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Abstract

Data-heterogeneous federated learning (FL) sys-
tems suffer from two significant sources of con-
vergence error: 1) client drift error caused by
performing multiple local optimization steps at
clients, and 2) partial client participation error
caused by the fact that only a small subset of the
edge clients participate in every training round.
We find that among these, only the former has
received significant attention in the literature. To
remedy this, we propose FedVARP, a novel vari-
ance reduction algorithm applied at the server
that eliminates error due to partial client partic-
ipation. To do so, the server simply maintains in
memory the most recent update for each client
and uses these as surrogate updates for the non-
participating clients in every round. Further, to
alleviate the memory requirement at the server,
we propose a novel clustering-based variance re-
duction algorithm ClusterFedVARP. Unlike
previously proposed methods, both FedVARP
and ClusterFedVARP do not require additional
computation at clients or communication of addi-
tional optimization parameters. Through extensive
experiments, we show that FedVARP outperforms
state-of-the-art methods, and ClusterFedVARP
achieves performance comparable to FedVARP
with much less memory requirements.

1 INTRODUCTION

Large-scale machine learning applications rely on numerous
edge-devices to contribute their data, to learn better perform-
ing models. Federated Learning (FL) is a recent paradigm
[Konečnỳ et al., 2016, McMahan et al., 2017] for distributed
learning in which a central server offloads some of the com-
putation to the edge-devices or clients, and the clients in

return get to retain their private data, while only communi-
cating the locally learned model to the server. For instance,
when training a next-word prediction model [Hard et al.,
2018], FL allows a client to enjoy suggestions supplied by
thousands of other clients in the same federation without
ever explicitly revealing its own personal text history.

Typical FL applications are targeted towards low-power
mobile phones that have severely limited uplink (client to
server) bandwidth. This necessitates the need for novel algo-
rithms to reduce the frequency of communication required
to train FL models. The first and the most popular algorithm
in this setting is FedAvg [McMahan et al., 2017], which
reduces communication frequency by requiring clients to
perform multiple local computations in each round. In each
round of FedAvg, clients first download the current global
model, and run several steps of SGD on their private data
before sending back their local updates to the server. The
server then updates the global model using the average of
the local updates sent by the clients.

A subtle yet important feature that distinguishes FL sys-
tems from traditional data-center settings is the presence of
heterogeneity in local data across clients. While FedAvg
improves communication-efficiency at the clients, it also
leads to an additional error caused by this heterogeneity,
colloquially known as client drift error [Karimireddy et al.,
2019]. Informally, allowing clients to perform multiple local
steps causes local models to drift towards their individual
local minimizers, which is inconsistent with the server ob-
jective of minimizing the global empirical loss [Khaled
et al., 2020, Wang and Joshi, 2021, Stich, 2019]. Despite
recent advances [Pathak and Wainwright, 2020, Woodworth
et al., 2020], a comprehensive theory regarding the useful-
ness of local steps remains elusive. Nonetheless, performing
multiple local steps remains the most popular option for
clients participating in FL due to its superior performance
in practice.

Another defining characteristic of FL systems is partial
client participation. Given the scale of FL [Kairouz et al.,
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2019], it is unrealistic to expect all the clients to participate
in every single round of FL training. For instance, clients
may participate only when they are plugged into a power
source and have access to a reliable wifi connection [McMa-
han et al., 2017]. In practice, we observe that only a small
fraction of the total number of clients participate in any
given round. This variance in client participation gives rise
to what we term as partial client participation error. This
error further compounds the effect of data heterogeneity as
the global model is consistently skewed towards the data
distributions of the participating clients in every round.

While error due to client drift has been well-established
[Karimireddy et al., 2019, Acar et al., 2021, Khaled et al.,
2020], we find that partial client participation error has
not received similar attention. This is seen by the fact that
several methods for mitigating client drift such as [Pathak
and Wainwright, 2020, Zhang et al., 2020] cannot be di-
rectly extended to the partial client participation case. This
is surprising, as our results indicate that error due to partial
participation, rather than client drift, dominates the con-
vergence rate of FedAvg (Theorem 1). For smooth non-
convex functions, we quantify the effect of the various noise
sources (stochastic gradient noise, partial client participa-
tion, and data heterogeneity across clients) on the error
floor of FedAvg, and observe that the dominant error is
contributed by partial client participation.

Our Contributions. Keeping in mind the observation that
partial client participation is the dominant source of error,
we design a novel aggregation strategy at the server that
completely eliminates partial client participation error. Our
algorithm keeps the local SGD procedure unchanged and
only modifies the server aggregation strategy. As a result,
our approach does not introduce any extra computation at
the clients or lead to any additional communication between
the clients and the aggregating server. Furthermore, we also
design a more server-friendly approach to our algorithm
that allows the server to flexibly choose the amount of error
reduction based on its system constraints. We summarize
our main contributions below.

• We analyze the convergence of FedAvg and highlight
that the dominant term in the asymptotic error floor comes
from the partial participation of clients.

• In Section 3, we propose FedVARP (Federated VAriance
Reduction for Partial Client participation), a novel aggre-
gation strategy applied at the server to eliminate partial
participation variance. FedVARP uses the fact that the
server can store and reuse the most recent update for each
client as an approximation of its current update. This al-
lows the server to factor in contributions even from the
non-participating clients when updating the global model.

• To relax the storage requirements of FedVARP, we de-
vise a novel clustering based aggregation strategy called
ClusterFedVARP in Section 4. ClusterFedVARP

in based on the observation that instead of storing
unique latest updates for each client, we can cluster
clients and store a single unified update that applies
to all the clients in that cluster. We show that as long
as the heterogeneity within a cluster is sufficiently
bounded, ClusterFedVARP can significantly reduce
partial client participation error, while being more storage-
efficient.

• We conduct extensive experiments on vision and language
modeling FL tasks that demonstrate the superior perfor-
mance of FedVARP over existing state-of-the-art meth-
ods. Further, we show that ClusterFedVARP performs
comparably to FedVARP, with much less storage require-
ments in practice.

For the purpose of theoretical analysis, throughout this paper
we assume that in each round, the server uniformly selects
a subset of clients from the total pool of clients. In practice,
our algorithms can also be combined with non-uniform and
biased client sampling strategies [Cho et al., 2020, Chen
et al., 2020] for greater empirical benefits. Furthermore we
note that the idea of reusing client updates has also been
considered in a recent work MIFA [Gu et al., 2021], albeit
in the context of dealing with arbitrary client participation.
Owing to this similarity, we have a detailed comparison of
our algorithm with MIFA in Section 3.1. While outside the
scope of this work, we believe designing server aggregation
strategies to deal with arbitrary client participation is an
open and challenging direction for future work.

2 PROBLEM SETUP

We use the following notations in the remainder of the paper.
Given a positive integer m, the set of numbers {1, 2, . . . ,m}
is denoted by [m]. Lowercase bold letters, for e.g., x,y,
are used for vectors. Vectors at client i are denoted with
subscript i, for e.g., xi. Vectors at time t are denoted with
superscript t, for e.g., y(t).

We consider optimizing the following finite sum of functions
in a Federated Learning (FL) setting.

min
w∈Rd

f(w) =
1

N

N∑
i=1

fi(w) (1)

where fi(w) ≜ Eξi∼Di
[ℓ(w, ξi)] is the local objective of

the i-th client. Here ℓ(·, ·) is the loss function, and ξi repre-
sents a random data sample from the local data distribution
Di. N is the total number of clients in the FL system. Note
that our formulation can be easily extended to the case where
client objectives {fi(·)} are unequally weighted.

We begin by recalling the FedAvg algorithm. At round t,
the server selects a random subset of clients S(t) and sends
the global model w(t) to these clients. The selected clients
run LocalSGD (Algorithm 1) for τ steps. These clients



then send back their updates ∆(t)
i = (w(t)−w

(t,τ)
i )/ηcτ to

the server (ηc is the client learning rate), which aggregates
them to update the global model as follows:

w(t+1) = w(t) − η̃s
1

|S(t)|
∑

i∈S(t)

∆
(t)
i (2)

where η̃s = ηsηcτ , with ηs being the server learning rate.

Algorithm 1 LocalSGD(i,w(t), τ, ηc)

1: Set w(t,0)
i = w(t)

2: for k = 0, 1 . . . , τ − 1 do
3: Compute stochastic gradient∇fi(w(t,k)

i , ξ
(t,k)
i )

4: w
(t,k+1)
i = w

(t,k)
i − ηc∇fi(w(t,k)

i , ξ
(t,k)
i )

5: end for
6: Return (w(t) −w

(t,τ)
i )/ηcτ

Note that due to the data heterogeneity, randomly sampling
S(t) inherently introduces some variance within our FL
system, which we term as the partial participation error.
We characterize the effect of this partial participation error
on the convergence bound of FedAvg in the next section.

2.1 CONVERGENCE ANALYSIS OF FEDAVG

Before stating our convergence bound, we make the follow-
ing standard assumptions.

Assumption 1. (Smoothness). Each local objective func-
tion is L-Lipshitz smooth, that is, ∥∇fi(x)−∇fi(y)∥ ≤
L ∥x− y∥, for all i ∈ [N ].

Assumption 2. (Unbiased gradient and bounded lo-
cal variance). The stochastic gradient at each client
is an unbiased estimator of the local gradient, i.e.,
Eξi∼Di

[∇fi(w, ξi)] = ∇fi(w) and its variance is
bounded Eξi∼Di

∥∇fi(w, ξi)−∇fi(w)∥2 ≤ σ2, for all
i ∈ [N ].

Assumption 3. (Bounded global variance). There exists a
constant σg > 0 such that the difference between the local
gradient at the i-th client and the global gradient is bounded
as follows: ∥∇fi(w)−∇f(w)∥2 ≤ σ2

g , for all i ∈ [N ].

Following previous work [McMahan et al., 2017, Karim-
ireddy et al., 2019, Wang et al., 2020], we model partial
client participation as uniformly sampling a subset of clients
without replacement from the total pool of clients.

Theorem 1 (FedAvg Error Decomposition). Under As-
sumptions 1, 2, 3, suppose in each round the server ran-
domly selects M out of N clients without replacement to
perform τ steps of local SGD. If the client learning rate
ηc, and the server learning rate ηs are chosen such that
ηc ≤ 1

8Lτ , ηsηc ≤ 1
24τL , then the iterates {w(t)} generated

by FedAvg satisfy

min
t∈{0,...,T−1}

E
∥∥∥∇f(w(t))

∥∥∥2

≤ O
(
f(w(0))− f∗

ηsηcτT

)
+O

(
ηsηcLσ

2

M
+ η2

cL
2(τ − 1)σ2

)
︸ ︷︷ ︸

stochastic gradient error

+O
(
ηsηcτL(N −M)σ2

g

M(N − 1)

)
︸ ︷︷ ︸

partial participation error

+O
(
η2
cL

2τ(τ − 1)σ2
g

)︸ ︷︷ ︸
client drift error

,

where f∗ = argminx f(x).

Remark 1. Our result shows that the total error floor of
FedAvg can be decomposed into three distinct sources of
error: 1) stochastic gradients; 2) partial client participation;
and 3) client drift. Stochastic gradient error arises due to the
variance of local gradients (quantified by σ2 in Assumption
2) and is unavoidable unless each local objective has a finite
sum structure. The cause for both partial participation error
and the client drift error lies in data-heterogeneity present
among clients (quantified by σg in Assumption 3). Setting
M = N (full participation) gets rid of the error due to
partial participation. Similarly, setting τ = 1 (FedSGD)
eliminates the client drift error.

Our analysis closely follows [Wang et al., 2020] with the
difference that we sample clients without replacement in-
stead of sampling with replacement. A full proof is provided
in the supplementary material for completeness.

Corollary 1. Setting ηc = 1√
TτL

and ηs =
√
τM ,

FedAvg converges to a stationary point of the global ob-
jective f(w) at a rate given by,

min
t∈{0,...,T−1}

E
∥∥∥∇f(w(t))

∥∥∥2
≤ O

(
1√

MτT

)
︸ ︷︷ ︸

stochastic gradient error

+ O
(√

τ

MT

)
︸ ︷︷ ︸

partial participation error

+ O
(
1

T

)
︸ ︷︷ ︸

client drift error

Remark 2. Note that in this case the convergence rate of
FedAvg is dominated by the error due to partial partic-
ipation resulting in the leading O

(√
τ

MT

)
term whereas

client drift error decays at a much faster O
(
1
T

)
rate. This

is primarily due to the fact that client drift error is scaled
by η2c whereas the partial participation error is scaled by
ηsηcτ as seen in Theorem 1. In practice, ηc is usually set
much smaller than ηs and hence the total error due to data-
heterogeneity is dominated by the variance due to partial
client participation rather than client drift.

Previous works such as [Karimireddy et al., 2019, Li et al.,
2020a, Acar et al., 2021] h ave proposed regularizing the
local objectives at clients with a global correction term that
prevents client models from drifting towards their local
minima. In effect, this regularization artificially enforces
similarity among the modified client objectives such that
the effect of data-heterogeneity (σg) is completely elimi-
nated. However, doing so requires clients to modify the local



procedures that they run on their devices to incorporate the
global correction term. This either requires additional com-
putation at devices (as in [Acar et al., 2021]) or additional
communication between client and server (as in [Karim-
ireddy et al., 2019]). Our goal, on the other hand is to just
tackle the variance arising from partial client participation
in FL. As a result, our proposed algorithm only modifies the
server update procedure without requiring clients to perform
any additional computation or communication. Since partial
participation variance dominates the convergence rate of
FedAvg, eliminating this variance allows us to enjoy the
same rates of convergence as FedDyn [Acar et al., 2021]
and SCAFFOLD [Karimireddy et al., 2019]. We discuss our
proposed algorithm and its benefits in greater detail in the
next section.

3 THE FEDVARP ALGORITHM AND ITS
CONVERGENCE ANALYSIS

3.1 PROPOSED FEDVARP ALGORITHM

SAGA [Defazio et al., 2014] was one of the first variance-
reduced SGD algorithms that achieved exponential conver-
gence rate for single node strongly convex optimization by
maintaining in memory previously computed gradients for
each data point. Inspired by the SAGA algorithm [Defazio
et al., 2014], we propose a novel algorithm FedVARP (Al-
gorithm 2) to tackle variance arising due to partial client
participation in FL. The main novelty in FedVARP lies
in applying the variance reduction correction globally at
the server without adding any additional computation or
communication at clients. We elaborate on further details
below.

Similar to FedAvg, in each round of FedVARP, the
server selects a random subset S(t) of clients that perform
LocalSGD and send back their updates ∆(t)

i to the server.
Recall that in FedAvg the global model is updated just
using the average of the {∆(t)

i }i∈S(t) (see 2). However this
adds a large variance to the FedAvg update as client data
is heterogeneous and the number of selected clients could
be much smaller than the total number of clients N . The
key to reducing this variance is to approximate the updates
of the clients that do not participate. We propose that the
server use the latest observed update for each client as the
approximation for its current update. Let {y(t)

i }Ni=1 repre-
sent a state for each client maintained at the server. After
every round, we perform the following update (we initialize
y
(0)
i = 0 for all i ∈ [N ]),

y
(t+1)
j =

{
∆

(t)
j if j ∈ S(t)

y
(t)
j otherwise

, for all j ∈ [n] (3)

This ensures that y(t)
i maintains the latest observed update

from the i-th client in round t. Note that this implementation
requires the server to maintain O (Nd) memory which can

be expensive in a federated setting. In Section 4 we outline
a more practical algorithm ClusterFedVARP to reduce
the storage requirement.

Given {y(t)
i }Ni=1, we can reuse the latest observed updates

of all clients and ∆
(t)
i ’s of participating clients to compute

a variance reduced aggregated update,

v(t) =
1

|S(t)|
∑

i∈S(t)

(
∆

(t)
i − y

(t)
i

)
+

1

N

N∑
j=1

y
(t)
j , (4)

which is used to update the global model as follows,

w(t+1) = w(t) − η̃sv
(t). (5)

Algorithm 2 FedVARP

1: Input: initial model w(0), server learning rate ηs, client
learning rate ηc, number of local SGD steps τ , η̃s =

ηsηcτ , number of rounds T , initial states y(0)
i = 0 for

all i ∈ [n], y(0) = 0
2: for t = 0, 1, . . . , T − 1 do
3: Sample S(t) ⊆ [N ] uniformly without replacement
4: for i ∈ S(t) do
5: ∆

(t)
i ← LocalSGD(i,w(t), τ, ηc)

6: end for
7: // At Server:
8: v(t) = y(t) + 1

|S(t)|
∑

i∈S(t)

(
∆

(t)
i − y

(t)
i

)
9: w(t+1) = w(t) − η̃sv

(t)

10: y(t+1) = y(t) + 1
N

∑
i∈S(t)

(
∆

(t)
i − y

(t)
i

)
11: //State update
12: for j ∈ [N ] do

13: y
(t+1)
j =

{
∆

(t)
j if j ∈ S(t)

y
(t)
j otherwise

14: end for
15: end for

Note that FedVARP gives higher weight to current client
updates as compared to previous client updates which allows
it to enjoy the additional unbiased property,

ES(t)

[
v(t)

]
= ES(t)

 1

|S(t)|
∑

i∈S(t)

∆
(t)
i

 . (6)

This implies that in expectation FedVARP performs the
same update as FedAvg. This simplifies our analysis con-
siderably and allows us to set y(0)

i = 0 without any com-
plications in theory or practice. We further highlight the
importance of server-based SAGA in comparison to related
work.

Comparison with MIFA. Closely related to this work,
[Gu et al., 2021] proposed the MIFA algorithm to deal with
arbitrary device unavailability in FL. MIFA also maintains
in memory the latest observed updates for each client and in-
stead applies a SAG-like [Schmidt et al., 2017] aggregation



of these updates. Unlike FedVARP, MIFA assigns equal
weights to both the current and previous updates, making
it a biased scheme. This complicates their analysis signifi-
cantly, which requires additional assumptions such as almost
surely bounded gradient noise and Hessian Lipschitzness.
Furthermore, due to this bias, MIFA requires all the clients
to participate in the first round, which is unrealistic in many
FL settings. We compare the performance of FedVARP
with MIFA in our experiments (see Section 5) and show that
FedVARP consistently outperforms MIFA.

Comparison with SCAFFOLD. SCAFFOLD [Karim-
ireddy et al., 2019] is one of the first works to identify
the client drift error and it proposes the use of control vari-
ates to correct it. This requires clients to apply a SAGA-like
variance reduction correction at every local step. This leads
to a 2x rise in communication as the clients now need to
communicate both the global model as well as the global
correction vector to the server. In FedVARP, clients per-
form LocalSGD and are agnostic to any aspect of how the
variance reduction is applied at the server. This saves the
cost of communicating the update to the global correction
vector while maintaining the same rate of convergence as
SCAFFOLD.

Hence, we see that server-based SAGA variance reduc-
tion is especially suited for the federated setting. It avoids
extra computation or communication at the clients (as in
SCAFFOLD) or unrealistic client participation scenarios (as
in MIFA).

3.2 CONVERGENCE ANALYSIS OF FEDVARP

Theorem 2 (Convergence of FedVARP). Suppose the func-
tions {fi} satisfy Assumptions 1, 2, 3. In each round of
FedVARP, the server randomly selects |S(t)| = M (out
of N ) clients, for all t, without replacement, to perform
τ steps of local SGD. If the server and client learning
rates, ηs, ηc respectively, are chosen such that ηsηc ≤
min

{
M3/2

8LτN , 5M
48τL ,

1
4Lτ

}
and ηc ≤ 1

10Lτ , then the iterates

{w(t)} generated by FedVARP satisfy

min
t∈{0,...,T−1}

E
∥∥∥∇f(w(t))

∥∥∥2

≤ O
(
f(w(0))− f∗

ηsηcτT

)
+O

(
ηsηcLσ

2

M
+ η2

cL
2(τ − 1)σ2

)
︸ ︷︷ ︸

stochastic gradient Error

+O
(
η2
cL

2τ(τ − 1)σ2
g

)︸ ︷︷ ︸
client drift error

,

where f∗ = argminx f(x).

We defer the proof and the exact convergence rate of
FedVARP to our supplementary material. We observe that
FedVARP successfully eliminates the partial participation
error, while retaining the stochastic sampling error and client
drift error. This is to be expected as we do not modify the
LocalSGD procedure at the clients to control these errors.

Reduction to SAGA. Note that in the case when σ = 0,
τ = 1 and M = 1 our algorithm reduces exactly to the
SAGA algorithm [Defazio et al., 2014]. Setting ηc = 1

8LN

and ηs = 1 we get a rate ofO
(
N
T

)
for non-convex loss func-

tions. Our rate is slightly worse than the rate of O
(

N2/3

T

)
obtained in [Reddi et al., 2016] because we use the same
sample i(t) to update both w(t) and yi(t) . [Reddi et al.,
2016] instead draw two independent samples i(t) and j(t),
where i(t) is used to update the model w(t) and j(t) is used
to update yj(t) . For a fixed w(t), this effectively ensures

independence between w(t+1) and {y(t+1)
j }Nj=1 which we

believe leads to the theoretical improvement in their conver-
gence rates.

4 CLUSTER FEDVARP, AND ITS
CONVERGENCE ANALYSIS

While FedVARP successfully eliminates partial client par-
ticipation variance, it does so at the expense of maintaining
a O (Nd) memory of latest client updates at the server.
This storage cost can quickly become prohibitive since
both N and d can be large in federated settings [Kairouz
et al., 2019, Reddi et al., 2021]. To remedy this, we pro-
pose ClusterFedVARP, a novel server-based aggrega-
tion strategy to reduce partial client participation variance
while being storage-efficient.

ClusterFedVARP is based on the simple observation
that we can reduce storage cost by partitioning our set of N
clients into K disjoint clusters and maintaining a single state
for all the clients in the same cluster. In other words, instead
of maintaining N states for N clients, we maintain just K
cluster states with clients in the same cluster sharing the
same state. Assuming that there exists such a clustering of
clients, our algorithm proceeds as follows. Let ci ∈ [K] be
the cluster identity of the i-th client. We initialize all cluster
states to zero, that is, y(0)

k = 0 for all k ∈ [K]. Different
from FedVARP, we now use the cluster states of clients to
compute v(t), i.e.,

v(t) =
1

|S(t)|
∑

i∈S(t)

(
∆

(t)
i − y(t)

ci

)
+

1

N

N∑
j=1

y(t)
cj . (7)

We observe that v(t) still enjoys the unbiased property out-
lined in 6 since,

ES(t)

 1

|S(t)|
∑

i∈S(t)

y(t)
ci

 =
1

N

N∑
j=1

y(t)
cj (8)

The major algorithmic difference lies in how we update the
cluster states,

y
(t+1)
k =


∑

i∈S(t)∩Ck
∆

(t)
i

|S(t) ∩ Ck|
if |S(t) ∩ Ck| ̸= 0,

y
(t)
k otherwise,

(9)



for all k ∈ [K]. For k-th cluster Ck, the cluster state is the
average update of the participating clients that belong to
cluster k, i.e., S(t) ∩ Ck. If this set is empty the cluster state
remains unchanged.

Algorithm 3 ClusterFedVARP

1: Input: initial model w(0), server learning rate ηs, client
learning rate η, local SGD steps τ , η̃s = ηsηcτ , number
of rounds T , number of clusters K, initial cluster states
y
(0)
k = 0 for all k ∈ [K], cluster identities ci ∈ [K] for

all i ∈ [N ], cluster sets Ck = {i : ci = k} for all k ∈
[K]

2: for t = 1, 2, . . . , T do
3: Sample S(t) ⊆ [N ] uniformly without replacement
4: for i ∈ S(t) do
5: ∆

(t)
i ← LocalSGD(i,w(t), τ, η)

6: end for
7: // At Server:
8: v(t) = 1

|S(t)|

∑
i∈S(t)

(
∆

(t)
i − y

(t)
ci

)
+ 1

N

∑N
j=1 y

(t)
cj

9: w(t+1) = w(t) − η̃sv
(t)

10: //State update
11: for k ∈ [K] do

12: y
(t+1)
k =


∑

i∈S(t)∩Ck
∆

(t)
i

|S(t) ∩ Ck|
if |S(t) ∩ Ck| ̸= 0

y
(t)
k otherwise

13: end for
14: end for

Note that the dissimilarity in client data across clusters is
already bounded in Assumption 3. Our motivation behind
using a clustering approach is to utilize a tighter bound
on the data dissimilarity within a cluster. We quantify this
precisely via the following assumption.

Assumption 4. (Bounded cluster variance). Let K be
the total number of clusters and Ck be the set of clients
belonging to the k-th cluster . There exists a constant
σK ≥ 0 such that the difference between the average gra-
dient of clients in the k-th cluster and the local gradient
of the i-th client in the k-th cluster is bounded as follows:∥∥∥∇fi(w)− 1

|Ck|
∑

j∈Ck
∇fj(w)

∥∥∥2

≤ σ2
K , for all k ∈ [K],

for all i ∈ Ck.

We see that σ2
K acts a measure of the efficacy of our clus-

tering with the goal being to achieve σ2
K ≪ σ2

g . In practice,
there often exists metadata about clients that can be used to
naturally partition clients into well-structured clusters. For
instance, when training a next-word prediction model [Hard
et al., 2018], clients could be grouped by geographical lo-
cation depending on the local dialect. Another example is
training recommender systems for social media platforms
[Jalalirad et al., 2019] where we expect connected users to
have similar interests.

Intuitively, we expect that for K < N we will suffer an error
of O

(
σ2
K

)
when trying to approximate a client’s update by

its cluster state. This intuition is captured precisely in our
convergence result for ClusterFedVARP as stated below.

Theorem 3 (Convergence of ClusterFedVARP). Sup-
pose the functions {fi} satisfy Assumptions 1, 2, 3, 4. Fur-
ther, suppose all the clients are partitioned into K clus-
ters, each with r clients, such that N = rK. In each
round of ClusterFedVARP, the server randomly selects
|S(t)| = M (out of N ) clients, for all t, without replace-
ment, to perform τ steps of local SGD. Further, the client
learning rate ηc, and the server learning rate ηs are cho-
sen such that ηc ≤ 1

10Lτ
, ηsηc ≤ min

{√
M(1−p)
8Lτ

, M
16τL

, 1
4Lτ

}
,

where p =
(N−r

M )
(NM)

. Then, the iterates {w(t)}t generated by

ClusterFedVARP satisfy

min
t∈{0,...,T−1}

E
∥∥∥∇f(w(t))

∥∥∥2

≤ O
(
f(w(0))− f∗

ηsηcτT

)
+O

(
ηsηcLσ

2

M
+ η2

cL
2(τ − 1)σ2

)
︸ ︷︷ ︸

stochastic sampling error

O
(
ηsηcLτ(N −M)σ2

K

M(N − 1)

)
︸ ︷︷ ︸

cluster heterogeneity error

+O
(
η2
cL

2τ(τ − 1)σ2
g

)︸ ︷︷ ︸
client drift error

We defer the proof and exact convergence rate to our sup-
plementary material. For K = N (one client per cluster)
we recover the convergence rate of FedVARP(σ2

K=N = 0).
On the other hand, for K = 1 we get back the FedAvg
algorithm since all clients share the same state and there
is no variance-reduction (σ2

K=1 = σ2
g). Thus, we see a

natural trade-off between storage and variance-reduction
as we vary the number of cluster states K. In practice,
ClusterFedVARP gives server the flexibility to set K
based on its storage constraints.

We see that ClusterFedVARP also allows an interesting
trade-off between the server learning rate and cluster approx-
imation error as we vary K. Our analysis shows the bound
on the server learning rate comes from trying to control
the “staleness” of a client’s state, which measures the fre-
quency with which a client’s state is updated. In FedVARP,
a client’s state is updated only when the client participates,
which happens with probability M

N . In ClusterFedVARP
a client’s state is updated as long as any client from the same
cluster participates, which dramatically reduces staleness.
However this comes at the cost of the additional cluster het-
erogeneity error implying a trade-off between convergence
speed and error floor.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

To support our theoretical findings we evaluate our proposed
algorithms on the following FL tasks: i) image classifica-
tion on CIFAR-10 [Krizhevsky et al., 2009] with LeNet-5
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Figure 1: Experimental Results showing Training Loss and Test Accuracy for: CIFAR-10 on LeNet-5 (a,d), CIFAR-10 on
ResNet-18 (b,e), Shakespeare on RNN (c,f). For ClusterFedVARP we keep K = 55 for CIFAR-10 experiments (4.5x
storage reduction) and K = 36 for Shakespeare experiments (30x storage reduction). FedVARP outperforms baselines in
all cases while ClusterFedVARP outperforms baselines in most cases. We see greater empirical benefits for CIFAR-10
experiments due to the higher data-heterogeneity across clients.

[LeCun et al., 2015], ii) image classification on CIFAR-
10 with ResNet-18 [He et al., 2016], and iii) next charac-
ter prediction on Shakespeare [Caldas et al., 2018] with a
RNN model. In all setups, we compare the performance
of our algorithms with FedAvg, MIFA [Gu et al., 2021]
and SCAFFOLD [Karimireddy et al., 2019] (see Section 3.1
for discussion of the algorithms). We briefly describe the
datasets and the natural clustering of clients that we utilize
in these datasets.

CIFAR-10. The CIFAR-10 dataset is a natural image dataset
consisting of 60000 32x32 colour images, with each image
assigned to one of 10 classes (6000 images per class). We
create a federated non-iid split of the CIFAR-10 dataset
among 250 clients using a similar procedure as [McMahan
et al., 2017]. The data is first sorted by labels and divided
into 500 shards with each shard corresponding to data of a
particular label. Clients are randomly assigned 2 such shards
which implies each client has a data distribution correspond-
ing to either 1 or 2 classes. For ClusterFedVARP, we
group clients having the same data distribution in the same
cluster giving us 55 unique clusters.

Shakespeare. Shakespeare is a language modelling task

where each client is a role from one of the plays in The
Collective Works of William Shakespeare [Shakespeare,
2014]. We pick clients that have lines corresponding to
at least 120 characters which leaves us with 1089 unique
clients. The task is to predict the next character given an
input sequence of 20 characters from a client’s text. For
ClusterFedVARP, we group clients belonging to the
same play in the same cluster giving us a total of 36 clusters.

Experimental Details. To simulate partial client partici-
pation we uniformly sample M = 5 clients without re-
placement in every round for all algorithms. This gives us
a participation rate of 2% for CIFAR-10 experiments and
< 1% for Shakespeare as seen in practice for typical FL
settings [Kairouz et al., 2019]. We allow clients to perform
5 local epochs before sending their updates. We use a batch
size of 64 in all experiments. We fix the server learning rate
ηs to 1 and tune the client learning rate ηc over the grid
{10−1, 10−1.5, 10−2, 10−2.5, 10−3} for all algorithms. For
ResNet-18 we replace the batch normalization layers by
group normalization [Hsieh et al., 2020]. Our Shakespeare
RNN was a single layer Gated Recurrent Unit (GRU) with
128 hidden parameters and embedding dimension of 8.



5.2 COMPARISON WITH BASELINES

Our experiments clearly demonstrate that our proposed al-
gorithms consistently outperform other baselines without re-
quiring additional communication or computation at clients.
ClusterFedVARP closely matches the performance of
FedVARP in all experiments thereby highlighting the practi-
cal gains of clustering-based storage reduction. For instance,
to achieve 50% test accuracy on CIFAR-10 classification
with LeNet-5 our algorithms take less than 536 rounds while
FedAvg takes 1158 rounds giving us up to 2.1x speedup.
The benefits are especially pronounced for CIFAR-10 as
the artificial data partitioning leads to greater heterogene-
ity across clients thereby accentuating the effect of partial
participation.

Our algorithms also outperform competing variance-
reduction methods MIFA and SCAFFOLD in all exper-
iments. The performance of MIFA is severely affected
by its bias in the initial rounds of training since we do
not assume that all clients participate in the first round
of training. This again highlights the practical usefulness
of the unbiased variance-reduction applied in FedVARP
and ClusterFedVARP. While theoretically appealing
we find that modifying the LocalSGD procedure using
SCAFFOLD to mitigate client drift actually hurts perfor-
mance in practical FL settings. Our findings are consistent
with [Reddi et al., 2021] and make the case for reducing
client drift using carefully tuned local learning rates while
focusing on server-based optimization techniques to reduce
variance.

6 RELATED WORK

Convergence Analysis of FedAvg: The original FedAvg
[McMahan et al., 2017] work inspired a rich line of work
trying to analyze FedAvg in various settings [Khaled et al.,
2020, Yu et al., 2019, Li et al., 2020b]. The convergence
results closest to our setting are found in [Wang et al., 2020,
Karimireddy et al., 2019, Yang et al., 2021] that analyze
FedAvg in the presence of non-iid data as well as par-
tial client participation for non-convex objectives. We refer
readers to [Kairouz et al., 2019, Wang et al., 2021] for a
comprehensive review of convergence results in FL.

Variance Reduction. Since the inception of SAG
[Schmidt et al., 2017] and SAGA [Defazio et al., 2014], sev-
eral variance-reduction methods for centralized stochastic
problems have been proposed that do not require additional
storage. We divide these works into two broad categories
and discuss applying them in a federated context to reduce
partial client participation.

1) SVRG-style Variance Reduction. SVRG [Johnson and
Zhang, 2013] and related methods like SCSG [Lei et al.,
2017] SARAH [Nguyen et al., 2017], and SPIDER [Fang

et al., 2018] trade-off storage with computation and need to
compute the full (or a large-minibatch) gradient at regular
intervals. While these methods achieve theoretically better
rates than SAGA, applying them in a federated context
would require all clients to participate in some rounds of
training which we believe is unrealistic.

2) Momentum-based Variance Reduction. A recent line
of work explores the connection between SGD with momen-
tum and variance-reduction and proposes new algorithms
STORM [Cutkosky and Orabona, 2019] and HybridSARAH
[Tran-Dinh et al., 2019], that do not require full-batch gradi-
ent computation at any iteration. This has inspired federated
counterparts [Das et al., 2020], [Khanduri et al., 2021], [Li
et al., 2021]. [Das et al., 2020] and [Li et al., 2021] propose
to use such approaches to reduce client participation vari-
ance. However there are two drawbacks. The central server
needs to communicate two sets of global models w(t) and
w(t−1) to the participating clients, doubling server to client
communication. Secondly, participating clients need to run
local SGD for both sets of global models, thereby doubling
computation. Again while theoretically attractive we believe
such approaches are not suitable for practical FL settings.

Clustered Federated Learning and Variance Reduction.
The idea of utilizing cluster structure among clients has
given rise to the paradigm of clustered federated learning
[Ghosh et al., 2020], [Sattler et al., 2020], where separate
global models are learned for each cluster. On the other
hand, we propose to learn a single global model and use
the cluster structure for reducing the variance arising due to
partial client participation. A similar idea of sharing gradient
information while reducing variance has been explored in
N -SAGA [Hofmann et al., 2015] but their focus is on a
single node centralized setting and the analysis is restricted
to strongly convex functions. An interesting direction for
future work is to linearly combine a client’s previous state
with its cluster state to reduce staleness as done in [Allen-
Zhu et al., 2016].

7 CONCLUSION

We consider the problem of eliminating variance arising
due to partial client participation in large-scale FL systems.
We first show that partial participation variance dominates
the convergence rate of FedAvg for smooth non-convex
loss functions. We propose FedVARP, a novel aggregation
strategy applied at the server to completely eliminate this
variance without requiring any additional computation or
communication at the clients. Next we propose a more prac-
tical clustering-based strategy ClusterFedVARP that re-
duces variance while being storage-efficient. Our theoretical
findings are comprehensively supported by our experimen-
tal results which show that our proposed algorithms consis-
tently outperform existing baselines.
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