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ABSTRACT

Graph anomaly detection is critical for applications such as social networks, cy-
bersecurity, and finance, yet remains challenging due to the unique spectral signa-
tures of anomalies. In particular, anomalous nodes often exhibit high-frequency
spectral patterns—a phenomenon known as spectral shift—which are easily sup-
pressed by the low-pass nature of standard Graph Neural Networks (GNNs), re-
sulting in spectral washing and poor anomaly detection. In this work, we present
CHEBMOE, a novel and principled framework that directly addresses the spec-
tral limitations of existing GNN-based anomaly detectors. Our key contributions
are as follows: (1) We introduce a Chebyshev polynomial-based spectral feature
extractor that efficiently preserves and amplifies high-frequency components, en-
abling the model to capture subtle spectral shifts associated with anomalies with-
out requiring costly eigendecomposition. (2) We design a Mixture of Experts
(MoE) anomaly detector with a learnable gating mechanism, allowing the model
to adaptively aggregate diverse expert subnetworks and flexibly model complex
anomaly patterns. (3) We propose a contrastive anomaly feature generator that
leverages self-supervised contrastive learning to further enhance the discrimina-
tive power of node representations, improving robustness in the absence of labeled
anomalies. Extensive experiments on seven real-world dynamic graph datasets
demonstrate that CHEBMOE consistently outperforms state-of-the-art baselines.
For example, it achieves ROC-AUC of 0.9906 on Wiki, 0.8791 on Reddit, and
0.9812 on UCI, along with consistently high F1-scores, effectively counteracting
spectral washing and substantially advancing the state of graph anomaly detection.

1 INTRODUCTION

Graph data is ubiquitous in applications such as social networks, recommendation systems, bioin-
formatics, and financial monitoring. Detecting anomalies—nodes or subgraphs whose behavior
significantly deviates from the majority—is critical for identifying faults, attacks, or irregular activ-
ities. This task is especially challenging in large-scale, dynamic graphs, where anomalies are rare,
diverse, and evolving. Recent studies have revealed that anomalous nodes often exhibit stronger
high-frequency spectral components than normal nodes, a phenomenon widelyknown as spectral
shift (Tang et al., 2022). Intuitively, low-frequency signals capture smooth patterns shared by most
nodes, while high-frequency signals encode abrupt variations indicative of anomalies. As formally
analyzed in detail (see Appendix B.1), high-frequency components of graph signals correspond to
rapidly varying Laplacian eigenmodes. Anomalous nodes are characterized by substantially higher
high-frequency energy compared to normal nodes, making these spectral components crucial for
distinguishing anomalies.

However, for modeling/encoding this graph data, widely used Graph Neural Networks (GNNs): in-
cluding GCN, GAT, and GraphSAGE, inherently act as low-pass filters during message propagation.
We observed that the GCN layer monotonically attenuates high-frequency components, leading to
a spectral washing effect where the discriminative high-frequency signals of anomalous nodes are
suppressed, making them harder to distinguish from normal nodes This phenomenon is illustrated
in Figure 1 (see Appendix B.3 for more details), which shows that the normal nodes concentrate in
low-frequency bands, anomalous nodes shift rightward, and GCN low-pass filtering (green dashed
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Figure 1: Spectral shift and washing in GNNs. X-axis: normalized Laplacian eigenvalue λ (higher =
higher frequency); Y-axis: normalized spectral power. Blue: normal (low-frequency); red: anoma-
lous (high-frequency shift); green dashed: anomalous after GCN low-pass, with reduced but persis-
tent high-frequency energy.

line) suppresses high-frequency components, making anomalies harder to detect. Existing graph
anomaly detection methods, such as DOMINANT Ding et al. (2019), AnomalyDAE Fan et al.
(2020), SAD Tian et al. (2023), and MAMF Hong et al. (2025), largely rely on GNNs for represen-
tation learning. While achieving promising results, they still inherit the low-pass bias, limiting their
ability to capture the high-frequency anomaly signals revealed by spectral shift. A more rigorous
and formal analysis of relevant concepts—including Dirichlet energy, graph Fourier decomposition,
and the high-frequency energy of node features—is presented in Appendix B. There, we provide a
theoretical examination of the limitations of GNNs, demonstrating how GNN propagation system-
atically attenuates high-frequency anomaly signals and thus hinders effective anomaly detection.

Addressing the spectral washing phenomenon in graph anomaly detection presents two primary
challenges. First, standard GNNs inherently smooth graph signals, which leads to the suppression
of high-frequency anomaly cues that are essential for identifying subtle or rare anomalies. Second,
anomalies in real-world graphs are often temporally dynamic: anomalous nodes can exhibit varying
high-frequency patterns over time, and novel anomaly types may arise that were not present during
training. As a result, a single fixed-parameter model is insufficient to capture the full diversity of
potential anomaly signals. This necessitates the development of adaptive approaches capable of
dynamically responding to evolving anomaly patterns.

To simultaneously address the challenges of spectral washing and evolving anomaly patterns in
graph data, we introduce a unified framework: Chebyshev-based Network with Mixture-of-experts
(CHEBMOE) built on three synergistic components: (1) Chebyshev Feature Extractor, to pre-
serve the high-frequency signals that are often indicative of anomalies, we replace standard GNN
convolutions with a Chebyshev polynomial-based spectral filter. Chebyshev filtering leverages high-
order polynomials of the graph Laplacian, allowing selective preservation of high-frequency signals
while still aggregating local neighborhood information. This approach is theoretically justified in
Appendix C, where we formally show how high-frequency anomaly signals are maintained. (2)
Contrastive Anomaly Feature Generator, to address the scarcity of labeled anomalies, we use
contrastive learning to enhance anomaly representations. By generating augmented views of anoma-
lous node features through feature perturbation and training the encoder to maximize agreement
between these views while distinguishing them from other nodes, we effectively synthesize ad-
ditional anomaly samples and improve the robustness and generalization of learned features. (3)
Mixture-of-Experts (MoE) Anomaly Detector, to handle diverse and evolving anomalies, we use
a Mixture-of-Experts architecture. Multiple independently parameterized expert networks capture
different high-frequency patterns, while a learnable gating network adaptively combines their out-
puts for each input. This enables flexible emphasis on various anomaly characteristics and improves
generalization to unseen anomaly types. By integrating these components, CHEBMOE effectively
preserves essential high-frequency anomaly signals, enriches the representation of scarce anoma-
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lous data, and dynamically adapts to the emergence of new and evolving anomaly patterns. This
holistic approach directly addresses the challenges posed by spectral washing and the limitations
of static models, resulting in significantly enhanced anomaly detection performance on dynamic
graphs. Comprehensive experiments across multiple benchmark datasets confirm that CHEBMOE
achieves superior results compared to existing state-of-the-art methods.

We summarize our key contributions as follows:

• We rigorously identify and analyze the spectral washing phenomenon in graph anomaly
detection, showing how standard GNNs suppress high-frequency components essential for
detecting subtle anomalies (see Appendix B.1). That said, we provide both theoretical and
practical insights into the limitations of existing GNN-based methods and motivates our
spectral-preserving design.

• We propose CHEBMOE, a unified framework integrating (1) a Chebyshev polynomial-
based feature extractor, (2) a contrastive anomaly feature generator, and (3) a Mixture-of-
Experts (MoE) anomaly detector. This approach preserves high-frequency anomaly sig-
nals, augments limited anomaly data, and adaptively models diverse and evolving anomaly
patterns—without prior knowledge of anomaly types.

• Extensive experiments on multiple dynamic graph anomaly detection benchmarks show
that CHEBMOE consistently outperforms state-of-the-art baselines, validating the effec-
tiveness of our spectral-preserving and adaptive framework.

2 RELATED WORK

We organize the related work into: (i) Chebyshev polynomial filtering on graphs; and (ii) spectral
shift and graph anomaly detection.

(i) Chebyshev Polynomial Filtering on Graphs. Chebyshev polynomial filtering has been widely
used for efficient graph signal processing and spectral analysis, enabling scalable computation on
graphs without explicit eigen-decomposition Zhou (2010); Shuman et al. (2018); Chen et al. (2012);
Sakiyama et al. (2016); Cheng et al. (2019); Liou et al. (2020); Huang et al. (2021); Tseng & Lee
(2021); Du et al. (2024). Prior work applies Chebyshev filtering to eigenvalue problems Zhou
(2010), distributed linear operators Shuman et al. (2018), graph wavelets Sakiyama et al. (2016),
mesh augmentation Huang et al. (2021), and clustering Du et al. (2024), demonstrating its effective-
ness in preserving high-frequency signals and capturing higher-order structure. We leverage Cheby-
shev filtering within a ChebNet framework to mitigate spectral washing and preserve anomaly-
relevant components for dynamic graph anomaly detection.

(ii) Spectral Shift and Graph Anomaly Detection. Graph anomaly detection on dynamic graphs
is challenging due to temporal evolution and heterogeneous anomaly patterns Xu et al. (2020); Ding
et al. (2019); Xu et al. (2022); Tian et al. (2023); Hong et al. (2025). Most GCN-based models act
as low-pass filters, oversmoothing features and suppressing high-frequency signals that are critical
for detecting abrupt anomalies. Recent works partially address temporal dynamics or multi-view
information Hong et al. (2025); Xu et al. (2022), but spectral washing remains a major issue.

We observe, the problem of spectral washing—where high-frequency anomaly signals are sup-
pressed by standard GNN architectures—has been largely overlooked in prior work. Existing meth-
ods rarely address the preservation of these critical high-frequency components, leaving a significant
gap in effective anomaly detection. In contrast, our framework, CHEBMOE, integrates Cheby-
shev filtering with a Mixture of Experts (MoE) detector and a contrastive anomaly generator to
adaptively capture both low- and high-frequency patterns, improving robustness and generalization
across diverse dynamic graphs.

3 CHEBMOE:CHEBYSHEV-BASED NETWORK WITH MIXTURE-OF-EXPERTS

In this section, we formally introduce the proposed framework: CHEBMOE for graph anomaly de-
tection. We summarize the key notations used throughout this work in Appendix A (Table 3).

Overview. CHEBMOE targets dynamic graph anomaly detection by addressing two main chal-
lenges: (i) spectral washing in GNNs, which suppresses high-frequency anomaly signals, and (ii)
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Figure 2: Overview of CHEBMOE. It comprises: (1) a Chebyshev Feature Extractor to retain high-
frequency anomaly signals, (2) a Contrastive Anomaly Feature Generator to synthesize anomalous
node representations, and (3) a Mixture-of-Experts Anomaly Detector to capture diverse anomaly
patterns. We claim that this design mitigates spectral washing in GNNs and enhances detection of
evolving anomalies.

shifting anomaly patterns over time. It encompasses: (1) Chebyshev feature extractor, for filter-
ing in ChebNet to preserve high-frequency anomaly cues and reduce spectral washing. (2) Con-
trastive anomaly generator, for addressing anomaly scarcity, we introduce a contrastive generator
that augments anomalies through view consistency, improving representation and robustness. (3)
Mixture-of-Experts detector, for handling evolving anomalies, we employ a Mixture-of-Experts
(MoE) detector with multiple experts (same architecture, independent parameters) and a gating net-
work to combine their outputs, enabling diverse and adaptive detection.

3.1 CHEBYSHEV FEATURE EXTRACTOR

The Chebyshev feature extractor in CHEBMOE is designed to preserve both low-frequency (smooth)
and high-frequency (anomaly-relevant) components in graph signals, thereby maintaining the spec-
tral information crucial for effective anomaly detection. Unlike standard GNNs whose filters in-
herently decay over frequency and thus cause spectral washing, the Chebyshev polynomial filter
allows flexible spectral shaping that explicitly retains high-frequency signals critical for detecting
anomalies.

Graph Laplacian and Spectral Filtering. Given a graph G = (V,E) with N = |V | nodes, let
A ∈ RN×N denote the adjacency matrix, and D the diagonal degree matrix with Dii =

∑
j Aij .

The normalized graph Laplacian is defined as:

L = IN −D− 1
2AD− 1

2 , (1)

where IN is the identity matrix. Formally, let L = UΛU⊤ be the eigendecomposition of L
with Λ = diag(λ1, . . . , λN ) and orthonormal U. Let the graph Fourier transform (GFT) of X be
X̂ = U⊤X. A spectral filter with response h : [0, λmax]→ R acts as

Y = h(L)X = Uh(Λ)U⊤X, h(Λ) = diag
(
h(λ1), . . . , h(λN )

)
. (2)

For first-order GCN propagation, one obtains an approximately low-pass response hGCN(λ) = 1−λ
(see Appendix B.1 for details). Hence for any high-frequency band H = [λc, λmax] with λc > 0,
the band energy contracts as:∑

λi∈H

∥Ŷi,:∥22 =
∑
λi∈H

hGCN(λi)
2 ∥X̂i,:∥22 ≤ (1− λc)

2
∑
λi∈H

∥X̂i,:∥22, (3)

This contraction of high-frequency energy is referred to as spectral washing (see Appendix B.1
for details). We argue that the Chebyshev polynomial formulation counteracts this by enabling
controlled amplification or retention of high-frequency components, explained as follows:
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Chebyshev Polynomial Filter. Let λmax be the largest eigenvalue of L (for the normalized Lapla-
cian, λmax ≈ 2). The scaled Laplacian is:

L̃ =
2

λmax
L− IN . (4)

The Chebyshev polynomials Tk(·) are defined recursively as:

T0(L̃) = IN , (5)

T1(L̃) = L̃, (6)

Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃), k ≥ 2. (7)

Given an input node feature matrix X ∈ RN×d, the Chebyshev spectral filtering of order K is
formulated as:

Y =

K∑
k=0

Tk(L̃)XΘk, (8)

where Θk ∈ Rd×F are learnable weight matrices for each polynomial order k, and F is the output
feature dimension. Equivalently in the spectral domain, the induced frequency response is

hΘ(λ) =

K∑
k=0

θk Tk

(
2λ

λmax
− 1
)
, with θk determined by Θk. (9)

By the Chebyshev minimax property, for any continuous target response r∗ : [0, λmax] → R and
any ε > 0, there exists K and coefficients {θk}Kk=0 such that

sup
λ∈[0,λmax]

∣∣hΘ(λ)− r∗(λ)
∣∣ ≤ ε, see Proposition 6 in Appendix C. (10)

The ChebNet layer produces the following output:

H = σ(Y) = σ

(
K∑

k=0

Tk(L̃)XΘk

)
, (11)

where σ(·) is a nonlinear activation function (e.g., ReLU).

Implementation and Efficiency. The Chebyshev filtering can be efficiently computed by recur-
sively generating Tk(L̃)X for k = 0, . . . ,K, thus avoiding explicit eigen-decomposition and en-
abling scalability to large graphs; see Lemma 5 in Appendix C.

Spectral Coverage and Anomaly Sensitivity. By tuning the polynomial order K, ChebNet flex-
ibly shapes its spectral response to balance low- and high-frequency components, as formalized
in Proposition 6 and Corollary 7 (Appendix C). Specifically, smaller K emphasizes smooth low-
frequency patterns, while larger K selectively retains sharp high-frequency variations that are often
indicative of anomalies. This property directly mitigates the spectral washing effect commonly ob-
served in standard GNNs. Beyond this intuitive perspective, we next formalize the high-frequency
energy preservation guarantee. Moreover, let H = [λc, λmax] denote a high-frequency band and
suppose the target r∗ satisfies r∗(λ) ≥ γ > 0 for all λ ∈ H. Combining (9)–(10) yields the energy
preservation guarantee∑

λi∈H

∥Ŷi,:∥22 ≥ (γ − ε)2
∑
λi∈H

∥X̂i,:∥22, formalized in Corollary 7 (Appendix C). (12)

Thus, with appropriately chosen K and coefficients, ChebNet provably preserves anomaly-relevant
high-frequency energy while allowing control over low-frequency gain. For dynamic graphs, we
apply the ChebNet layer to each temporal snapshot Gt with features Xt, yielding spectral-aware
node embeddings Ht for downstream anomaly detection. The Chebyshev feature extractor flexi-
bly shapes the frequency response to preserve high-frequency anomaly signals while aggregating
smooth graph information, directly addressing spectral washing. We claim, this principled approach
underpins its effectiveness for both static and dynamic anomaly detection.
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3.2 CONTRASTIVE ANOMALY FEATURE GENERATOR

To address the scarcity of anomaly samples, we introduce a contrastive anomaly feature generator
that synthesizes diverse anomaly-like features by maximizing similarity between augmented views
of the same anomaly and dissimilarity between different anomalies. This expands the anomaly
feature space and improves representation robustness.

Input and Feature Extraction. Let H = {hi ∈ RF }Ni=1 be the node features from the Chebyshev
extractor, where N is the number of nodes and F the feature dimension. We select features of nodes
flagged as anomalous, which serve as input to the contrastive generator.

Latent Embedding via MLP Encoder. Each anomaly feature hi is encoded into a latent vector
zi ∈ Rp using a multi-layer perceptron (MLP):

zi = fMLP(hi) = W3 · σ (W2 · σ (W1hi + b1) + b2) + b3, (13)

where W1,W2,W3 and b1,b2,b3 are learnable parameters, and σ(·) is a nonlinear activation
(e.g., ReLU). We use unit-norm embeddings z̃i = zi/∥zi∥, so cosine similarity reduces to a dot
product.

Contrastive Learning Objective. The encoder is trained with the InfoNCE loss (Zhang et al.,
2023). For a batch of B anomaly samples, we generate two augmentations per node, yielding 2B
views. Let {z̃k}2Bk=1 be the normalized embeddings. For each positive pair (i, j) (two views of the
same node), the loss is:

ℓi,j = − log
exp

(
z̃⊤i z̃j/τ

)∑2B
k=1
k ̸=i

exp
(
z̃⊤i z̃k/τ

) . (14)

Here τ > 0 is a temperature parameter. The total loss is:

Lcontrastive =
1

2B

B∑
k=1

[ℓ2k−1,2k + ℓ2k,2k−1] . (15)

This contrastive approach learns embeddings where augmented views of the same anomaly are close,
and different anomalies are distinct—without requiring explicit anomaly labels. The resulting di-
verse anomaly representations enhance downstream anomaly detection.

3.3 MIXTURE OF EXPERTS-BASED ANOMALY DETECTOR

To flexibly capture diverse and evolving anomaly patterns—especially high-frequency variations in
dynamic graphs—we employ a Mixture of Experts (MoE) as our anomaly detector. A single model
with fixed parameters struggles to handle the temporal and spectral heterogeneity of anomalies.
Instead, our MoE uses multiple homogeneous experts with independent parameters, allowing each to
specialize automatically during training, while a gating network adaptively combines their outputs.

Expert Architecture. Given input features x ∈ RC×L (C: feature dimension, L: sequence length,
typically L = 1), we instantiate M experts {Em}Mm=1, each with identical architecture (e.g., MLP
or CNN) but independent parameters. Each expert outputs:

em = Em(x) ∈ Rd (16)

where d is the expert output dimension. Experts naturally specialize in different anomaly patterns
during training.

Gating Network. A gating network G(·) computes a probability distribution over experts for each
input:

α = G(x) = softmax (Wg · pool(Conv(x)) + bg) ∈ RM (17)

where Conv(·) is a convolutional layer, pool(·) is an adaptive pooling (e.g., global average pooling),
and Wg,bg are learnable parameters. The softmax ensures αm ≥ 0 and

∑M
m=1 αm = 1.
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MoE Aggregation and Classification. The final representation is a weighted sum of expert outputs,
z =

∑M
m=1 αmem.This is passed to a classifier C(·) (e.g., MLP) to predict anomaly probability:

ŷ = softmax(C(z)) ∈ R2 (18)

where the output corresponds to normal and anomaly classes. The MoE detector is trained end-to-
end by minimizing cross-entropy loss over a batch of N samples:

LCE = − 1

N

N∑
i=1

2∑
c=1

yi,c log ŷi,c (19)

where yi,c is the one-hot ground-truth label. In order to promote expert specialization and balanced
usage, we add two regularizers: (1) a sparsity term based on gate entropy, and (2) a load-balancing
term based on average gate usage. For a batch of size N , let α(n) be the gate for sample n, and
ᾱ = 1

N

∑N
n=1 α

(n). We define the following regularizers:

Lspar = −
1

N

N∑
n=1

M∑
m=1

α(n)
m logα(n)

m (20)

Lbal = KL
(
ᾱ
∥∥ u
)
, u = (1/M, . . . , 1/M) (21)

The total loss is:
Ltotal = LCE + λ1 Lspar + λ2 Lbal (22)

with nonnegative coefficients λ1, λ2. Small k and low gate entropy encourage specialization, while
the balancing term prevents expert under-utilization. In summary, our MoE detector combines ho-
mogeneous experts and a gating network to adaptively specialize and robustly detect diverse, high-
frequency anomaly patterns in dynamic graphs.

Training workflow of CHEBMOE. The training and inference of CHEBMOE follow four stages:
(1) node features from each graph snapshot Gt are filtered via Chebyshev polynomials to retain
low- and high-frequency signals; (2) the contrastive anomaly generator augments anomaly features
to enrich training and improve robustness; (3) embeddings are processed by multiple experts in the
Mixture-of-Experts module, with a gating network producing a weighted aggregation; (4) the aggre-
gated representation is fed to a classifier to predict anomalies, trained end-to-end with cross-entropy
loss and optional contrastive objectives. This workflow clarifies module interactions; detailed algo-
rithms and time complexity are in Appendix D and E.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate CHEBMOE on six dynamic graph anomaly detection benchmarks:
Wikipedia (Kumar et al., 2019), Reddit (Kumar et al., 2019), EU-Core1/3 (Guo et al., 2022), AL-
PHA (Kumar et al., 2016), and UCI (Zheng et al., 2019). Detailed description of the datasets are
given in Appendix F.

Baselines. We compare with seven representative methods, including TGAT (Xu et al., 2020),
DOMINANT (Ding et al., 2019), CONAD (Xu et al., 2022), SAD (Tian et al., 2023), and other
widely used baselines. Further details about the baseline models are given in Appendix F.

Evaluation Metrics. For performance evaluation, we adopt four standard metrics: ROC-AUC,
AUPR, Precision, and F1-score. Further details and mathematical formulations of the evaluation
metrics are given in Appendix F.

Setup. Each dataset is split into five temporal segments: the first four for training and validation,
and the last for testing. The embedding dimension is set to k = 128, with a batch size of 100. All
experiments are conducted on an NVIDIA RTX 4060 GPU, and results are averaged over 20 runs.
We use PyTorch 1.13.1 with CUDA 12.2. The Adam optimizer Zhang (2018) is adopted with an
initial learning rate of 1× 10−3.
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Table 1: Performance comparison on Wiki, Reddit, and UCI datasets.

Method Wiki Reddit UCI
ROC-AUC Precision F1-score AUPR ROC-AUC Precision F1-score AUPR ROC-AUC Precision F1-score AUPR

TGAT 0.7576 0.4991 0.4995 0.0251 0.6222 0.4995 0.4998 0.0020 0.9491 0.4971 0.4985 0.1258
DOMINANT 0.6707 0.0947 0.1022 0.0845 0.6101 0.2340 0.2281 0.1602 0.5233 0.1895 0.0805 0.1912
DONE 0.6486 0.0777 0.0839 0.0775 0.5690 0.2200 0.2144 0.1353 0.4993 0.2000 0.0850 0.1848
CONAD 0.6698 0.0947 0.1022 0.0845 0.6119 0.2360 0.2300 0.1602 0.5225 0.1895 0.0805 0.1913
AnomalyDAE 0.6706 0.0922 0.0996 0.0831 0.5666 0.2280 0.2222 0.1444 0.4912 0.1895 0.0805 0.1835
SAD 0.8641 0.4991 0.4995 0.0181 0.6880 0.4995 0.4998 0.0027 0.9223 0.4971 0.4985 0.1746
MAMF 0.9355 0.8757 0.8307 0.7507 0.7221 0.8082 0.6425 0.6053 0.9735 0.9760 0.9741 0.9725
CHEBMOE(Ours) 0.9906 0.8814 0.8503 0.7718 0.8791 0.8581 0.7923 0.7067 0.9812 0.9821 0.9806 0.9808

Table 2: Performance comparison on EU-Core1, EU-Core3, and ALPHA datasets.

Method EU-Core1 EU-Core3 ALPHA
ROC-AUC Precision F1-score AUPR ROC-AUC Precision F1-score AUPR ROC-AUC Precision F1-score AUPR

TGAT 0.4475 0.4972 0.4986 0.0057 0.5558 0.4944 0.4972 0.0980 0.7542 0.4682 0.4836 0.1427
DOMINANT 0.5282 0.2745 0.1162 0.2214 0.5856 0.2157 0.0995 0.2123 0.6823 0.6579 0.3289 0.4152
DONE 0.5138 0.3137 0.1328 0.2247 0.5535 0.1569 0.0724 0.2019 0.6843 0.6474 0.3237 0.4006
CONAD 0.5255 0.2745 0.1162 0.2199 0.5868 0.2157 0.0995 0.2128 0.6816 0.6737 0.3368 0.4107
AnomalyDAE 0.4993 0.2745 0.1162 0.2170 0.5835 0.1961 0.0905 0.2063 0.4962 0.0947 0.0474 0.1436
SAD 0.5361 0.4944 0.4972 0.0170 0.9080 0.4986 0.4972 0.1555 0.7574 0.4682 0.4836 0.1414
MAMF 0.9573 0.9516 0.9455 0.9258 0.9403 0.9017 0.8748 0.8381 0.9355 0.9400 0.9293 0.9320
CHEBMOE(Ours) 0.9665 0.9734 0.9714 0.9696 0.9611 0.9606 0.9557 0.9597 0.9517 0.9478 0.9447 0.9325

4.2 PERFORMANCE COMPARISON

We evaluate our method on seven real-world dynamic graph datasets against seven state-of-the-art
baselines (Tables 1–2). Across all datasets, our method achieves top or highly competitive per-
formance in ROC-AUC, Precision, F1-score, and AUPR, demonstrating strong generalization and
robustness. On large-scale dynamic graphs like Wikipedia and Reddit, existing methods degrade
due to over-smoothing, limited temporal modeling, or loss of high-frequency signals. In contrast,
our model maintains high performance, e.g., ROC-AUC of 0.9906 on Wikipedia and 0.8791 on Red-
dit, surpassing the strongest baseline (MAMF). The improvements stem from three key innovations:
(i) Chebyshev filtering preserves high-frequency anomaly signals; (ii) the SimCLR-based anomaly
generator enhances feature robustness; (iii) the Mixture-of-Experts detector adapts to heterogeneous
anomalies. Detailed dataset-specific results are in Appendix F.

4.3 ABLATION STUDY

We evaluate two components: the Chebyshev filter and the SimCLR generator. Replacing the
Chebyshev kernel with GCN or GAT (GCN+SimCLR+MoE, GAT+SimCLR+MoE) leads to con-
sistent performance drops (Fig. 3), with GCN worst, indicating that low-pass filters suppress
anomaly-relevant high-frequency signals. Substituting SimCLR with a GAN-based generator
(ChebNet+GAN+MoE) also hurts results, especially AUPR and F1 (Fig. 4), as GAN tends to mem-
orise anomalies rather than enforce invariant features. Overall, both Chebyshev and SimCLR are
indispensable for preserving discriminative spectra and ensuring robust generalisation.

(a) (b) (c) (d)

Figure 3: Group 1 ablation: performance across AUPR, F1, Precision, and AUC for the Chebyshev
filter variants.

4.3.1 PARAMETER SENSITIVITY ANALYSIS

We study three key hyper-parameters: ChebNet order K, number of experts M , and SimCLR tem-
perature τ . Performance is generally stable across reasonable ranges: K = 3 balances accuracy and
complexity; increasing M slightly improves AUC; and τ values between 0.07–0.10 yield consis-
tently strong results. Detailed results and full metric comparisons are deferred to Appendix H.
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(a) (b) (c) (d)

Figure 4: Group 2 ablation: performance across AUPR, F1, Precision, and AUC for the generator
variants.

(a) t-SNE visualization of normal (blue) and anoma-
lous (red) nodes. Left: with mitigation; Right: with-
out mitigation.

(b) Frequency response curves. Chebyshev filter-
ing preserves low- and high-frequency components;
GCN filtering attenuates high-frequency signals.

Figure 5: Comparison of representation quality (t-SNE) and spectral behavior (frequency response).

4.4 T-SNE VISUALIZATION OF SPECTRAL WASHING MITIGATION

We visualize latent embeddings of 100 simulated anomalies and 100 normal nodes using t-SNE.
Results on a representative dataset are shown in the main text, with others in Appendix G.2. As in
Fig. 5a, when spectral washing is mitigated, anomalies form a clear cluster separated from normal
nodes; without it, separation is weaker. This confirms that our generator produces high-quality
anomalies and that preserving high-frequency components is critical for discrimination.

4.5 FREQUENCY RESPONSE ANALYSIS

We compare the frequency response of GCN propagation and our Chebyshev-based extraction. As
shown in Fig. 5b, GCN suppresses high-frequency signals and obscures local anomalies, while our
approach preserves both low- and high-frequency components, keeping anomalies distinguishable.
Consistent patterns on other datasets (ALPHA, EU-CORE1/3, WIKIPEDIA, REDDIT) are provided
in Appendix G.1, validating the effectiveness of our spectral preservation.

On the UCI and Wikipedia dataset (Figure 5b ), the Chebyshev filter maintains moderate gain across
all frequency bands, ensuring that anomalies with high-frequency characteristics are preserved. In
contrast, the GCN filter strongly suppresses high-frequency components, which can obscure anoma-
lies. The analysis confirms that our Chebyshev-based approach effectively mitigates spectral wash-
ing. Similar trends are observed on other datasets (ALPHA, EU-CORE1, EU-CORE3, WIKIPEDIA,
REDDIT), which are included in Appendix G.1.

5 CONCLUSION AND FUTURE WORK

We address node-level anomaly detection on dynamic graphs, focusing on the spectral shift problem,
where standard GNNs suppress high-frequency anomaly signals. To solve this, we propose CHEB-
MOE, which combines a Chebyshev spectral feature extractor, an anomaly generator, and a Mixture
of Experts classifier. Our approach preserves crucial frequency information, improves anomaly rep-
resentation, and adaptively models diverse anomalies. Experiments on benchmark datasets show
that CHEBMOE consistently outperforms prior methods, especially for subtle and abrupt anomalies.
Future work includes exploring advanced temporal modeling, enhancing cross-domain generaliza-
tion, improving interpretability, and increasing robustness to adversarial attacks and noise.

9
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ETHICS STATEMENT

Our work focuses on graph anomaly detection, which has important applications in domains such
as cybersecurity, fraud prevention, and infrastructure protection. While these applications can bring
substantial societal benefits by improving security and stability, there are also potential risks if the
technology is misused, such as infringing on individual privacy or enabling unauthorized surveil-
lance through the inference of sensitive relationships or behaviors. We emphasize that the goal of
this research is to advance the scientific understanding of graph representation learning and anomaly
detection. We strongly advocate for responsible use of this technology, in compliance with ethical
guidelines, data protection principles, and privacy regulations, and caution against applications that
may cause harm to individuals or society.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. All datasets used in our
experiments are publicly available, and the main text provides detailed descriptions of data prepro-
cessing, model architectures, hyperparameters, and training procedures. In addition, the code for
our experiments is publicly released at https://anonymous.4open.science/status/
experiment-HL8530, enabling other researchers to replicate and verify our results on the same
datasets.
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USE OF LARGE LANGUAGE MODELS (LLMS)

During manuscript preparation, we used ChatGPT (GPT-4) as a supporting tool. Its role was limited
to correcting grammar, refining phrasing for clarity, and assisting with minor debugging of code
snippets. All research ideas, model designs, experiments, and analyses were independently carried
out by the authors without LLM involvement.

A NOTATION SUMMARY

We summarize the key notations used throughout this paper in Table 3.

Table 3: Notations

Symbol Description

G = (V,E) Graph with node set V and edge set E
N = |V | Number of nodes in graph G
A ∈ RN×N Adjacency matrix of graph G
X ∈ RN×d Input node feature matrix
Θk ∈ Rd×F Learnable weight matrix for polynomial order k
H ∈ RN×F Output node embeddings from Chebyshev extractor
fMLP(·) Multi-layer perceptron encoder in SimCLR module
Em(·) m-th expert network mapping input to embedding
α = [α1, . . . , αM ] Normalized expert weights,

∑
m αm = 1

B THEORETICAL ANALYSIS OF SPECTRAL WASHING

Here, we provide a rigorous and detailed theoretical analysis of the spectral washing phenomenon
in standard GNNs, explaining why high-frequency anomaly signals are attenuated, and motivating
the use of spectral-preserving filters such as Chebyshev polynomials.

B.1 GRAPH SPECTRAL ANALYSIS

Consider a graph G = (V,E) with N nodes, adjacency matrix A, and degree matrix D. The
normalized graph Laplacian is given by

L = IN −D−1/2AD−1/2, (23)

which admits the eigendecomposition L = UΛU⊤, where Λ = diag(λ1, . . . , λN ) and 0 = λ1 ≤
· · · ≤ λN ≤ 2.

A graph signal x ∈ RN can be represented in the graph Fourier basis as

x̂ = U⊤x, (24)

where x̂ contains the spectral coefficients.

Formally, consider the normalized graph Laplacian L = IN − D−1/2AD−1/2 with eigenpairs
(λi,ui), satisfying

Lui = λiui, ∥ui∥2 = 1, (25)

where ui ∈ RN is the i-th unit-norm eigenvector and λi its corresponding eigenvalue. The Laplacian
quadratic form measures the smoothness of ui over the graph:

u⊤
i Lui = λi =

1

2

∑
(p,q)∈E

(
ui,p√
dp
− ui,q√

dq

)2

, (26)

where:

12
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• (p, q) ∈ E denotes an edge connecting nodes p and q,
• ui,p is the p-th component of eigenvector ui,
• dp is the degree of node p (number of neighbors).

This decomposition shows that small eigenvalues λi correspond to eigenvectors ui that vary slowly
across neighboring nodes (low-frequency, smooth modes), whereas large λi correspond to eigen-
vectors with rapid variation across neighbors (high-frequency, localized modes), which often corre-
spond to anomalies or sharp transitions.

Graph convolution operations can be viewed as spectral filtering. Let x ∈ RN be a graph signal and
x̂ = U⊤x its graph Fourier transform. Then a graph convolution with filter gθ(L) produces

x′ = gθ(L)x. (27)
Applying the graph Fourier transform x̂′ = U⊤x′ gives

x̂′ = U⊤gθ(L)Ux̂ = gθ(Λ)x̂, (28)

where gθ(Λ) = diag
(
gθ(λ1), . . . , gθ(λN )

)
. In standard GCNs, gθ(λ) ≈ 1−λ, which monotonically

decreases with λ, meaning that high-frequency components (large λi) are attenuated more than low-
frequency components. Hence, a GCN layer acts as a low-pass filter, suppressing anomaly-relevant
high-frequency signals.

B.2 NODE SIGNAL MODELING

We represent a node feature vector x ∈ RN as the sum of two components: a smooth background
signal and a localized anomaly:

x = xsmooth + xanom. (29)
Here, xsmooth represents the smooth background signal shared by most nodes, while xanom denotes
localized deviations corresponding to anomalies.

Applying the graph Fourier transform yields

x̂ = U⊤x, (30)
where U is the eigenvector matrix of the graph Laplacian. By linearity,

x̂ = x̂smooth + x̂anom, (31)
with x̂smooth = U⊤xsmooth and x̂anom = U⊤xanom.

Frequency Decomposition. To distinguish between smooth and anomalous components, we in-
troduce a frequency threshold λ0 and define spectral projectors:

x̂low = Pλ≤λ0
x̂, x̂high = Pλ>λ0

x̂, (32)
where Pλ≤λ0

and Pλ>λ0
are diagonal matrices that select eigenvalues below or above λ0, respec-

tively. Specifically, the diagonal entries are 1 for selected eigenvalues and 0 otherwise. In the node
domain, this gives

x = xlow + xhigh, xlow = Ux̂low, xhigh = Ux̂high. (33)

Using the Laplacian quadratic form (Section B.1),

x⊤Lx =

N∑
i=1

λi|x̂i|2, (34)

where x̂i is the i-th spectral coefficient. For the smooth component xsmooth, x⊤
smoothLxsmooth

is small, which implies that most of its energy |x̂i|2 is concentrated at low eigenvalues λi ≤ λ0

(low-frequency). For the anomalous component xanom, the quadratic form is large due to abrupt
variations, meaning its energy is concentrated at high eigenvalues λi > λ0 (high-frequency). Hence,
the decomposition

x = xlow + xhigh (35)
provides a theoretical justification linking smooth/normal signals to low-frequency modes and
anomalies to high-frequency modes, since x⊤

smoothLxsmooth is small (energy concentrated in low
frequencies) and x⊤

anomLxanom is large (energy concentrated in high frequencies), so that xlow ≈
xsmooth and xhigh ≈ xanom in practice.
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High-Frequency Energy. The energy in the high-frequency components is defined as

Ehigh(x) =
∑

λi>λ0

|x̂i|2. (36)

This energy measure corresponds to the Laplacian quadratic form, which quantifies the variation of
the signal across connected nodes (see Section B.1 for derivation). Localized anomalies typically
exhibit much higher high-frequency (Dirichlet) energy than smooth signals:

Ehigh(xanom)≫ Ehigh(xsmooth). (37)

This formalizes the intuition that anomalies correspond to sharp, localized changes, which appear
as dominant high-frequency components in the spectral domain.

In summary, smooth (normal) node signals mainly occupy low-frequency modes, whereas localized
anomalies primarily manifest in high-frequency modes. This provides a theoretical justification for
using high-frequency energy as an indicator of anomalous nodes.

B.3 GCN LAYER AS A LOW-PASS FILTER

A single GCN layer updates node features according to

x′ = ÂxW, Â = D̃−1/2ÃD̃−1/2, Ã = A+ I, (38)

where A is the adjacency matrix, I is the identity, and W is a learnable weight matrix. Here, λi is the
i-th eigenvalue of the normalized Laplacian L, which quantifies the smoothness of the corresponding
Fourier mode ui.

In the spectral (Fourier) domain, this operation can be interpreted as applying a frequency-dependent
filter:

x̂′
i ≈ hgcn(λi)x̂i, where hgcn(λi) = 1− λi. (39)

Here, λi denotes the i-th eigenvalue of the normalized Laplacian. Since hgcn(λi) decreases as λi

increases, higher-frequency components (corresponding to larger λi) are increasingly suppressed.
Thus, a GCN layer acts as a low-pass filter.

For a stack of L GCN layers, the overall frequency response becomes

x̂
(L)
i = (hgcn(λi))

Lx̂i = (1− λi)
Lx̂i. (40)

This means that high-frequency components are attenuated exponentially with the number of layers
L:

|x̂(L)
anom,i|

2 = (1− λi)
2L|x̂anom,i|2, ∀λi > λ0, (41)

where λ0 is a threshold separating low and high frequencies. For λi > λ0, (1 − λi)
2L quickly

approaches zero as L increases, so the high-frequency (anomaly-relevant) components are almost
entirely washed out. Consequently, anomalies encoded in high-frequency components are strongly
suppressed by GCN layers, which may reduce the model’s sensitivity to localized anomalous nodes.

B.4 ATTENUATION OF HIGH-FREQUENCY ENERGY

The total high-frequency energy after L GCN layers is given by

Ehigh(x
(L)) =

∑
λi>λ0

|x̂(L)
i |

2 =
∑

λi>λ0

(1− λi)
2L|x̂i|2. (42)

For normal (smooth) nodes, the high-frequency energy is already small and becomes negligible after
propagation:

Ehigh(x
(L)
norm) ≈

∑
λi>λ0

(1− λi)
2L|x̂smooth,i|2 ≈ 0. (43)

For anomalous nodes, which initially have large high-frequency energy, repeated GCN layers dras-
tically reduce this energy:

Ehigh(x
(L)
anom) =

∑
λi>λ0

(1− λi)
2L|x̂anom,i|2 ≪ Ehigh(xanom). (44)
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This shows that the distinctive high-frequency signature of anomalies is strongly suppressed.

The difference in high-frequency energy between anomalous and normal nodes after L layers is

∆E
(L)
high = Ehigh(x

(L)
anom)− Ehigh(x

(L)
norm)≪ ∆Ehigh = Ehigh(xanom)− Ehigh(xnorm). (45)

This quantifies the spectral washing effect: the gap in high-frequency energy that distinguishes
anomalies from normal nodes is greatly diminished, making anomalies harder to detect.

B.5 IMPLICATIONS FOR ANOMALY DETECTION

Lemma 1 (Exponential suppression of high-frequency components by GCN). Let λ0 ∈ (0, 2] denote
the high-frequency threshold and let L ∈ N. For a stack of L GCN layers with frequency response
hgcn(λ) = 1− λ, any spectral component x̂i with λi > λ0 satisfies∣∣x̂(L)

i

∣∣2 =
(
1− λi

)2L ∣∣x̂i

∣∣2 ≤ (1− λ0

)2L ∣∣x̂i

∣∣2.
In particular, high-frequency components are suppressed at least geometrically in L.

Proof. By Section B.3, the L-layer response is (1 − λi)
L on eigenvalue λi. Since λ 7→ 1 − λ

decreases on [0, 2], for all λi > λ0 we have |(1 − λi)| ≤ |(1 − λ0)| < 1. Squaring yields the
claim.

Proposition 2 (Geometric decay of high-frequency energy and gap). Define γ := maxλi>λ0
(1 −

λi)
2 < 1. Then for any graph signal x and any L ∈ N,

Ehigh(x
(L)) =

∑
λi>λ0

(1− λi)
2L |x̂i|2 ≤ γL Ehigh(x).

Moreover, if anomalies dominate pointwise in the high-frequency spectrum, i.e., |x̂anom,i|2 ≥
|x̂norm,i|2 for all λi > λ0, then the energy gap obeys

∆E
(L)
high = Ehigh(x

(L)
anom)− Ehigh(x

(L)
norm) ≤ γL ∆Ehigh.

Proof. The first inequality follows by taking γ outside the sum. Under pointwise dominance, each
per-frequency difference is nonnegative and scaled by (1 − λi)

2L ≤ γL, yielding the stated bound
on the gap.

Corollary 3 (Reduced separability under GCN propagation). Under the conditions of the propo-
sition, any anomaly detector whose score is a (strictly) increasing function of Ehigh experiences a
monotonically shrinking margin between anomalous and normal nodes. In particular, for any fixed
threshold τ > 0, there exists Lτ such that for all L ≥ Lτ , ∆E

(L)
high < τ .

Proof. Immediate from ∆E
(L)
high ≤ γL∆Ehigh with γ ∈ (0, 1).

Proposition 4 (Existence of spectral-preserving polynomial filters). For any ε > 0 and constants
c ∈ (0, 1) and λ0 ∈ (0, 2], there exists a polynomial filter h(λ) such that |h(λ) − 1| ≤ ε for all
λ > λ0 and |h(λ)| ≤ c for all λ ∈ [0, λ0]. Such filters can be realized via Chebyshev polynomial
expansions after scaling the spectrum to [−1, 1].

Proof sketch. Define a continuous target response g(λ) that equals 1 on [λ0+δ, 2] and is bounded by
c on [0, λ0−δ], with a smooth transition on [λ0−δ, λ0+δ] for some small δ > 0. By the Weierstrass
approximation theorem (applied on the scaled interval), g can be uniformly approximated by a
polynomial h within ε, yielding the stated properties. Implementing h with Chebyshev polynomials
gives an efficient, eigen-decomposition-free realization.
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C CHEBYSHEV FILTERS FOR PRESERVING HIGH-FREQUENCY
INFORMATION

This section provides a clear theoretical explanation of how Chebyshev polynomial filters can coun-
teract spectral washing in GCNs and preserve high-frequency spectral components that are crucial
for effective anomaly detection.

C.1 CHEBYSHEV POLYNOMIAL FILTERING

Let L = UΛU⊤ denote the normalized graph Laplacian. A Chebyshev polynomial filter of order
K is defined as:

y =

K∑
k=0

θkTk(L̃)x, (46)

where L̃ = 2
λmax

L − I rescales the Laplacian so its eigenvalues lie in [−1, 1], Tk(·) is the k-th
Chebyshev polynomial, and θk are learnable filter coefficients.

In the spectral domain, this operation is equivalent to:

ŷi =

K∑
k=0

θkTk(λ̃i)x̂i = hcheb(λi)x̂i, (47)

where hcheb(λi) is the frequency response of the filter at eigenvalue λi.

C.2 PRESERVATION OF HIGH-FREQUENCY COMPONENTS

Chebyshev polynomials form an orthogonal basis on [−1, 1], enabling the construction of filters that
approximate arbitrary frequency responses. By appropriately choosing the coefficients θk, we can
design hcheb(λ) to satisfy:

hcheb(λi) ≈ 1, ∀λi > λ0, (48)
where λ0 is a chosen high-frequency threshold. This means that for high-frequency components
(i.e., those with λi > λ0), the filter passes them through with minimal attenuation:

x̂′
anom,i = hcheb(λi)x̂anom,i ≈ x̂anom,i, λi > λ0. (49)

Thus, the spectral signatures of anomalies, which often reside in the high-frequency range, are
preserved.

C.3 RESTORATION OF HIGH-FREQUENCY ENERGY AND SEPARABILITY

After applying the Chebyshev filter, the high-frequency energy of the anomalous signal is:

Ehigh(x
′
anom) =

∑
λi>λ0

|hcheb(λi)x̂anom,i|2 ≈
∑

λi>λ0

|x̂anom,i|2 = Ehigh(xanom). (50)

This means the filter effectively restores the high-frequency energy that would otherwise be sup-
pressed by standard GCN layers. Consequently, the difference in high-frequency energy between
anomalous and normal nodes is also preserved:

∆Echeb
high = Ehigh(x

′
anom)− Ehigh(x

′
norm) ≈ ∆Ehigh, (51)

thereby mitigating the spectral washing effect and maintaining the separability needed for reliable
anomaly detection.

C.4 THEORETICAL IMPLICATIONS

Lemma 5 (Eigen-free implementation via Chebyshev recurrence). Let L̃ = 2
λmax

L − I and define
T0 = I , T1 = L̃, and Tk = 2L̃Tk−1 − Tk−2. Then for any feature matrix X ∈ RN×F ,

K∑
k=0

θkTk(L̃)X

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

can be computed without eigendecomposition using K sparse matrix–vector multiplications per
feature channel. Hence the implementation cost is linear in K and in the number of nonzeros of L.

Proposition 6 (Uniform approximation of target frequency responses). Let g : [0, 2]→ R be contin-
uous and let hK denote the degree-K Chebyshev approximation of g on [0, 2] after spectrum scaling
to [−1, 1]. Then ∥hK − g∥∞ → 0 as K →∞. In particular, for any ε > 0, there exists K such that

|hK(λ)− 1| ≤ ε for all λ > λ0, |hK(λ)| ≤ c for all λ ∈ [0, λ0]

for some c ∈ (0, 1), realizing a high-pass design that preserves high frequencies while controlling
low-frequency gain.

Corollary 7 (Lower bound on preserved high-frequency energy). Suppose a filter h satisfies |h(λ)−
1| ≤ ε for all λ > λ0. Then for any signal x,

Ehigh(x
′) =

∑
λi>λ0

|h(λi)x̂i|2 ≥ (1− ε)2 Ehigh(x).

If in addition |h(λ)| ≤ c for all λ ≤ λ0, then for anomalous and normal signals

∆E′
high ≥ (1− ε)2Ehigh(xanom) − c2Ehigh(xnorm),

so the separability in high-frequency energy is maintained for small ε and moderate c.

The results above show that Chebyshev filters (i) admit efficient, eigen-free implementations, (ii)
approximate desired high-pass responses, and (iii) provably preserve high-frequency energy and
separability. This explains their effectiveness at counteracting spectral washing.
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D CHEBMOE—TRAINING ALGORITHM

Algorithm 1 CHEBMOE Framework for Graph Anomaly Detection

Require: Dynamic graph snapshots G = {Gt = (Vt, Et, Xt)}Tt=1

Ensure: Anomaly detection results {ŷ(t)v } for nodes v ∈ Vt

1: for t = 1 to T do
2: Compute normalized graph Laplacian L(t) (Eq. (1))
3: Compute scaled Laplacian L̃(t) (Eq. (4))
4: Compute Chebyshev polynomial filters Tk(L̃

(t)) for k = 0, . . . ,K (Eq. (8))
5: Extract spectral features H(t) ← σ

(∑K
k=0 Tk(L̃

(t))XtΘk

)
(Eq. (11))

6: end for
7: Construct dataset D = {hi} from all H(t)

8: Train SimCLR encoder fMLP with contrastive loss Lcontrastive (Eqs. (14), (15))
9: Obtain node latent embeddings zi = fMLP(hi) (Eq. (13))

10: for each input sample x do
11: Compute expert outputs em = Em(x), m = 1, . . . ,M (Eq. (16))
12: Compute gating weights α = G(x) (Eq. (17))
13: Aggregate representation z =

∑M
m=1 αmem

14: Predict anomaly probability ŷ = softmax(C(z)) (Eq. (18))
15: end for
16: Train MoE detector by minimizing cross-entropy loss L (Eq. (19))
17: return {ŷ(t)v } anomaly predictions for all nodes in new timestamp

Table 1 shows the overall algorithm workflow of CHEBMOE. The process contains three stages:

• Chebyshev Feature Extraction: Compute spectral node embeddings from the normalized graph
Laplacian (Algorithm steps 1–6).

• Contrastive Anomaly Generation: Encode anomalous node features with contrastive learning
to improve feature discrimination (Algorithm step 7).

• Mixture of Experts Detection: Dynamically aggregate multiple expert networks for final
anomaly prediction (Algorithm steps 8–13).

The CHEBMOE framework processes dynamic graph snapshots G = {Gt = (Vt, Et, Xt)}Tt=1 in
three main stages: Chebyshev feature extraction, Contrastive anomaly generation, and Mixture-
of-Experts (MoE) detection. In the first stage, for each graph snapshot Gt, the normalized graph
Laplacian L(t) is computed (Eq. (1)) and scaled to L̃(t) (Eq. (4)) to bound the spectrum. Chebyshev
polynomial filters Tk(L̃

(t)) for k = 0, . . . ,K are then applied to extract spectral node features
H(t) = σ

(∑K
k=0 Tk(L̃

(t))XtΘk

)
(Eq. (11)), encoding multi-hop structural information without

explicit eigendecomposition. Next, all spectral features from the snapshots are collected into a
dataset D = {hi}. A contrastive encoder fMLP is trained on D using contrastive loss Lcontrastive
(Eqs. (14), (15)) to obtain discriminative node embeddings zi = fMLP(hi) (Eq. (13)) suitable for
anomaly detection. Finally, the Mixture-of-Experts (MoE) detector processes each node embedding
x by computing expert outputs em = Em(x) and gating weights α = G(x). The aggregated
representation z =

∑M
m=1 αmem is then fed into a classifier C to predict the anomaly probability

ŷ = softmax(C(z)) (Eq. (18)). The MoE detector is trained end-to-end by minimizing cross-
entropy loss L (Eq. (19)), producing anomaly predictions {ŷ(t)v } for all nodes in new timestamps.

E TIME COMPLEXITY ANALYSIS OF CHEBMOE

In this section, we provide a clear analysis of the computational complexity for each major compo-
nent of CHEBMOE.

Chebyshev Feature Extractor At each time step, the Chebyshev feature extractor applies poly-
nomial filters of order K to a graph with N nodes and E edges. The dominant cost comes from
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repeated sparse matrix multiplications, resulting in a per-step complexity of:

O
(
K · E · d · F

)
(52)

where d is the input feature dimension and F is the number of output filters. The use of sparse
operations ensures scalability with respect to the number of edges E.

Contrastive Anomaly Feature Generator This module processes features of anomalous nodes
(each of dimension F ) in batches of size B. The forward pass through the MLP encoder has a
complexity of:

O(B · F · p) (53)
where p is the hidden layer size. The computation of the contrastive loss, which involves all pairwise
similarities within the batch, requires:

O(B2 · p) (54)

Mixture of Experts Anomaly Detector The Mixture of Experts (MoE) detector consists of M
expert subnetworks, each incurring a cost of O(C) per input sample, where C is the cost of a single
expert. The total cost per sample is:

O(M · C) (55)
The additional cost of the gating network is negligible compared to the experts.

Overall Complexity Aggregating all components over T time steps, the total computational com-
plexity of CHEBMOE is:

O
(
T · (K · E · d · F +M · C)

)
(56)

This expression highlights that the model scales linearly with the number of time steps and is effi-
cient for large, sparse graphs due to the reliance on sparse matrix operations.

F ADDITIONAL EXPERIMENTAL DETAILS

(a) Datasets. We evaluate our model on a diverse collection of real-world dynamic graph datasets,
each exhibiting unique structural and temporal characteristics that pose significant challenges for
anomaly detection:

(1) Wikipedia (Kumar et al., 2019). Captures the evolving hyperlink network of Wikipedia articles,
reflecting temporal editing and linking behaviors.

(2) Reddit (Kumar et al., 2019). Contains temporal user interaction graphs from Reddit subreddits,
modeling dynamic social engagement patterns.

(3) EU-Core1 and EU-Core3 (Guo et al., 2022). Represent dynamic collaboration networks among
EU researchers and institutions.

(4) ALPHA (Kumar et al., 2016). Cryptocurrency transaction networks from the Bitcoin ecosys-
tem, containing highly dynamic financial behavior.

(5) UCI (Zheng et al., 2019). Aggregates several dynamic graphs from the UCI Machine Learning
Repository, forming a heterogeneous benchmark.

Note. All datasets are highly imbalanced, with less than 5% of nodes labeled as anomalous, aligning
with real-world anomaly detection scenarios such as fraud detection and intrusion monitoring. This
imbalance is critical for evaluating model robustness in practical applications.

(b) Baselines. We compare our method with seven state-of-the-art approaches for dynamic graph
anomaly detection:

(1) TGAT (Xu et al., 2020). A temporal graph attention network that learns time-aware node rep-
resentations.

(2) DOMINANT (Ding et al., 2019). Combines structural and attribute reconstruction losses for
unsupervised anomaly detection.

(3) DONE (Bandyopadhyay et al., 2020). Integrates GCNs and temporal autoencoders for captur-
ing evolving graph behaviors.
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(4) CONAD (Xu et al., 2022). Employs contrastive learning with temporal augmentation to improve
robustness.

(5) AnomalyDAE (Fan et al., 2020). Uses deep autoencoders to detect anomalies in dynamic
graphs.

(6) SAD (Tian et al., 2023). A semi-supervised framework leveraging limited labels to guide
anomaly detection.

(7) MAMF (Hong et al., 2025). A multitask graph anomaly detection model that leverages meta-
learning to improve generalization under scarce anomaly samples. It fuses multiple structural fea-
tures and learns task-agnostic representations, enabling the model to adapt quickly to new temporal
slices or unseen anomaly patterns.

(c) Evaluation Metrics. To comprehensively evaluate anomaly detection performance, we adopt four
standard metrics:

(1) ROC-AUC (Receiver Operating Characteristic - Area Under Curve): Quantifies the model’s
ability to distinguish between anomalous and normal nodes across all possible thresholds. It is based
on the True Positive Rate (TPR) and False Positive Rate (FPR):

TPR =
TP

TP+ FN
, FPR =

FP

FP+ TN
, (57)

where TP, FP, TN, and FN denote true positives, false positives, true negatives, and false negatives,
respectively.

(2) Precision: Measures the proportion of correctly identified anomalous nodes among all nodes
predicted as anomalies:

Precision =
TP

TP+ FP
. (58)

(3) F1-score: The harmonic mean of Precision and Recall, providing a balanced measure of accu-
racy and completeness:

F1 = 2× Precision× Recall
Precision + Recall

, (59)

where Recall is defined as TP
TP+FN .

(4) AUPR (Area Under Precision-Recall Curve): Summarizes the trade-off between Precision
and Recall across different thresholds, and is especially informative for highly imbalanced datasets:

AUPR =

∫
Precision(Recall) d(Recall). (60)

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results to complement the main results.

G.1 FREQUENCY RESPONSE CURVES ON ADDITIONAL DATASETS

To further support our main findings, we present frequency response curves for additional datasets in
Figure 6. These results clearly show that Chebyshev filters consistently retain high-frequency spec-
tral components—features that are often indicative of anomalies—across all datasets. In contrast,
GCN filters tend to suppress these high-frequency signals, highlighting the spectral washing effect
and underscoring the advantage of Chebyshev-based filtering for anomaly detection.

Observation. For all datasets, Chebyshev-based filters consistently preserve significant high-
frequency components, which are crucial for effective anomaly detection. In contrast, GCN filters
strongly suppress high-frequency signals, illustrating the spectral washing phenomenon as shown in
Figure 6.
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(a) ALPHA dataset (b) CORE1 dataset

(c) CORE3 dataset (d) REDDIT dataset

Figure 6: Frequency response curves for the remaining datasets. Chebyshev filters preserve
anomaly-relevant high-frequency components across all datasets, whereas GCN filters suppress
them.

Figure 7: t-SNE visualization of normal (blue) and anomalous (red) nodes on ALPHA dataset.
Left: with mitigation; Right: without mitigation. Spectral washing mitigation improves anomaly
separability.

G.2 T-SNE VISUALIZATION ON OTHER DATASETS

In Section 5a, we presented a representative t-SNE visualization on the UCI dataset. For complete-
ness, we include additional visualizations on the remaining datasets: ALPHA (Figure 7), EU-
CORE1 (Figure 8), EU-CORE3 (Figure 9), WIKIPEDIA (Figure 10), and REDDIT (Figure 11).
Across all datasets, mitigating spectral washing consistently improves the separation between
anomalous and normal nodes. Without mitigation, anomalies remain partially distinguishable but
are less clearly separated, confirming the robustness of our spectral mitigation approach.
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Figure 8: t-SNE visualization on EU-CORE1 dataset. Left: with mitigation; Right: without mitiga-
tion. The separation between anomalies and normal nodes is enhanced with spectral mitigation.

Figure 9: t-SNE visualization on EU-CORE3 dataset. Left: with mitigation; Right: without mitiga-
tion. Spectral washing mitigation makes anomalies more distinct.

Figure 10: t-SNE visualization on WIKIPEDIA dataset. Left: with mitigation; Right: without miti-
gation. The Chebyshev-based approach clearly separates anomalous nodes from normal nodes.

H ADDITIONAL PARAMETER ANALYSIS

We provide a detailed study of three hyper-parameters in CHEBMOE: ChebNet order K, number
of experts M , and SimCLR temperature τ . Results are reported across four representative datasets
using four metrics: AUPR, F1-score, Precision, and ROC-AUC.
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Figure 11: t-SNE visualization on REDDIT dataset. Left: with mitigation; Right: without mitigation.
Spectral washing mitigation consistently improves anomaly separability across datasets.

(a) AUPR (b) F1 (c) Precision (d) ROC-AUC

Figure 12: Sensitivity of SimCLR temperature τ .

(a) AUPR (b) F1 (c) Precision (d) ROC-AUC

Figure 13: Impact of the number of experts M .

(a) AUPR (b) F1 (c) Precision (d) ROC-AUC

Figure 14: Sensitivity of ChebNet order K.
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