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ABSTRACT

Modern machine learning algorithms are generally built upon a
train/validation/test split protocol. In particular, with the absence of acces-
sible testing sets in real-world ML development, how to split out a validation
set becomes crucial for reliable model evaluation, selection and etc. Concretely,
under a randomized splitting setup, the split ratio of the validation set generally
acts as a vital meta-parameter; that is, with more data picked and used for
validation, it would cost model performance due to the less training data, and
vice versa. Unfortunately, this implies a vexing trade-off between performance
enhancement against trustful model evaluation. However, to date, the research
conducted on this line remains very few. We reason this could be due to a
workflow gap between the academic and ML production which we may attribute
to a form of technical debt of ML. In this article, we propose a novel scheme
— dubbed Proximal Validation Protocol (PVP) — which is targeted to resolve
this problem of validation set construction. Core to PVP is to assemble a
proximal set as a substitution for the traditional validation set while avoiding the
valuable data wasted by the training procedure. The construction of the proximal
validation set is established with dense data augmentation followed by a novel
distributional-consistent sampling algorithm. With extensive empirical findings,
we prove that PVP works (much) better than all the other existing validation
protocols on three data modalities (images, text and tabular data), demonstrating
its feasibility towards ML production.

1 INTRODUCTION

Most, if not all, machine learning production and research are conducted based on a
train/test/validation set split protocol. A machine learning engineer or scientist often first receives a
labeled dataset and splits it into a training and validation set, respectively. The role of the validation
set is critical when considering robust model evaluation, selection, hyper-parameter tuning, etc. Post
to the validation protocol, the best model being picked would be fed to the testing protocol, where
the testing set is generally not accessible during real-world ML development till this phase.

Notably, prior to splitting the labeled dataset, one needs to determine the split ratio of the validation
set against the training set. This ratio can be very tricky: if fewer samples are picked up for the
training protocol, the model validation can be less reliable. Contrarily, the larger validation set
effectively shortens the training resources, which may lead to performance degradation. In current
days, this ratio is often set based on the experience level of a human expert. This problem anchored
at the split ratio can also be exhibited in more complex validation schemes like cross-validation.

Indeed, this problem of setting the (sub-)optimal validation set is often, or mostly, ignored by the
academic cohorts in the community. To date, as we scrutinize the related literature, very few works
have touched down on this line (Li et al., 2020; Moss et al., 2018; Joseph & Vakayil, 2021). In
hindsight, a large portion of the standardized academic benchmarks have had a prefixed validation
set split, such as ImageNet (Krizhevsky et al., 2012), COCO (Lin et al., 2014), and SST (Socher
et al., 2013). Also, the testing set is often visible for the evaluation of the academic research. On
the one hand, this prefixed validation setup has some merit. For instance, this effectively dedicates
the ML research to the model towards innovated model architecture, optimization methods, new
learning paradigms, etc. On the other hand, we argue this could attribute to the technical debt (Scul-
ley et al., 2015) of ML. When considering ML production for real-world applications, we make the
following statements: (i)-not many application tags along with adequate or large-scale data because
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Figure 1: Traditional validation scheme (left) vs. Proximal Validation Protocol (right).

data curation and annotation both cost a fortune; (ii)-the testing set is often not accessible: consid-
ering the CTR prediction or manufactural defect detection where the testing data present and only
present post to the deployment; (iii)-the validation set is almost always decided by the ML experts
with their expertise. In these scenarios, how to split out a validation set may sit in the center. The
benign condition — where a validation set is preset and fixed — almost always does not hold in ML
production.

To this regard, we propose the Proximal Validation Protocol (dubbed PVP). With this novel valida-
tion protocol, we attempt to (fully) resolve the split problem and its trade-off. The core idea of PVP
is rather simple. It first synthetically generates a validation set based on the labeled dataset without
any splitting. Then, a novel distributional-consistent sampling algorithm is applied in order to se-
lect the most suitable synthetic data point for validation. The resulting set is dubbed the proximal
validation set. Thanks to the proposition of the proximal validation set, PVP (in theory) does not
rely on any real labeled data point for validation, effectively leading to performance improvement.
Notable, the comparison of PVP with the conventional validation protocol is graphically depicted in
Figure 1.

Empirically, we extensively conduct experiments on three data modalities — including tabular data,
image data, and text data. We actively compare the PVP with standardized methods like the holdout
protocol, K-fold cross validation, as well as the very limited related work like Joseph & Vakayil
(2021). Besides the series of analytical justifications, we choose three major metrics to form a
fair and comprehensive comparison: the performance, t-v gap and variance. Notably, performance
means the test score (e.g., AUC and Accuracy) of a model, variance refers to the stability of the
estimated performance (on validation set) under different random seeds, and t-v gap indicates the
closeness of the estimated performance to the test one. We empirically show that PVP achieves
better performance, lower bias and competitive variance than the standardized split-relied methods.
With three major data modalities being experimented, we hope that the ideology and instantiation
of the PVP can pave a way for a more effective validation protocol towards ML production on
real-world applications.

At last, we may summarize the contribution of this work as follows:

• We propose a novel validation scheme-work — PVP — a stable and reliable validation pro-
tocol relying on only the synthetic data while capable of enhancing the model performance.

• The decent empirical results of PVP on three major data modalities manifest its “plug-and-
play” nature. Its design is very much input data-dependent but independent of the model,
architectures, optimizers, and tasks. We hope PVP can shed some light on data-saving,
performance-effective, lightweight and profound validation procedure.

The code of PVP will be made public upon publication.

2 RELATED WORK

As we mentioned, the related literature remains very few. Looking back to the old days, the vali-
dation framework was raised to fix the issue of overfitting (Mosteller & Tukey, 1968; Stone, 1974;
Geisser, 1975), which was first noticed by Larson (1931). Due to the universality of the data split-
ting heuristics, the split-relied method can be applied to almost any algorithm in almost any frame-
work (Arlot & Celisse, 2010).
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Recent works aim to reduce the validation estimate’s instability, imprecision, and time cost. Specif-
ically, the instability refers to variance between multiple training results with random seeds on the
same model (Moss et al., 2018). And the imprecision means the gap between the model’s evaluation
results on the validation dataset and the test dataset (Zeng & Martinez, 2000). These works can
be divided into two categories. Some works explore the variants of traditional data-split validation
frameworks (Moss et al., 2018; Kohavi et al., 1995; Jiang & Wang, 2017; Székely & Rizzo, 2013;
Jung, 2018; Li et al., 2020; Tiittanen et al., 2021; Zeng & Martinez, 2000), such as holdout and k-
fold. The others try to propose a better split algorithm for the validation dataset generation. Joseph
& Vakayil (2021) and Budka & Gabrys (2012) propose methods to sample a specific subset from the
training set to generate a validation set in the tabular scenario. Joseph (2022) propose the optimal
train/validate splitting ratio theoretically, but only for the linear regression model.

However, most, if not all, of the literature works are limited by a “split-relied” framework. Based
on the logic chains from our previous section, they mostly would suffer from the splitting tradeoff
problem. Among them, we deem PVP as the pioneer attempt to be fully split-free. The split-relied
framework and suffer the train/validation split tradeoff.

3 METHOD

3.1 PROBLEM SETUP

To ease the discussion of validation methods, we start with problem setup. First, we define a source
set Dsrc as a compilation of the training and potential validation set, i.e., an unsplit (labeled) training
set. Similarly, the testing set is defined as Dte. Further, we follow the well-known assumption that
the instances of both datasets are I.I.D and drawn from an unknown underlying density distribution
F (X ,Y):

Dsrc = {(xsrc
i , ysrci )}Ni=1 , D

te =
{(

xte
i , ytei

)}M

i=1
, where (xi, yi)

iid∼ F (X ,Y) (1)

where N,M denote the number of labeled instances in the source set and test set, respectively,
and X ∈ Rd , Y ∈ R are the input and label space. From the source set Dsrc, we further define
the validation and train set so as to formulate the traditional validation process (e.g., the holdout
scheme).

Definition 3.1 (Validation Process). We define a validation set, Dval = ∁(Dsrc), where ∁ is a
(stochastic) collecting function facilitated by different seeds. This definition, in turn, yields a defini-
tion of a training set, Dtr = Dsrc \ Dval, by eliminating the validation samples from the source set.
From here, we further define a mapping function f , f (X ) → Y . Finally, we define the validation
process as §(f,Dval), where § is a scoring function compiling the inference pass together with an
evaluation metric, e.g., accuracy, f1-score.

Now, we describe the evaluation metrics of the validation method, which is essential for judging the
quality of the validation method. We formally declare the T-V Gap and Variance from the perspective
of validation, following previous works (Arlot & Celisse, 2010; Zeng & Martinez, 2000).

Definition 3.2 (T-V Gap). We define the test-validation gap (T-V Gap) as the difference between the
test score(i.e., performance on the data space (X ,Y)) and the estimated score of practically yielded
function: ∣∣§(f, (X ,Y))− §(f,Dval)

∣∣ . (2)

Definition 3.3 (Variance). We define ∁i as a set of collection functions under different random
initialization, and the variance is defined as:∑n

i=1

(
§(f, ∁i(Dsrc))− §(f, ∁(Dsrc))

)2

n
, (3)

Intuitively, T-V Gap signifies the inaccuracy of evaluation. A small T-V Gap corresponds to a precise
estimate of the true score (usually refers to performance in the real-world test environment). The
Variance measures the stability of the evaluation. And low variance means the estimated score is
robust under collection function ∁ with a different random seed. Ideally, with near-zero T-V Gap
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and Variance, the evaluation result is reliable, stable and able to obtain the best function f with the
highest score (on the test set).

Usually, perhaps not practical on many occasions, when more labeled data is set for validation, i.e.,
gathered by ∁ or ∁i, the greater intersection extent between the chosen set becomes larger. On the
one hand, this would effectively reduce the Variance. Besides, this will make Dval closer to (X ,Y),
which would reduce the T-V Gap. On the other hand, this further causes a reduction of the labeled
samples for training which may degrade the test score of the algorithm. Following this setup, in the
pursuit of a decent validation set, we may term it a “split tradeoff”.

Essentially, in the conventional randomized cross-validation or vanilla holdout schemes, it is always
a plague to set the ratio between samples used for training and samples entertained for validation
drawn from the source set. We find that this line of research is very much absent. Most research
has set this split ratio as a preset meta-parameter and stuck with it throughout the development.
However, as important as it is, we attempt to scrutinize this problem and propose a systematic
“split-free” solution.

3.2 PROXIMAL VALIDATION PROTOCOL

3.2.1 OVERVIEW OF FRAMEWORK

As introduced in definition 3.1, the validation set is obtained by a collecting function ∁, i.e., Dval =
∁(Dsrc), while the train set is formed via Dtr = Dsrc \ Dval. However, to achieve a split-free
solution, all data are left for training (i.e., Dtr = Dsrc). Thus, we design a new collecting function,
termed ∁

′
. The sample set yielded by ∁

′
is expected to have comparable evaluation quality to its

traditional validation set counterpart — comparable T-V Gap and Variance (in definition 3.2 and 3.3),
and comparable or superior performance.

As a result, we manage to build a framework PVP for ∁
′

and prove that it requires the following two
critical components (colored with red in Figure 1):

• A data generator G to produce candidate samples from source set Dsrc, which we define as
auxiliary set Daux = G (Dsrc). To tackle the obstacle of no available data for validation set
construction when all labeled samples of Dsrc are saved for training, we generate a set of
synthetic data. To prove this concept, we resort to the simplest method — the data augmen-
tation family — to implement the data synthesis process. The reason is two fold: (i)-the
augmented data can be arbitrarily large in theory, which may contribute to low variance
by providing sufficient samples for validation; (ii)-the methods from the data augmentation
family are generalized and can adapt to most of the data modalities and tasks.

• A distributional-consistent sampling algorithm A selects distributionally representative
samples from the auxiliary set to form a validation set. The chief challenge lies in how to
design the strategy to locate suitable samples among the auxiliary set, which can be chaotic
and biased due to the randomization nature of data augmentation. Again, we propose a
frustratingly simple method by relying on an angle-based distribution approximation (see
Figure 2) to chase for a small T-V Gap evaluation.

In general, ∁
′

can be formulated as ∁
′
= A (G (·)). And the output of ∁

′
(Dsrc), i.e., proximal

validation set Dpro, can replace the Dval in the validation process (in definition 3.1).

By proposing PVP, we entertain the possibility of relying (purely) on the generated samples to
construct the validation process. Practically, this may pose a great number of advantages over the
traditional split-relied validation process because it saves the samples for training, which likely leads
to performance gains.

In the following, in correspondence to the aforementioned bullets, we detail the instantiation of the
PVP framework.

3.2.2 DATA GENERATOR

The first step to facilitating a proximal validation process is to form a candidate pool for the proximal
validation set, which uses no original data points in the source set. We include an external data
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Figure 2: Illustration of distributional-consistent sampling algorithm. The steps of the algorithm are
displayed from left to right. First, the distribution of Dsrc is estimated via an intra-class angular
distribution on feature space. The estimated distribution is then used to select samples from the
auxiliary set to form a proximal validation set.

generator G to conduct the construction. The function G can be implemented by many existing
methods. Specifically, we profoundly choose the data augmentation approaches and carefully take
them to adapt to the requirements of high validation quality in Section 3.1. Generally, we use
this module to generate a large number of synthetic candidate data points, thanks to its continuous
nature. By forming a large pool, we aim to bring down the variance metric during the final proximal
validation. In addition, as is pointed out by Xu et al. (2022), the data augmentation scheme — when
designed and implemented properly — is capable of covering the data space for the most part yet
providing denser coverage. This may correspond to the metric of T-V Gap evaluation (definition 3.2)
that relates to the following module.

Formally, we can define the data generator G and the candidate pool Daux (named as the auxiliary
set) more concretely as:

Daux = G (Dsrc) = {g0(Dsrc), g1(Dsrc), . . . , gQ(Dsrc)} (4)

where G consists of a set of Q augmentation functions, i.e., G = {g0, g1, . . . , gQ}. In particular,
we conduct PVP on three fields, and the detailed augmentation methods are listed in Appendix A.1.
There is admittedly rich literature around data augmentation; this is mostly embedded into the train-
ing stage for feeding more samples to train the model instead of for validation purposes.

Data generation is another feasible way to generate the auxiliary set. However, given the extendibil-
ity and computational advantages of the data augmentation methods, we stick PVP with them. We
intend to leave the exploration of dataset generation methods, such as generative modeling (Good-
fellow et al., 2014) and dataset distillation (Wang et al., 2018), to work further.

3.2.3 DISTRIBUTIONAL-CONSISTENT SAMPLING ALGORITHM

The prior data augmentation module can, in theory, produce an arbitrarily large number of samples
for validation. This followed module is devised to select the most suitable samples to form the
proximal validation set in place of the validation set of the conventional counterpart workflow. As
mentioned in Section 3.1, high evaluation quality expects low T-V Gap and variance. It can be
achieved if the distribution of Dval differs slightly from F (X ,Y) and Dval has a large volume.
However, we do not have the precise form of F . Instead, we only have Dsrc, which is a set of
realizations from F . Thus, we can use the empirical distribution of the source set as a substitute for
F . And we abide by the expectation to propose the distributional-consistent sampling algorithm A
to select sufficient samples that are distributional representations.

As mentioned in Section 3.2.2, while the augmented data may be able to wrap the data space of the
source set, we must be careful with it due to the inductive bias from the data augmentation methods.
Revealed from the literature (Zhang et al., 2015; He et al., 2019), the distribution of auxiliary set,
produced by a set of augmentations, may drift from that of the source set. This drift, on the downside,
may produce a large T-V Gap in the estimated score in the validation process if we directly employ
the auxiliary set as a proximal validation set. Therefore, a sampling algorithm is indispensable in
proximal validation set construction for less biased evaluation.

Briefly, we propose the simplest solution. This algorithm first characterizes the empirical distribu-
tion of source set Dsrc by an explicit angular distribution (Liu et al., 2020; 2017) and then samples
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the angles via an explicit function to locate the corresponding points in the auxiliary set (as illus-
trated in Figure 2).

Distribution Estimation with Angles. The first step of our algorithm is to capture the empirical
distribution of the source set. We adopt the simplest but most efficient method — intra-class angular
distribution on feature space (Liu et al., 2020; Kobayashi, 2021; Liu et al., 2017) — for proof-of-
concept of PVP. Unlike common collecting functions ∁ that only consider inter-class distribution
(e.g., stratified random sampling), our ∁

′
further measures intra-class distributions so as to control

the distribution of validation set more finely, and ultimately keep the T-V Gap of the evaluation at a
low level.

To be specific, we modeled the intra-class angular distribution on the angles between samples from
Dsrc and their corresponding class centers. Given a sample xy

i with category label y, let zyi = Φ(xy
i )

be the features extracted by an extractor Φ, where we utilize BERT (Devlin et al., 2018) for text data
and ResNet-18 He et al. (2016) for images. We define the calculation process of angle as A and
define the angle of xy

i relative to its class center as follow:

αy
i = A(Φ(xy

i )) = arccos⟨zyi , c
y⟩, ⟨a,b⟩ = a · b

∥a∥ · ∥b∥
(5)

cy =
∑Ny

i=1

exp(wy
i )∑Ny

j=1 expwy
j

zyi , wy
i =

1

Ny − 1

∑Ny

i′ ̸=i
⟨zyi′ , z

y
i ⟩ (6)

where cy, Ny denotes the class center and the number of labeled instances of class y, respectively.
Note that cy is calculated by the weighted average of the features within the class y. Assuming the
angles obey a Gaussian distribution, we can define the angular distribution for class y as P(y)(α

y; θ),
and its parameters θ can be obtained via maximum likelihood estimation (MLE):

θ̂ = argmin
θ

−
∑Ny

i=1
log p (αy

i | θ) (7)

Notably, P(y) is an explicit density function. To this end, we can obtain the empirical distribution of
each class in Dsrc.

Sample through Distribution. With the estimated distribution for the source set, our goal is to find
representative points for the distribution as proximal validation samples. In particular, we conduct
the process in a class-wise fashion. We generate angles via the explicit density function of the
distribution to locate the corresponding samples in the auxiliary set for each class. Specifically, for
a class y, we generate a set of angles by sampling from the distribution P(y):

Ay = {α | α ∼ P(y)} (8)

For each angle in Ay , we search for samples in Daux with the smallest angular gap to construct a
proximal validation set Dpro:

Dpro = {(x, y) | argmin
(x,y)∈Daux

|A(Φ(x))− α|,∀α ∈ Ay}Ly=1 (9)

where L is the number of categories. At this point, we obtain a distributionally representative Dpro

with sufficient data. It can be employed directly for validation while remaining all the data in Dsrc

for training, as shown in Figure 1. And the entire process of PVP is shown in Algorithm 1.

4 EXPERIMENTAL EVALUATION

4.1 DATASET AND BASELINE

To validate our approaches, we experiment with three modalities of data: tabular, images, and natural
language. All datasets are on classification tasks; notably, two are put in a long-tailed setup. The
statistics of all datasets are listed in Appendix A.3. And these datasets contain different levels of
data volume from 400-20k.

Tabular Data. We adopt 4 publicly available datasets from UCI (details in Appendix A.3), which
are also data sources applied in other works (Wang et al., 2020; Bi & Zhang, 2018; Moss et al., 2018).
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It is relatively easy to achieve stable and low-biased evaluations with balanced and sufficient data
via cross-validation, which makes comparisons between methods less meaningful and persuasive.
Therefore, a series of datasets with various imbalanced ratios are picked.

Computer Vision. The common and challenging long-tailed distribution is chosen as our evalua-
tion environment. And we follow previous works (Park et al., 2021; Cui et al., 2019) to construct
long-tailed versions of CIFAR10/100 with imbalance factor ρ = 100 and 10 respectively, named as
CIFAR10/100-LT. The details about the construction are illustrated in section A.3.

Natural Language Process. We use the Reuters-21578 dataset (Dua & Graff, 2017) according to
the exact setting in JKFold (Moss et al., 2018), where only corn and wheat categories are used.

Model. For tabular data, we use a decision-tree-based model xgboost (Chen & Guestrin, 2016) to
perform classification tasks. While for CIFAR-LT and REUTERS, we train ResNet-44 (He et al.,
2016) and DistilBert (Sanh et al., 2019) as classifiers, respectively. Notice that we suppress ran-
domness in the model by fixing random seeds and maintaining a consistent batch data feeding order
to enable the dataset (train/val set) to be the unique variable. And more implementation details are
listed in Appendix A.4, including all training hyper-parameters.

Method. Generally, three baselines are considered to compare against. First, holdout with a train-
val split ratio of 8:2. Despite it being widely used, especially in deep learning, owing to high
efficiency, instability and deviation are its weak points due to the size of the validation set being still
relatively small (e.g., near few-shot setup under hundreds of total samples). Second, k-fold CV where
a choice 10 is taken for k. The instability can be improved versus holdout. Third, repeated k-fold
CV (named as J-K-Fold (Moss et al., 2018)), the repeat times and k are set to 4 and 5, respectively.
Theoretically, it is a further enhancement of stability at the cost of time. All these three methods are
based on stratified sampling, which makes the percentages of different classes in both validation
and train sets essentially the same. Additionally, we also add a customized method on the single
tabular scenario as an extra baseline, i.e., SPlit (Joseph & Vakayil, 2021). SPlit is the latest splitting
work, which utilizes support points (Mak & Joseph, 2018) to sample a specific subset from the train
set as the validation set. And we set the sample ratio of SPlit the same as holdout (i.e., 8:2). Notably,
the hyper-parameters mentioned above (i.e., 8:2 for holdout, 10 for k-fold CV, and 4-5 for J-K-Fold)
are found by selecting the one with the best validation quality on the three metrics. And we run
baselines and PVP 5 times for the image and text datasets considering time complexity issues, while
100 times for each tabular dataset.

Metrics. To comprehensively evaluate validation methods, we propose to compare three metrics
simultaneously, i.e., variance, T-V Gap, and scores on the test set. (i) For variance, we calculate the
standard deviation of estimated scores (scores on the validation set) over all runs. (ii) For T-V Gap,
we use the mean of the absolute gap between scores on the validation set and the test set overall
runs, which is the same usage in previous work (Zeng & Martinez, 2000; Budka & Gabrys, 2012).
(iii) For test score, we use the mean of scores on the test set over all rounds. Likewise, the following
combo — high test score, small variance, and T-V Gap — corresponds to good validation.

4.2 COMPARISON TO OTHER METHODS

We report our results in Table 1. We may conclude from the scores that: (i) The performances
of models obtained by PVP are superior to all the rivals, and the improvement is significant on 4
datasets, i.e. BankMarket, PageBlocks, Diabetes and CIFAR10-LT. (ii) The T-V Gap are consid-
erably reduced compared to all competitors, which is reduced by 32.3% on average over the best
baselines. (iii) The variance is maintained between holdout and 10-Fold CV, and is closer to the
latter, with higher evaluation stability.In a nutshell, PVP ameliorates both the test score and the T-V
Gap at the same time while keeping the variance within a competitive level. These main results
effectively justify the feasibility of PVP towards a proximal, split-free validation setup.

4.3 WHY DOES PVP IMPROVE MODEL PERFORMANCE?

Table 1 shows that the F1 score on all datasets is consistently improved compared to all baselines.
We would like to attribute the performance improvement to the extra training data. Specifically, in
our framework, all the given data (i.e., source set) can be used for training, without the necessity to
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Table 1: Comparisons between PVP and other validation methods on seven classification datasets
covering all three major data modalities, including tabular data(top), image(bottom left) and
text(bottom right). The results are reported in F1, T-V Gap and variance, i.e. F1 ↑T-V Gap↓/Var↓(↑ / ↓
indicates that the higher/lower the metric is, the better and vice versa. The numbers are scaled by
1e2 for straightforward comparison.). And bold indicates superior results.

METHOD BankMarket PageBlocks Diabetes MushRoom

Holdout 59.13.5/2.9 85.1 3.3/4.0 72.5 3.7/3.5 98.8 0.8/1.2

10-Fold CV 59.4 4.2/0.7 85.5 4.7/1.1 72.7 5.5/1.0 98.9 1.4/0.2

4-5-Fold CV 59.1 3.3/0.4 85.9 3.4/0.6 72.8 4.0/0.6 98.9 0.8/0.1

SPlit 59.6 3.3/2.9 86.6 2.6/2.9 73.5 3.7/2.9 98.9 0.7/0.8

PVP(ours) 61.3 2.6/0.8 89.0 1.2/1.3 77.4 3.1/1.0 99.0 0.5/0.6

METHOD CIFAR10-LT CIFAR100-LT

Holdout 61.2 8.4/2.3 47.0 1.5/1.2

10-Fold CV 63.3 7.7/0.6 49.9 1.8/0.4

4-5-Fold CV 61.1 7.4/0.4 47.4 1.4/0.2

PVP(ours) 67.3 1.8/0.9 50.5 1.0/0.8

METHOD REUTERS

Holdout 88.7 7.2/2.1

10-Fold CV 89.5 7.1/0.5

4-5-Fold CV 88.9 6.9/0.3

PVP(ours) 90.0 6.8/0.4

Table 2: Comparison of our PVP and other methods on distribution gap. Reported in Wasserstein
distance over 10 times. (Tabular data(top), image(bottom left) and text(bottom right).)

METHOD BankMarket PageBlocks Diabetes MushRoom

Random(Holdout) 1.82 ± 0.27 9.54 ± 1.32 6.91 ± 0.62 2.46 ± 0.37
SPlit 1.75 ± 0.20 7.82 ± 0.73 5.87 ± 0.63 1.91 ± 0.13
PVP(ours) 1.56 ± 0.16 5.41 ± 0.69 3.90 ± 0.72 1.85 ± 0.21

METHOD CIFAR10-LT CIFAR100-LT

Random(Holdout) 2.20 ± 0.14 1.85 ± 0.03
PVP(ours) 1.51 ± 0.10 1.57 ± 0.03

METHOD REUTERS

Random(Holdout) 3.02 ± 0.37
PVP(ours) 2.96 ± 0.12

partition some of them as the validation set. Owing to the split-free nature, PVP can save data for
training to provide performance gains compared to the split-relied methods.

4.4 PROXIMAL VALIDATION SET VS TRADITIONAL VALIDATION SET

We compare proximal validation set with other validation sets in both quantitative and qualitative
aspects: distribution gap and visualization difference. These two aspects demonstrate why the prox-
imal validation set can work better than the traditional one.

Proximal validation set has smaller distribution gap. We compared the gap between the distri-
bution of the validation set and the global distribution (approximated on source set) under different
methods. The distribution is quantified via the intra-class angular distribution (as mentioned in Sec-
tion 3.2.3), and the distance of two distribution is calculated by Wasserstein distance (Takatsu, 2008).
As shown in Table 2, the distribution gaps of PVP are consistently smaller than the other methods. It
empirically verifies that our validation set is a better representation of the global distribution, which
can also lead to smaller T-V Gap in evaluation since Dval is more approximated to F in Eq 2.

Proximal validation set are well spread out. We visualize the 2D data representation produced by
t-SNE in Figure 3. We use the MushRoom dataset, and different colors represent different ground-
truth class labels. We contrast the TSNE embeddings of the validation set produced by two ap-
proaches: (a) SPlit (with split ratio 8:2), current best split-based methods, and (b) our method PVP.
Compared with SPlit, we can observe that our validation points cover a wider region containing
both central and marginal areas. Since PVP are not constrained by the split scheme, the number
of validation samples in the proximal validation set can be larger and the coverage can be broader,
which is presumed to lead to better evaluation quality.

8
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(a) Validation Set of SPlit (b) Proximal Validation Set of PVP (ours)

Figure 3: TSNE visualization of the validation set representation on MushRoom. Different colors
represent the different classes. The translucent points represent the source set, while the solid-
colored ones represent the validation set. The details are referred to in Section 4.4.

Table 3: Using proximal validation set with-
out extra training samples. The improvement
of results was obtained by replacing the origi-
nal split validation set with ours. The - implies
deterioration, while the others are the default
for improvement.

DATASET T-V Gap(+) Var(+) F1(+)

BankMarket 1.39 1.40 0.06
PageBlocks 0.67 1.76 1.01
Diabetes 1.54 2.06 1.65
MushRoom 0.06 0.52 0.01

CIFAR10-LT 3.73 0.28 0.21
CIFAR100-LT 1.00 0.17 0.00

REUTERS -0.70 1.35 0.20

Table 4: Ablation Study. The deteriora-
tion of results obtained by using random
sampling (from auxiliary set) instead of our
distributional-consistent sampling. The - im-
plies improvement while the others are default
for deterioation.

DATASET T-V Gap(-) Var(-) F1(-)

BankMarket 0.30 2.20 0.21
PageBlocks 3.50 +0.12 0.05
Diabetes 3.35 0.22 1.23
MushRoom 0.06 +0.09 0.00

CIFAR10-LT 22.87 +0.05 1.23
CIFAR100-LT 21.01 0.06 0.44

REUTERS 5.16 0.33 2.30

4.5 USING PROXIMAL VALIDATION SET WITHOUT EXTRA TRAINING SAMPLES

We conduct experiments using the same training set as the holdout’s rather than the whole training
set while replacing the original split validation set of the holdout with our proximal validation set.
Table 3 shows that even without the extra training data, the performance can still be enhanced to
some degree. This implies that the improvement in performance comes not only from additional
training data but also from the high-quality validation set itself. Besides, we can also see that the
T-V Gap of our method is still smaller in most cases when the validation set is the only different
element. This comparison further confirms the superiority of our method in evaluation precision.

4.6 ABLATION STUDY

Effects of Distributional-Consistent Sampling. In this section, we attempt to reveal the effec-
tiveness of the core algorithm in PVP. We compare PVP with a variant: PVP-random, which uses
(stratified) random sampling from auxiliary set instead of distributional-consistent sampling. From
Table 4, we can observe that the T-V Gap of PVP-random are aggravated, especially for the text
and image datasets using deep models. Moreover, the test scores also degrade on most datasets. It
signifies the indispensability of our sampling algorithm in the entire framework.

5 LIMITATION AND CONCLUSION

In this article, we proposed a Proximal Validation Protocol (PVP) to fully resolve the train/validation
split trade-off. Through extensive experiments on datasets in different fields, including seven pub-
licly datasets covering tabular, image and text data, we justify the comprehensive validity of PVP
from both performance, robustness and reliability perspectives.

Indeed, we have chosen to leave the theoretical understanding of this framework out of the scope
of this paper. Mostly, it is due to a general lack of theoretical study in this specific line of research
around validation set construction. Rather, we intend to empirically prove this concept of split-free
proximal validation with the simplest instantiation in this work. We hope to motivate the cohorts in
the community to pay more attention to this research line because we believe it is vital and widely
existing for ML production.
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A APPENDIX

A.1 METHODS FOR GENERATING AUXILIARY SET

We list the detailed augmentation methods for each dataset in Table 5.

Table 5: The list of all the augmentation methods used for each dataset. B(a, b) denotes a beta
distribution with parameters a and b. Times is the number of augmentation method performed per
sample. (For Reuters, we utilize nlpaug2 to implement these operations.)

DATASET Method Parameters Times

BankMarket 3 MixUp λ ∼ B(0.5, 0.5):the mixing ratio 30
Diabetes4 MixUp λ ∼ B(0.5, 0.5):the mixing ratio 30
PageBlocks5 Smote N = 5:the number of neighbors 30
MushRoom6 Smote N = 5:the number of neighbors 30

CIFAR-LT

GridMask d1=24, d2=33, rotate=1, ratio=0.4 5
Invert - 1

Solarize v ∈ {256, 192, 128, 0}:solarization degree 1
Brightness v ∈ {1.9, 1.35, 0.95, 0.1}:an enhancing factor 1

REUTERS

ContextualWordEmbsSubstitute p ∈ {0.3, 0.5}:augmentation proportion 1
ContextualWordEmbsInsert p ∈ {0.3, 0.5}:augmentation proportion 1

SynonymAug p ∈ {0.3, 0.5}:augmentation proportion 1
RandomWordAugDelete p ∈ {0.3, 0.5}:augmentation proportion 1
RandomWordAugCrop p ∈ {0.3, 0.5}:augmentation proportion 1
RandomWordAugSwap p ∈ {0.3, 0.5}:augmentation proportion 1

BackTranslationAug - 1
AbstSummAug - 1

WordEmbsAugSubstitute p ∈ {0.3, 0.5}:augmentation proportion 1
WordEmbsAugInsert p ∈ {0.3, 0.5}:augmentation proportion 1

A.2 PSEUDO CODE FOR PROXIMAL VALIDATION PROTOCOL

Algorithm 1 Proximal Validation Protocol
Input: Source set Dsrc, Number of category L, Classification model f , Scoring function
§, Feature extractor Φ, Number of samples m, Data augmentation methods set {gi}Qi=1

G = {g1, g2, . . . , gQ}
Daux = G (Dsrc)

Initiate Dpro = {}
for l = 1 to L do

Assume p is a gaussian distribution
θ̂ = argminθ −

∑
(xi,l)∈Dsrc log p (A(Φ(xi)) | θ)

Al = {αi | αi ∼ p(α | θ̂)}mi=1

for αi ∈ Al do
Dpro = Dpro ∪ argmin(x,l)∈Daux |A(Φ(x))− αi|

end for
end for
Train f on Dsrc to obtain f∗ with highest §(f,Dpro)

Output: f∗, §(f∗,Dpro)

1https://nlpaug.readthedocs.io/
2https://nlpaug.readthedocs.io/
3https://archive.ics.uci.edu/ml/datasets/bank+marketing
4https://archive.ics.uci.edu/ml/datasets/diabetes
5https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
6https://archive.ics.uci.edu/ml/datasets/mushroom
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A.3 DATASET STATISTICS

Construction details of the long-tailed dataset. As mentioned in Section 4.1, we construct long-
tailed versions of CIFAR10/100 with imbalance factor ρρρ = 100 and 10 following Park et al. (2021);
Cui et al. (2019). Specifically, for a k-class dataset, we create a long-tailed dataset by reducing the
number of examples per class according to the exponential function n′

i = niµ
i(µ ∈ (0, 1), i =

0, 1, ..., k), where ni is the original number of examples for class i, while n′
i is the new number.

Table 6: Dataset statistics. ρρρ denotes the imbalance factor, which is the ratio of the number of
samples in the largest class to the smallest class. #C denotes the number of classes. #F denotes
the number of feature dimensions. #Source, #Test, #Auxiliary, and #Proximal(Ours) denote the
number of samples in source set, test set, auxiliary set, and our proximal validation set, respectively.

DATASET #Data #C ρρρ #F #Source #Test #Auxiliary #Proximal

BankMarket 3047 2 7 13 2437 610 73110 2367
PageBlocks 5473 5 170 10 4378 1095 131340 3539
Diabetes 718 2 2 8 574 144 17220 1720
MushRoom 8124 2 1 22 406 7718 12180 207

CIFAR10-LT 22406 10 100 1024 12406 10000 210902 2980
CIFAR100-LT 29573 100 10 1024 19573 10000 332741 3000

REUTERS 520 2 2 - 393 127 5537 944

A.4 IMPLEMENTATION DETAILS

Tabular Data. We used xgboost (Chen & Guestrin, 2016) as classifier for all tabular datasets.
Specifically, we used the XGBClassifier7 with parameters: objective of ‘multi:softprob’, booster of
‘gbtree’, early stopping rounds of 15, max depth of 4, learning rate of 0.1, n estimators of 50. While
for the features of tabular data, we conduct some transformations on the original sample to generate
features. The transformations contains two types: (i) for categorical feature, we use convert it to one-
hot feature; (ii) for other types of features, we convert them to be normalized. And the dimension of
feature varies among datasets.

CIFAR10-LT and CIFAR100-LT. We used ResNet44 from He et al. (2016) as the classification
model for both CIFAR10-LT and CIFAR100-LT. We followed the same training procedure (train
from scratch), initialization, and hyperparameters as He et al. (2016)(i.e., weight decay of 0.0001,
momentum of 0.9, minibatch size of 128, total epochs of 200, initial learning rate of 0.1, learning
rate decay stage of 100 and 150 epochs). While for the feature extractor, we used ResNet20 from
He et al. (2016). And we train the extractor on source set for each dataset with same training
hyperparameters as above. And the output of the last layer before classification is used as features,
whose dimension is 72.

Reuters. We used DistilBert (Sanh et al., 2019) as classification model. We finetuned the pre-train
model with training parameters: total epochs of 15, batch size of 8, weight decay of 0.01, learning
rate of 2e-5. While for the feature extractor, we used Bert from Devlin et al. (2018). And we train
the extractor on source set with same training hyperparameters as above. And the output in the ‘cls’
position of the last layer before classification is used as features, whose dimension is 144.

A.5 ANALYSIS OF TIME COST

As shown in Table 7, we provided some quantitative measurements toward the running time of
the proximal validation set construction process. The running time can be devided into two parts:
(i) the pre-processing part, which only needs to be executed once, regardless of the number of
training and validation process. This part contains the generation of auxiliary set (Section 3.2.2)
and the estimation(Section 3.2.3). (ii) the sampling part, i.e., the second step in distributional-
consistent sampling algorithm (Section 3.2.3), the execution number of which is consistent with
training process. Indeed, the time cost of part one is high majorly due to the generation process.

7https://github.com/dmlc/xgboost
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However, the operations in part one only need to be conduct only once no matter how many times
we perform train and validation on the same dataset. While the operation included in every training
process is the sampling part, which can be finished in a few seconds and therefore does not incur
much additional time cost for the training process.

On the other hand, we position that the time cost of construction process can be attributed as a
minor point and the reasons are two folds: (i)-this process can be faster via some engineering efforts
like multithreading technology. (ii)-it can actually be viewed as a strategy to achieve a certain goal
(better model performance and evaluation quality) at the expense of time, and such a strategy is
common in many works, such as AutoAugment (Cubuk et al., 2019), RandAugment (Cubuk et al.,
2020), FlipDA (Zhou et al., 2021).

Table 7: Time cost of PVP.(s denotes seconds and m denotes minute.)

DATASET
ONE-TIME EVERY-TIME

Generation(s/m) Estimation(s/m) Sampling(s) Training(s/m)

BankMarket 65s 13s 3.0s 4.0s
PageBlocks 91s 18s 8.0s 9.5s
Diabetes 15s 10s 0.5s 0.6s
MushRoom 7s 11s 0.1s 0.2s

CIFAR10-LT 13m 2m 2.5s 30.2m
CIFAR100-LT 11m 3m 2.2s 44.1m

REUTERS 120m 1m 4.8s 3.0m

A.6 A TEST CASE OF VALIDATION METHODS ON SYNTHETIC DATASETS.

Here, we test two standard validation methods on five synthetic datasets (created by
sklearn.datasets.make classification8, train size of 1000, test size of 1000, class of 2 and features
of 2) with increasing class imbalance in Figure 4. In this case, we can observe that these methods
can work well in ideal scenarios with balanced data. In contrast, there is a risk of an imprecise
estimation failure under unbalanced and small-scale scenarios, where the discrepancy between the
test performance and the estimated one (i.e. the height of the yellow region) is undesirable large.
This case illustrates that standard validation schemes do not always work perfectly even in a simple
synthesis scenario, thus we can not easily rely on these methods in complex scenarios in the real
world.

Figure 4: Holdout and 10 fold cross validation on synthetic dataset.

8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html
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