pre-training loss for prototypical
prompt learning; (3) PURE w/o Lins: Disables instance loss; (4) PURE w/o Iteration: Performs
single-step inference without multi-round iteration. The results are summarized in Table 2. From
the results, we observe four key observations as follows: (1) removing fG

Linear(·) causes the largest
drop, confirming the necessity of embedding-space alignment for effective GNN–LLM interaction;
(2) disabling Linfo severely degrades semantic-rich tasks (e.g., History), indicating its role in
capturing fine-grained semantics; (3) the full model surpasses the single-pass variant by 2.1–5.6%,
demonstrating the benefit of iterative refinement; (4) removing Lins yields unstable performance,
highlighting its importance in balancing structural and semantic signals.

5.4 PARAMETER SENSITIVITY
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Figure 4: Sensitivity analysis to parameters.

In this part, we investigate the impact
of the number of tokens and the num-
ber of iterations. We first vary the
number of tokens from 1 to 5 with the
other parameter fixed. As shown in
Figure 4(a), PURE achieves the best
performance with 3 tokens on most
datasets, indicating that a moderate
number of tokens is crucial for effec-
tive mutual alignment tuning. Then
the impact of the number of iterations is explored by varying the number of iterations from 0 to
3. Figure 4(b) shows that PURE achieves the best performance with 1 iteration, suggesting that
multiple iterations are necessary for effective mutual alignment tuning. However, when the number
of iterations increases, the performance decreases. A potential reason is that too many iterations
could lead to error accumulation.

6 CONCLUSION

In this paper, we propose PURE, a novel framework for zero-shot text-attributed graph learning that
synergizes GNNs and LLMs through dual graph pre-training and mutual prompt learning. Dual
pre-training captures both instance-level structural relationships and informativeness-aware semantic
alignment with LLM token embeddings, enabling transferable graph representations. Mutual prompt
learning framework enables iterative enhancement: GNN-derived geometric tokens guide LLM via
prototypical projections, while LLM-generated instructions boost GNN performance via prompt
experts. Extensive experiments demonstrate PURE’s superior performance in cross-dataset and cross-
task zero-shot scenarios, achieving state-of-the-art results in node classification and link prediction.
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REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. The main components of the proposed
PURE framework, including the dual graph pre-training strategy and prototypical prompt learning, are
fully described in Sections 4.2–4.3 with all mathematical formulations provided. Hyperparameters,
model configurations, dataset details, and the complete training procedure are documented in Section 5
and Appendices D–G. An anonymous link to our implementation is provided at the end of Section 1
to facilitate independent verification.
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A LARGE LANGUAGE MODEL (LLM) USAGE STATEMENT

We use the LLM as a general-purpose assistant tool. Specifically, the LLM assists in (i) checking
grammar and improving clarity of text descriptions, and (ii) suggesting alternative phrasings for some
sections. No parts of the paper are generated entirely by the LLM. All research ideas, experiments,
model designs, and results are conceived, implemented, and analyzed solely by the authors. The
LLM does not contribute to the development of the methodology, experiments, or analysis presented
in this paper. We confirm that the use of the LLM is limited to minor writing support and does not
constitute a substantive contribution that would qualify it as a co-author.

B PROOF OF THEOREM 4.1

Using the mean squared error (MSE) loss, the estimated parameter Ŵ is obtained by minimizing:

L = ∥Y M
p −XpW ∥2,

which leads to the optimal solution:

Ŵ = (X⊤
p Xp)

−1X⊤
p Y M

p .

Substituting this into the expression for the predicted promoted node feature matrix Yp, we obtain:

Yp = XpŴ

= Xp(X
⊤
p Xp)

−1X⊤
p Y M

p

= Xp(X
⊤
p Xp)

−1X⊤
p (XpW1 + P−1W2)

= XpW1 +Xp(X
⊤
p Xp)

−1X⊤
p P−1W2. (16)

From Equation (16), the difference between the predicted and true promoted node feature matrices is:

Yp − Y M
p = XpW1 +Xp(X

⊤
p Xp)

−1X⊤
p P−1W2 − (XpW1 + P−1W2)

= Xp(X
⊤
p Xp)

−1X⊤
p P−1W2 − P−1W2

= (I −Xp(X
⊤
p Xp)

−1X⊤
p )P−1W2. (17)

Thus, we conclude the proof of Theorem 4.1.

C IMPACT STATEMENT

The proposed PURE framework advances zero-shot text-attributed graph learning by combining the
strengths of GNNs and LLMs. By leveraging dual graph pre-training and mutual prompting, PURE
enhances the extraction of both structural and semantic information, enabling effective generalization
across unseen graphs and tasks. This work has potential applications in domains requiring robust
graph analysis, such as social networks, recommender systems, knowledge graphs, and biomedical
networks. By reducing the need for task-specific fine-tuning, PURE contributes to more efficient and
scalable graph-based machine learning.

D DETAIL OF BASELINES

We compare PURE with 14 baseline methods across six technical categories:

Traditional Non-GNN: Multi-Layer Perceptron baseline without graph structural awareness, serving
as a fundamental reference for non-relational learning.

Supervised GNNs:

• GCN (Kipf & Welling, 2016): Spectral graph convolution operator with layer-wise neighborhood
aggregation through low-pass frequency filtering.

14
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Table 3: Dataset statistics.
Domain Dataset #Nodes #Edges #Classes

Citation
Arxiv 169,343 1,166,243 40
Pubmed 19,717 44,338 3
Cora 25,120 91,140 70

E-commerce

Ele-Computer 87,229 721,081 10
Ele-Photo 48,362 500,928 12
Book-Children 76,875 1,554,578 24
Book-History 41,551 358,574 12
Sports-Fitness 173,055 1,773,500 13

• GraphSAGE (Hamilton et al., 2017): Inductive framework employing stochastic neighborhood
sampling and parameterized aggregation functions.

• GAT (Veličković et al., 2018a): Attention-based architecture with learnable edge importance
weights via multi-head attention mechanisms.

Self-supervised Learning:

• DGI (Veličković et al., 2018b): Contrastive learning paradigm maximizing mutual information
between local node representations and global graph summaries.

Knowledge Distillation:

• GKD (Yang et al., 2022): Graph-to-graph distillation framework transferring topological knowledge
via adaptive structure matching.

• GLNN (Zhang et al., 2021): Structure-agnostic neural network trained with GNN-generated soft
labels for graphless inference.

Graph Transformers:

• NodeFormer (Wu et al., 2022): Kernelized transformer architecture enabling efficient all-pair
message passing with random feature approximation.

• DIFFormer (Wu et al., 2023): Spectral diffusion-enhanced transformer with adaptive propagation
based on eigenbasis decomposition.

Large Language Models:

• Vicuna-7B-v1.5 (Zheng et al., 2023): Instruction-following LLM with 7 billion parameters fine-
tuned from LLama2.

State-of-the-Art Models:

• OFA (Liu et al., 2024): Unified graph foundation model with cross-domain text-graph unification
and in-context learning via prompt substructures.

• GraphGPT (Tang et al., 2024a): Graph-text alignment framework with dual-stage instruction tuning
and structural-aware projection modules.

• LLaGA (Chen et al., 2024a): Language-graph assistant with topology-preserving sequence reorga-
nization and parameter-efficient graph token projection.

• TEA-GLM (Wang et al., 2024a): GNN-LLM alignment method featuring pretrained representation
mapping and unified instruction templates for cross-task generalization.

E DETAIL OF DATASETS

Table 3 summarizes the key statistics of our evaluation datasets. Below we provide detailed descrip-
tions:

15
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Citation Networks focus on academic paper analysis. The Arxiv (Hu et al., 2020) dataset contains
169,343 computer science papers from arXiv, where nodes represent publications connected by
citations, and labels correspond to 40 subfields. Pubmed (He et al., 2023) includes 19,717 diabetes-
related papers categorized into three clinical types (Type 1/2 Diabetes and Experimentally Induced
Diabetes), with edges reflecting citation relationships. The extended Cora (Wen & Fang, 2023)
dataset expands the classic version to 25,120 machine learning papers and 70 fine-grained research
topics, capturing broader taxonomy.

E-commerce Datasets from the TAG benchmark model product relationships (Yan et al., 2023).
Book-Children (76,875 nodes) and Book-History (41,551 nodes) represent Amazon book subcate-
gories with three-level hierarchical labels. Ele-Computer (87,229 nodes) and Ele-Photo (48,362
nodes) cover electronics products with functional categorizations. Sports-Fitness (173,055 nodes) is
the largest dataset, where edges encode co-purchasing patterns between fitness-related items. All
e-commerce edges are derived from co-viewing or co-buying behaviors, with labels reflecting product
taxonomies.

F IMPLEMENTATION DETAILS

The framework operates in two phases. During Dual Graph Pre-training, we initialize a 2-layer
GraphSAGE backbone with mean aggregation and ReLU activation, setting the hidden dimension to
4,096 to align with Vicuna-7B’s token embeddings. This phase uses AdamW optimization with a
batch size of 512 for 60 epochs, learning structural patterns from raw graph data.

In the Prototypical Prompt Learning phase, we reduce the batch size to 2 to accommodate memory
constraints when integrating the LLM. The alignment process employs three trainable tokens to
bridge GNN and LLM representations, optimized with a learning rate of 1 × 10−3 for one full
iteration over the dataset. Experiments run on four NVIDIA A100 GPUs (80GB memory) with an
80-10-10 data split following TEA-GLM’s protocol. For evaluation, we report accuracy and macro-F1
for node classification, and AUC-ROC for link prediction, ensuring consistency with graph learning
benchmarks.

For loss computation, the total loss in PURE combines step-wise components for each direction of the
iterative mutual prompting process. In the forward step (GNN → LLM), we train a linear projector
using an MSE loss to align the GNN embedding space to the LLM token space. In the backward step
(LLM → GNN), we optimize

Ltotal = L+ λ (Lind + Limp) , (18)

where L = 1
2 (Lins + Linfo) is the contrastive loss, and Lind and Limp are regularization terms to

mitigate collapse. We set λ = 0.2 to control the weights of Lind and Limp in the total loss.

G PSEUDOCODE OF PURE

This section presents the training flow of PURE as pseudocode with equation references.

Algorithm 1: Dual Graph Pre-training

Inputs: graph G = (A,X);
Hyperparameters: T, pr, pm, τ ; PCA over LLM tokens;
for t = 1, · · · , T do

Sample R̃ ∼ B(1− pr), set Ã = A ◦ R̃ ; // Eq. 2

Sample m̃ ∼ B(1− pm), form masked X̃ ; // Eq. 3

Z∗ = fGNN(Ã
∗, X̃∗) ; // Eq. 4

Compute Lins using ℓ(·) and ϕ(·) ; // Eqs. 5-- 6

PCA over LLM tokens⇒ top comps C; Z∗ ← Z∗CT ; // Eq. 7
Compute informativeness loss Linfo ; // Eq. 8
Update fGNN by L = 1

2
(Lins + Linfo) ; // Eq. 9

Return: pre-trained encoder fGNN;
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Algorithm 2: Prototypical Prompt Learning with Mutual Alignment

Inputs: fGNN, frozen LLM, prototypes K, iterations I;
// Initial GNN processing
Z = fGNN(A,X) ; // Get initial node embeddings
// Initial LLM processing

For node v with zv , compute hk
v = fG,k

Linear(zv), k = 1..K ; // Eq. 10

Form Hv = {hk
v}Kk=1 and use as soft tokens in LLM instruction;

for i = 1, · · · , I do
// LLM to GNN: Language prompting for GNN

From LLM outputs {hk}Kk=1, set pk = fL1,k
Linear (hk) ; // Eq. 11

wk(zv) = [Softmax(fR
Linear(zv) ◦ (1 + δ))]k ; // Eq. 12

x′
v = [xv; w

TP ], xv,p = fL2
Linear(x

′
v) ; // Eq. 13

Freeze LLM; train {fL1,k
Linear}, f

L2
Linear, f

R
Linear with L, Lind, and Limp ; // Eq. 9, 15

// GNN to LLM: Geometric prompting for LLM
Update Z = fGNN(A,Xp) with prompted features;
For node v with updated zv , compute hk

v = fG,k
Linear(zv), k = 1..K ; // Eq. 10

Form Hv = {hk
v}Kk=1 and add Lind ; // Eq. 14

Use Hv as soft tokens in LLM instruction; update {fG,k
Linear} on task loss +Lind;

// Final prediction with LLM
Generate final predictions using LLM with aligned prompts;
Return: projectors {fG,k

Linear}, {f
L1,k
Linear}, f

L2
Linear, router fR

Linear;

H COMPLEXITY ANALYSIS

We analyze the computational complexity of the proposed PURE framework by breaking it down into
its major components.

PCA Pre-computation. The Principal Component Analysis (PCA) on the LLM token embeddings
is a one-time offline operation performed before training. This pre-computation cost is negligible
during model training and inference.

Graph Model Pre-training. For each forward pass of the GNN encoder, the time complexity is
O(|E|d), where |E| denotes the number of edges in the graph and d is the hidden dimension. This
phase is executed once to obtain transferable node representations.

Mutual Prompting. During the mutual prompting stage, the GNN outputs are projected through
linear layers with a complexity of O(d2). On the LLM side, linear projections and prompt routing
with K experts introduce an additional complexity of O(Kd2). As the mutual prompting process is
iterated I times, the total time complexity of the alignment process can be expressed as:

O
(
(I + 1)(|E|d+ d2) + IKd2

)
.

Overall, the cost of PCA pre-computation and graph pre-training is incurred once, while the mutual
prompting cost scales with the number of iterations I and the number of prompt experts K. This
analysis shows that PURE maintains linear complexity with respect to the number of edges and
quadratic complexity with respect to the hidden dimension d, which is practical for large-scale
text-attributed graphs.

I MORE EXPERIMENTAL RESULTS

I.1 LEGITIMACY EXPERIMENT

To assess the model’s capability of generating valid responses under open-ended scenarios, we
conduct legality evaluation following the methodology in (Zhang et al., 2024). This experiment
measures the model’s ability to produce answers strictly conforming to predefined formats and

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Legality rate of LLM-backbone model
Model Seen Unseen

Arxiv Computer Pubmed Cora Children History Photo Sports
Vicuna-7B-v1.5 99.3 96.7 100.0 95.8 99.2 98.9 94.1 99.6
LLaGA 100.0 100.0 98.9 79.9 93.1 92.4 77.8 94.3
TEA-GLM 100.0 100.0 100.0 92.6 97.0 99.6 99.2 98.5
PURE 100.0 100.0 100.0 75.7 98.2 99.6 99.5 99.1

Table 5: Macro F1 of node classification task (bold highlights the best result across all methods,
while underline highlights the second-best results).

Model Pubmed Cora Children History Photo Sports
MLP 0.246± 0.042 0.009± 0.004 0.007± 0.007 0.023± 0.008 0.041± 0.023 0.019± 0.005

GNN as Predictor
GCN 0.187± 0.021 0.007± 0.001 0.006± 0.004 0.024± 0.013 0.034± 0.007 0.017± 0.009
GraphSAGE 0.257± 0.084 0.007± 0.003 0.005± 0.003 0.029± 0.024 0.020± 0.011 0.021± 0.004
GAT 0.259± 0.065 0.006± 0.001 0.063± 0.067 0.159± 0.117 0.036± 0.035 0.091± 0.090
DGI 0.213± 0.127 0.004± 0.002 0.012± 0.004 0.038± 0.015 0.045± 0.015 0.018± 0.005
GKD 0.247± 0.039 0.004± 0.001 0.028± 0.003 0.060± 0.008 0.049± 0.015 0.050± 0.008
GLNN 0.221± 0.033 0.006± 0.001 0.021± 0.003 0.064± 0.007 0.057± 0.002 0.052± 0.003
NodeFormer 0.232± 0.089 0.008± 0.003 0.019± 0.008 0.046± 0.031 0.055± 0.006 0.049± 0.009
DIFFormer 0.187± 0.007 0.007± 0.002 0.002± 0.002 0.050± 0.019 0.069± 0.010 0.045± 0.007
OFA 0.287± 0.059 0.091± 0.013 0.017± 0.010 0.026± 0.007 0.103± 0.007 0.043± 0.021

LLM as Predictor
Vicuna-7B-v1.5 0.629± 0.024 0.109± 0.002 0.279 ± 0.002 0.349± 0.003 0.383± 0.001 0.410± 0.002
GraphGPT-std 0.649 0.082 - - - -
GraphGPT-cot 0.482 0.127 - - - -
LLaGA 0.778± 0.056 0.108± 0.014 0.163± 0.029 0.144± 0.025 0.362± 0.039 0.446 ± 0.035
TEA-GLM 0.839 ± 0.012 0.148 ± 0.015 0.252± 0.005 0.365 ± 0.011 0.421 ± 0.032 0.430± 0.009
PURE 0.841 ± 0.010 0.165 ± 0.017 0.264 ± 0.004 0.374 ± 0.012 0.417 ± 0.008 0.457 ± 0.013

semantic constraints, particularly when handling unseen domains. The legality rate is calculated as
the proportion of responses that satisfy content constraints (e.g., valid label candidates).

As shown in Table 4, our preliminary results on seen datasets (Arxiv and Computer domains)
demonstrate that PURE achieves perfect legality rates (100%), indicating strong alignment with format
specifications through our instruction tuning strategy. For unseen domains, observations suggest
our model maintains stable text generation compared to baseline methods. This can be attributed
to our hybrid training approach that combines semantic understanding with structural constraints,
effectively reducing errors in unfamiliar scenarios.

I.2 F1 SCORE ON NODE CLASSIFICATION TASK

F1 score on the node classification task is shown in Table 5.

I.3 SUPERVISED RESULTS

Table 6 shows the accuracy and macro F1 on training datasets. Due to the lack of supervised loss
during the GNN pre-training phase, PURE does not achieve the best results on seen domains. However,
it still outperforms most baseline methods, demonstrating the effectiveness of our approach.

I.4 SCALABILITY OF PURE TO DIFFERENT LLM SIZES

While our main experiments employ Vicuna-7B (Zheng et al., 2023) as the language model backbone,
the proposed PURE framework is model-agnostic and can be readily applied to smaller LLMs. To
evaluate the impact of model size, we replace Vicuna-7B with LLaMA-3.2-3B1 and conduct zero-shot
node classification on four benchmark datasets. The results are reported in Table 7.

1https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Table 6: Accuracy and macro F1 on training datasets (bold highlights the best result across all
methods, while underline highlights the second-best results).

Model Arxiv Computer
Acc F1 Acc F1

MLP 0.546± 0.004 0.295± 0.007 0.420± 0.006 0.267± 0.005

GNN as Predictor
GCN 0.545± 0.005 0.317± 0.006 0.424± 0.012 0.386± 0.014
GraphSAGE 0.556± 0.006 0.315± 0.008 0.534± 0.037 0.347± 0.036
GAT 0.561± 0.003 0.339± 0.005 0.609± 0.035 0.598± 0.039
DGI 0.342± 0.024 0.336± 0.011 0.594± 0.004 0.452± 0.008
GKD 0.393± 0.085 0.164± 0.029 0.351± 0.031 0.155± 0.016
GLNN 0.602± 0.004 0.362± 0.008 0.393± 0.005 0.243± 0.007
NodeFormer 0.544± 0.016 0.297± 0.029 0.434± 0.012 0.288± 0.012
DIFFormer 0.616± 0.025 0.356± 0.024 0.629± 0.012 0.467± 0.022
OFA 0.682 ± 0.006 0.495 ± 0.006 0.753 ± 0.004 0.687 ± 0.006
LLM as Predictor
Vicuna-7B-v1.5 0.347± 0.000 0.164± 0.001 0.372± 0.010 0.304± 0.002
GraphGPT-std 0.626 0.262 - -
GraphGPT-cot 0.576 0.228 - -
LLaGA 0.749 ± 0.001 0.575 ± 0.003 0.642 ± 0.004 0.562 ± 0.001
TEA-GLM 0.655± 0.001 0.445± 0.002 0.578± 0.002 0.496± 0.010
PURE 0.631± 0.008 0.412± 0.007 0.580± 0.002 0.510± 0.008

Table 7: Zero-shot node classification performance of PURE across different language model sizes.
Model Children History Photo Sports
LLaMA-3B 0.267 0.350 0.448 0.328
Vicuna-7B-v1.5 0.270 0.363 0.378 0.370
TEA-GLM 0.271 0.528 0.497 0.404
PURE (LLaMA-3B) 0.274 0.318 0.501 0.396
PURE (Vicuna-7B) 0.275 0.594 0.520 0.436

As shown in Table 7, although the base performance of the smaller LLaMA-3B model is lower than
that of Vicuna-7B on several datasets, applying PURE consistently yields performance gains. This
demonstrates that PURE maintains robust transferability and scalability across LLM sizes, enhancing
zero-shot graph learning even with smaller parameter LLMs.
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