Multi-view Graph Condensation
via Tensor Decomposition

Nicolas R. Santos! , Dawon Ahn!, Diego Minatel?, Alneu A. Lopes?, Evangelos Papalexakis!
University of California Riverside, >University of Sao Paulo
{nicolasr,dahn017,epapalex}@ucr.edu, dminatel@usp.br, alneu@icmc.usp.br

Abstract

Training Graph Neural Networks (GNNs) on large-scale graphs presents significant
computational challenges due to the resources required for their storage and pro-
cessing. Graph Condensation has emerged as a promising solution to reduce these
demands by learning a compact graph that preserves the essential information of
the original one while maintaining the GNN’s performance. Despite their efficacy,
current condensation approaches frequently rely on a computationally intensive
bi-level optimization. Moreover, they fail to maintain a mapping between synthetic
and original nodes, limiting the interpretability of the model’s decisions. In this
sense, a wide range of decomposition techniques have been applied to learn linear
or multi-linear functions from graphs, offering a more transparent and less resource-
intensive alternative. However, their applicability to graph condensation remains
unexplored. This paper addresses this gap and proposes a novel method called
Multi-view Graph Condensation via Tensor Decomposition (GCTD) to investigate
the extent to which such techniques can synthesize a smaller graph while achieving
comparable downstream task performance. Experiments on six datasets show that
GCTD effectively reduces graph size while preserving GNN performance. Our
code is available at https://github.com/nicolasrsantos/gctd.

1 Introduction

Graph Neural Networks (GNNs) have become a pivotal tool for representation learning on graph data,
enabling tasks such as antibiotic discovery, estimated time of arrival (ETA) prediction, and fake news
detection [Stokes et al.| [2020]], Derrow-Pinion et al.|[2021]], Song et al.[[2021]. Despite their success,
GNNss face significant scalability challenges on large-scale graphs, motivating research on graph size
reduction Hashemi et al.|[2024]. Among the existing approaches, graph condensation has emerged as
a promising solution: it learns a smaller graph that allows GNNs to achieve accuracy comparable to
training on the original graph while reducing computational cost.

Existing methods generate condensed graphs using a variety of strategies. Some approaches rely on
Kernel Ridge Regression [Xu et al.|[2023]], Wang et al.| [2024]], while others match different types of
information, such as gradients/Jin et al.|[2022]], training trajectories Zheng et al.[[[2023]], eigenbasis |Liu
et al.|[2024a], or data distributions [Liu et al.|[2022]]. Beyond these, CGC|Gao et al.|[2025]] proposes
a training-free condensation scheme, DisCo [Xiao et al.| [2025]] introduces a disentangled GNN-
free framework, and SimGC Xiao et al.|[2024] leverages an MLP with a heuristic to preserve the
distribution of node features. Methods like SGDD |Yang et al.|[2023]] and GCSR [Liu et al.| [2024b|]
further incorporate structural information from the original graph to produce the condensed version.

While existing methods can reduce graphs without major accuracy loss, they often rely on a bi-level
optimization and require multiple parameter initializations, leading to a costly triple-loop procedure.
Additionally, these methods lack interpretability, losing the notion of how synthetic nodes relate to

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: New Perspectives in
Advancing Graph Machine Learning.

the original ones. At the same time, there exists an extensive line of work that leverages matrix or
tensor decomposition for graph-based tasks that learn simpler functions (i.e., linear or multi-linear)
from data in contrast to the nonlinear ones learned by the GNNs |Kuang et al.| [2012], [Henderson
et al.|[2012], [Papalexakis et al.|[2013]], Hua et al.|[2022]. Furthermore, they offer a more transparent
view of their decisions, providing a more interpretable approach. Importantly, the goals of tensor
decomposition and condensation are inherently aligned: both aim to reduce the size and complexity of
the original data while preserving its essential information, thereby lowering the computational cost
of downstream tasks. Yet, to the best of our knowledge, no prior study has explored the application
of decomposition techniques for synthesizing smaller graphs.

In this work, we address this gap by reframing graph condensation as a decomposition problem,
investigating whether key information from a large graph can be transferred to a smaller one while
preserving downstream performance. To this end, we introduce Multi-view Graph Condensation via
Tensor Decomposition (GCTD), a novel method that constructs a multi-view graph by augmenting
the original adjacency matrix into a third-order tensor through random edge perturbations. This tensor
is then decomposed, and the resulting latent factors are exploited to synthesize a compact graph. The
central idea is that decomposition reveals latent co-clusters in the data, allowing nodes to be grouped
into synthetic ones based on shared structural patterns (Gujral and Papalexakis| [2018]].

Through extensive experiments on six real-world datasets, we demonstrate that GCTD effectively
synthesizes smaller graphs, outperforming existing baselines on three out of six datasets with up to
4.0% higher accuracy. Additionally, we show that using multi-view decomposition leads to better
performance than its single-view counterpart. Our contributions are summarized as follows:

* We propose a novel method for graph condensation that leverages a tensor decomposition
technique to reduce the original graph;

* We employ multi-view augmented graphs and show through a comprehensive analysis that
it improves upon single-view decomposition;

* We conduct an extensive analysis to showcase to what extent decomposition methods can
condense graphs;

2 Preliminaries

Given atarget graph G7 = A7 X7 Y7, where A7 € RV*¥ is the adjacency matrix, X7 € RV 9
is the d-dimensional node feature matrix, and Y7 € 0,...,C — 1Y denotes the node labels over
C classes, the goal of graph condensation is to construct a smaller graph G = {AS X5 Y5}
with AS €]RN'XNI, XS e RNle, YS e 0,...,C — 1N/, and N’ < N, such that training a
GNN on G¢ yields comparable performance to training on the much larger G7 . Prior work typically
formulates this task as a bi-level optimization problem |Hashemi et al.| [2024]:

min L(GNNg_s (AT, X7),YT)

1
s.t. Ogs = arg minl(GNNg(A®, X%),Y¥). M
6

Here, the outer loop optimizes the synthetic graph (e.g., via a gradient-matching loss), while the
inner loop trains a GNN parameterized by 0 on the synthetic dataset. To prevent overfitting to a
particular initialization, this procedure is repeated multiple times, resulting in an expensive triple-loop
optimization. In addition to the aforementioned costly step, most methods leverage a GNN to learn a
condensed graph. This results in a black-box model, making it difficult to establish a clear connection
between the original and synthetic nodes.

3 Proposed Method

We introduce our method GCTD, which generates a tensor from multi-view graphs and decomposes
it to derive a condensed graph. The full pipeline is shown in Figure |1} with a detailed algorithm
provided in Appendix [A] We also describe our initial attempt based on matrix decomposition in

Appendix

1. Tensorization 2. Multi-View Graph Decomposition 3. Uncovering condensed graph

Multi-view Original node v7 New synthetic node v®

I(i:o condensed graph R Factor matrix :,.’\...\}g&;.\ :, -
73 { oo moﬁ e I SR)

N'xN'xK New feature for v¥

Original X:O (averaged features ~——et oo STIoof Moooo___-
graph G - NXN XK of original nodes) - K-means on U to obtain Aggregate R to obtain the
Random information of synthetic nodes condensed graph
perturbation

Figure 1: Pipeline of GCTD. We construct a tensor by augmenting the graph’s adjacency matrix A7
and stacking them together in the third dimension with A7, Then, we apply non-negative RESCAL
to the given tensor to extract low-rank structures U and a multi-view condensed graph R. Lastly, we
obtain a condensed graph by aggregating R along the third mode, and we compute the feature and
label for each synthetic node by applying K-Means to U.

Tensor creation from multi-view graphs. We build a tensor X from perturbed versions of the input
adjacency matrix A7 . Spemﬁcally, we generate a set of K augmented matrices S = {s1,..., 8k},
each obtained by randomly removmg and adding edges to A7 according to predeﬁned probablhtles.
This design is motivated by prior work showing that multi-view augmentation improves robustness to
adversarial attacks and reduces prediction variance in GNNs |Wu et al.| [2022].

For each perturbed matrix si, edges are first dropped with probability p,., yielding an expected edge
count of M’ = M(1 — p,.), where M is the original number of edges. New edges are then added
with probability p,, sampled from the set of non-existing edges. The number of edges after this

step becomes M’ = M’ + p, - (w - M’), where w is the total number of possible

edges in an undirected graph with /N nodes. In practice, we set p, and p, to small values (i.e.,
0.05 < pr,pe < 0.2) to ensure that the perturbed graphs remain with a similar size to the original
one, with M’ =~ M on average.

Finally, the perturbed matrices are stacked into a tensor X, where the first slice corresponds to A7
and the remaining slices correspond to the matrices in S. The structure of X is shown in Step 1 of
Figurd]I] and further details on tensors are provided in Appendix [C] To reduce runtime overhead, all
perturbations are precomputed.

Decomposing a multi-view graph. We reconstruct the multi-view graph X using the decomposition
RESCAL |Nickel et al.|[2011]]. Formally, we compute the following operation for each slice &k of X:

X, =UR,U",)

where U € RV*N' js the factor matrix capturing latent components in the given graph and Ry, is
the k-th slice of the core tensor R € RN *N'*K 'indicating relations between latent components
existing in the k-th view of the graph. Note that N’ is the size of the condensed graph, and K is the
total number of augmented graphs.

The formulation presented in Equation [2] consists of an operation that produces K dense matrices,
which is computationally expensive for large graphs. To make things worse, keeping them in memory
during runtime is resource-intensive since we have to store multiple N x N matrices. To address this
issue, we adopt the sparse version of RESCAL, where we reconstruct only the observed entries of the
original tensor as follows:

jijk = uiTRkuj. (3)
Since this operation considers only observed entries (i.e., nonzero values), providing negative samples
is essential to prevent overfitting. Therefore, we randomly generate negative examples in a 1:1
ratio to the available nonzero values, ensuring a balanced set of positive and negative samples. It is
noteworthy that this process is precomputed to minimize the computational overhead. In addition to
performing sparse decomposition, we employ mini-batching to further reduce memory usage. Finally,
we optimize R and U using the following reconstruction loss:

LS (e — 7)2

E’I"SC = 2 Zl’j’k (ijz ij)) (4)
Zi, gk Lijk

where x;;, and Z;;;, are entries from the original and reconstructed tensor, respectively.

Nonnegativity and sparsity constraint. Given the nonnegative nature of most real-world graphs,
we impose a constraint in our method to maintain the nonnegative characteristics of the data. It is
important to note that we introduce hard constraints instead of soft regularization-based ones that
prior work did [Zulaika et al.[[2023]]. Specifically, we first ensure that the random initialization of the
factor matrix and core tensor comprises only nonnegative values by applying the absolute function
to them (i.e., U + |U| and R + |R|). Additionally, since every optimization step of GCTD can
shift some values of U and R to negative, we apply the nonlinear activation function ReLU to them
in every epoch to ensure they remain nonnegative. Besides guaranteeing the constraint mentioned
above, applying ReLLU inherently induces sparsity in the learned graph since it sets a portion of the
values to zero, reducing the storage necessary for the condensed graph.

Computing the structure and features of a condensed graph. The reconstruction in Equation 3]
yields a low-rank approximation of the original adjacency matrix, grouping nodes with similar
interaction patterns while encoding node and relation-level information in U and R, respectively.
To derive the structure of the condensed graph G°, we average each slice R; ; . of the core tensor
to obtain the adjacency matrix AS. Since this aggregation may produce an asymmetric matrix, we
enforce symmetry by adding the corresponding off-diagonal entries.

To extract the synthetic nodes from this decomposition, we apply the K-Means algorithm to the rows
of the factor matrix U. Formally, we minimize the following function:

L 1, ifj = argming||u; — 2

Licsteans = ZZ&’JHUZ —ul* st 6y = {0: otkjlerwiseg s =] ’)

i=1 j=1
where u; is a row in U, 1, corresponds to a cluster centroid, and d;; € {0, 1} indicates to which of
the J clusters u; is assigned. We initialize the centroids randomly and the number of clusters is set to
match the number of columns of U, denoted N’, which corresponds to the size of GS. This process
determines which nodes from the original graph G7 should be grouped together in the reduced graph,
providing the necessary information to assign class labels, splits, and features to the synthetic nodes.

Given the assignments for cluster j, the split of the corresponding synthetic node is chosen as the
most frequent split among the original nodes ¢ for which §; ; = 1. The class label is then determined
by considering only the nodes from that split. For example, if five nodes are assigned to cluster j
with splits train, val, train, test, train and classes 0, 2, 1, 0, 0, the synthetic node will be assigned to
the training split and to class 0, which is the most frequent class among the training nodes. Finally,
the features of the synthetic node are computed by averaging the embeddings of the nodes assigned
to it that share both its split and class. Throughout this process, we prioritize underrepresented splits
and classes to ensure the condensed graph preserves the original distribution.

Complexity Analysis. The complexity of GCTD comprises three parts: tensor decomposition,
clustering, and adjacency generation. For decomposition, operations are performed only on observed
entries (Eq., giving O(N'?) per entry and O(N'? M K) overall, where M is the number of edges per
view and K the number of views (2 < K < 5). Since M <« N? and N’ <« N, this step is tractable.
KMeans adds O(T'N"2N') complexity, with T' = 20 iterations in our experiments, and adjacency
generation costs O(N'?). Thus, the total complexity is O(N2M K) + O(TN">N) + O(N"?).

In practice, this cost remains entirely manageable because the purpose of graph condensation is
to reduce the graph size to a small N'. Even for the largest datasets (i.e., Reddit and Ogbn-arxiv),
the condensed graphs have fewer than 1,000 nodes (i.e., N’ < 1000), keeping the cost well within
practical limits. For smaller datasets, N’ is typically below 100, further alleviating this cost.

4 Experiments

In this section, we describe our experimental settings and present the obtained results. Additional
information about baselines, hyperparameters, and datasets is provided in Appendix [D] while further
experiments are reported in Appendix [E|

Baselines. We compared our method against eleven baselines, which include three graph coreset
methods (Random, Herding|Welling [2009], and K-Center|Sener and Savarese|[2017]]), one coarsening
method |[Huang et al.[[2021]], two graph distillation methods: SGDD |Yang et al.| [2023]], and GDEM
Liu et al.|[20244], and five graph condensation methods: GCond [Jin et al.|[2022], SFGC |Zheng et al.
[2023]], SNTK Wang et al.|[2024]], GCDM |Liu et al.[[2022]], and CGC |Gao et al.|[2025]].

Datasets. Following prior work in graph condensation Jin et al.|[2022], Yang et al.| [2023]],[Zheng
et al.[[2023]], we evaluate our method on six datasets that range from a few thousand to hundreds
of thousands of nodes: four transductive graphs (Cora, Citeseer, Pubmed, and Ogbn-arxiv) and
two inductive graphs (Flickr and Reddit). Cora, Citeseer, and Pubmed are taken from the PyTorch
Geometric library, Flickr and Reddit from GraphSAINT Zeng et al.|[2020], and Ogbn-arxiv from the
Open Graph Benchmark [Hu et al.|[2020]. All experiments utilize the official public splits for each
dataset.

Hyperparameter Settings. In the condensation step of GCTD, we considered the decomposition
converged either after 200 epochs or when the absolute difference in reconstruction error between
epochs t and ¢ + 1 is below 1077, Following Jin et al.| [2022]], during the evaluation phase, we train a
2-layer GCN with 256 hidden units and no dropout for 600 epochs on the condensed graph, selecting
the model with the lowest validation loss for final performance evaluation on the original test set.

4.1 Experimental Results

To begin our analysis, we evaluate the performance of our method against selected baselines across
six datasets, using three condensation ratios commonly utilized in the literature. We present the
average performance across ten runs and the corresponding standard deviation in Table[T} Notably,
our method yields superior performance on the Citeseer, Cora, and Pubmed datasets. For example,
it achieves a 4.0%, 3.4%, and 4.1% improvement in accuracy across the three condensation ratios
applied to Citeseer. Moreover, GCTD exhibits lossless performance in all settings for Citeseer,
Pubmed, and Flickr, as well as in the 1.3% and 2.6% ratios for Cora.

Table 1: Node classification accuracy (%) of the baselines and our proposed method. We report

the average of ten runs and the standard deviation. Best and second-best results are in bold and

underlined, respectively. Out of memory (OOM) is 49GB.

Datasets Ratio (%) Traditional Methods Condensation and Distillation Methods Full
Random Herding K-Center Coarse GCond SFGC SGDD SNTK GCDM GDEM CGC GCTD Dataset

1.3 63.64+3.7 67.0+1.3 64.0+2.3 31.24£0.2 79.84+1.3 77.74+1.8 79.1+1.3 78.4+1.4 79.1£0.9 68.040.1 82.6+0.3 81.4+1.6
Cora 26 72.8%1.1 73.441.0 73.241.2 65.240.6 80.140.6 79.3+0.8 79.0+£1.9 79.74£0.9 80.5+0.3 72.8+£0.8 81.240.6 84.0+0.4 81.440.6
52 76.840.1 76.840.1 76.7£0.1 70.640.1 79.340.3 79.440.5 80.2£0.8 80.540.6 80.240.5 77.440.6 82.1£0.9 79.940.3

0.9 54.4+4.4 571415 524428 522404 70.5+1.2 66.3£2.4 71.5+0.9 66.1£3.0 72.840.3 72.3+0.3 72.54+0.5 76.81+0.4
Citeseer 1.8 64.2+1.7 66.7+1.0 64.3+1.0 59.040.5 70.6+0.9 69.0+£1.1 71.240.7 69.2+1.2 71.74+0.2 72.6+0.6 73.14+0.2 76.5+2.5 71.7£0.4
3.6 69.1£0.1 69.040.1 69.1+0.1 65.34+0.5 69.8+1.4 70.8£0.4 70.94+1.2 71.0£0.6 72.54+0.5 72.6+0.5 71.54+0.3 76.7+0.2

0.08 69.540.5 73.0£0.7 69.0£0.6 18.140.1 78.34+0.2 76.4+1.2 77.1£0.5 78.940.7 77.140.3 77.740.7 77.3£0.1 79.9£0.2
Pubmed 0.15 73.840.8 75.440.7 73.7+£0.8 28.7+t4.1 77.14+0.3 77.5+0.4 78.0+£0.3 79.3+£0.3 76.84+0.6 78.41+1.8 76.0+0.5 79.4+2.8 77.14+0.3
0.3 779404 779404 77.840.5 42.8+4.1 78.41+0.3 77.9£0.3 77.5+0.5 79.4£0.3 78.1+0.3 78.2+0.8 77.84+0.2 80.0+1.0

0.05 47.14+3.9 52.441.8 47.243.0 354403 59.24+1.1 59.0£1.8 59.6+0.5 58.74+1.7 63.840.3 63.7+0.8 64.1+-0.4 58.2+1.7
Arxiv 025 57.3%1.1 58.6+1.2 56.8£0.8 43.54+0.2 63.240.3 64.6+0.3 61.7£0.3 64.24+0.5 66.7+0.4 63.840.6 66.2+0.1 57.9£2.1 71.3£0.1
0.5 60.0£0.9 60.440.8 60.3+0.4 50.440.1 64.0+0.4 65.2£0.8 58.740.6 65.1£0.7 67.61+0.3 64.1+0.3 67.04+0.2 57.840.7

0.1 41.842.0 42.5+1.8 42.0£0.7 41.940.2 46.5+£0.4 45.540.8 46.1£0.3 454404 44.840.5 49.940.8 47.11+0.1 48.4+£0.8
Flickr 0.5 44.040.4 439409 43240.1 44.540.1 47.140.1 46.0+0.4 459404 46.0+£0.4 46.44+0.2 49.4+1.3 47.1+0.0 48.1£1.4 47.1£0.1
1 44.61+0.2 44.41+0.6 44.1£0.4 44.6+0.1 47.1£0.1 46.140.3 46.4+£0.2 46.24+0.4 46.7+0.2 49.9£0.6 46.810.1 48.0£0.9

0.05 46.14+4.4 53.14£2.5 46.6£2.3 40.940.5 88.0+1.8 80.0+3.1 84.2+£0.7 OOM 91.240.1 92.94+0.3 90.7+0.1 91.340.1
Reddit 0.1 58.0+2.2 62.741.0 53.0+£3.3 42.8£0.8 89.6+0.7 84.64+1.6 80.6£04 OOM 92.440.0 93.1+0.2 91.0+0.1 90.1£0.9 94.1£0.0
02 663£19 71.0+1.6 585+2.1 47.440.9 90.1+0.5 87.9£1.2 84.1+03 OOM 92.740.1 93.2+0.4 90.54+0.0 90.840.5

Analyzing the results on Flickr, one of the most challenging datasets in our evaluation, we observe
that GCTD performs robustly, securing the second-best results across all condensation ratios and
achieving lossless performance. Similarly, GCTD performs competitively on Reddit, consistently
ranking among the top-performing methods. For instance, at the 0.05% condensation ratio, it achieves
91.3% accuracy (the second-best result overall) and maintains comparable performance at higher
ratios. These findings highlight the effectiveness of our method in transductive and inductive settings,
as well as in large datasets (i.e., Flickr and Reddit). Although results on Ogbn-arxiv do not surpass
the strongest baselines, the method maintains competitive performance and demonstrates robustness
across diverse datasets, indicating promising potential for further development.

On the number of graph views. Next, we present an experiment we conducted to analyze the
impact of the number of augmented multi-views used in condensing the original graph. In this
evaluation, we assessed the performance of our method across graphs with varying numbers of views,
ranging from 1 to 5. It is important to highlight that the case with one view corresponds to a matrix
trifactorization. The results, illustrated in Figure 2] demonstrate how the number of views influences

Citeseer - 1.8% Cora - 2.6% %0 Pubmed - 0.15% Ogbn-arxiv - 0.25% s Flickr - 0.5%
60

80
80 50 40
70

70 0 30
60 30 -

2 3 4 56()1 2 3 4 5501 2 3 4 52(11 2 3 4 52(11 2 3 4 5
Number of Views

S

Accuracy [%]
f=2) ~ o®©
(=} (=]

v
S

Figure 2: Accuracy scores achieved by our method on graphs with varying numbers of views. The
values following each dataset name represent the condensation ratio applied in this ablation study.
Experiments were conducted ten times, and we report the average accuracy along with the error bars.

overall performance. Our results indicate that, except for Cora, using a multi-view augmented graph
consistently yields better performance than the single-view one. For example, on the Ogbn-arxiv
dataset, we observed a 31.5% performance improvement when using three views instead of just one,
highlighting the effectiveness of using augmented views.

Table 2: Running time analysis of the proposed method and the SGC version of the baselines. The
experiments were performed on a single NVIDIA RTX A6000. OOM is 49GB of memory usage.

Dataset (1%) GCond SGDD SFGC GCDM SNTK GCTD
Citeseer (0.9) 70.8 140.9 63.0 1313 29 32.1
Cora (1.3) 90.3 115.1 62.4 174.7 3.1 42.8
Pubmed (0.08) 57.1 2200.5 61.6 75.4 42 48.1
Ogbn-arxiv (0.05) 725.0 2073.3 238.0 480.0 925.4 965.6
Flickr (0.1) 470.4 361.5 429 225.0 148.7 2229
Reddit (0.05) 3780 10350 2420 1617.1 OOM 2515.3

Running time. In Table 2] we compare the running time of our method against GCond, SGDD,
SFGC, GCDM, and SNTK. To ensure a fair comparison, we adopted the SGC implementation for
all baselines, as it offers faster runtime than their GCN counterparts. Overall, our method strikes
a balance between speed and performance. It consistently outperforms SGDD across all datasets,
significantly reducing condensation time. For instance, on Citeseer, our method is over four times
faster than SGDD and twice as fast as SFGC, one of the fastest baseline models. On larger datasets
such as Reddit and Ogbn-arxiv, our method remains considerably faster than SGDD.

When compared to GCond and GCDM, our method shows better efficiency on smaller datasets and
Flickr, while also outperforming GCond on Reddit. It is, however, slightly slower than GCDM on
Reddit. Notably, SFGC remains among the fastest methods due to its structure-free condensation
approach, which aligns with the findings of [Han et al.| [2023]] that matrix multiplication with the
adjacency matrix is the most time-consuming operation in GNNs. Lastly, while SNTK performs well
on smaller graphs, its runtime advantage diminishes as graph size increases. On Reddit, it runs out of
memory (49GB in our setup) due to its expensive kernel computation.

5 Conclusion

In this paper, we introduced GCTD, a novel framework for graph condensation based on the
decomposition of multi-view augmented graphs. We demonstrated that tensor decomposition can
generate compact graphs that preserve GNN performance on downstream tasks. To validate our
approach, we evaluated GCTD on six real-world datasets spanning both transductive and inductive
learning settings, complemented by an in-depth analysis of its capabilities.

Our experiments show that GCTD outperforms existing methods on three of the six benchmarks
and delivers competitive results on the larger datasets. The framework proves effective in both
transductive and inductive scenarios. For future work, we plan to explore alternative decomposition
techniques, investigate different augmentation strategies, and replace the current hard assignment
with a soft membership approach.

Acknowledgements

Research was supported in part by the National Science Foundation under CAREER grant no. 1IS
2046086, grant no. No. 2431569 and CREST Center for Multidisciplinary Research Excellence in
CyberPhysical Infrastructure Systems (MECIS) grant no. 2112650, and by the Agriculture and Food

Research Initiative Competitive Grant no. 2020-69012-31914 from the USDA National Institute of
Food and Agriculture. This study was also supported by the Coordination for the Improvement of
Higher Education Personnel (CAPES) through the Institutional Internationalization Program (PRINT),
Call No. 41/2017, and partially funded by CAPES (Finance Code 001), the Sdo Paulo Research
Foundation (FAPESP) [grants 20/09835-1, 22/02176-8, and 22/09091-8], and the National Council
for Scientific and Technological Development (CNPq) [grants 303588/2022-5 and 406417/2022-9].
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the funding agencies.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes not
withstanding any copyright notation here on.

Broader Impacts: Our framework aims to reduce the computational cost of training Graph Neural
Networks, making graph learning research more accessible and environmentally sustainable. It is
essential to recognize that condensed graphs can potentially preserve or amplify biases present in the
original data.

References

Mohammadreza Babaee, Stefanos Tsoukalas, Maryam Babaee, Gerhard Rigoll, and Mihai Datcu.
Discriminative nonnegative matrix factorization for dimensionality reduction. Neurocomputing,
173:212-223,2016. ISSN 0925-2312.

Minsik Cho, Vinod Muthusamy, Brad Nemanich, and Ruchir Puri. Gradzip: Gradient compression
using alternating matrix factorization for large-scale deep learning. In NeurIPS. 2019.

Michagl Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, pages 3844-3852. Curran Associates, Inc.,
2016.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang
Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Velickovic. Eta prediction with
graph neural networks in google maps. In CIKM. ACM, October 2021.

Charles Dickens, Edward Huang, Aishwarya Reganti, Jiong Zhu, Karthik Subbian, and Danai
Koutra. Graph coarsening via convolution matching for scalable graph neural network training. In
Companion Proceedings of the ACM Web Conference 2024, WWW 24, page 1502-1510, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400701726.

Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnegative matrix t-factorizations
for clustering. In KDD, page 126—135, New York, NY, USA, 2006. Association for Computing
Machinery. ISBN 1595933395.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning: A
survey. ACM SIGKDD Explorations Newsletter, 24(2):61-77, 2022.

Xinyi Gao, Guanhua Ye, Tong Chen, Wentao Zhang, Junliang Yu, and Hongzhi Yin. Rethinking and
accelerating graph condensation: A training-free approach with class partition. In Proceedings
of the ACM on Web Conference 2025, WWW °25, page 4359-4373, New York, NY, USA, 2025.
Association for Computing Machinery. ISBN 9798400712746.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

Ekta Gujral and Evangelos E. Papalexakis. Smacd: Semi-supervised multi-aspect community
detection. In Proceedings of the 2018 SIAM International Conference on Data Mining (SDM),
pages 702-710, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
NeurlPS, 30, 2017.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. MLPInit: Embarrassingly simple
GNN training acceleration with MLP initialization. In The Eleventh International Conference on
Learning Representations, 2023.

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei Jin. A com-
prehensive survey on graph reduction: Sparsification, coarsening, and condensation. International
Joint Conference on Artificial Intelligence (IJCAI), 2024.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary
graph spectral filters via bernstein approximation. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=WigDnV-_Gq.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu,
Danai Koutra, Christos Faloutsos, and Lei Li. Rolx: structural role extraction & mining in
large graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD *12, page 1231-1239, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450314626.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Chenging Hua, Guillaume Rabusseau, and Jian Tang. High-order pooling for graph neural networks
with tensor decomposition. Advances in Neural Information Processing Systems, 35:6021-6033,
2022.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural
networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pages 675-684, 2021.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation
for graph neural networks. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=WLEx3Jo4QaB,

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455-500, 2009.

Da Kuang, Chris Ding, and Haesun Park. Symmetric Nonnegative Matrix Factorization for Graph
Clustering, pages 106-117. 2012.

Zechao Li, Jing Liu, and Hanqging Lu. Structure preserving non-negative matrix factorization for
dimensionality reduction. Computer Vision and Image Understanding, 117(9):1175-1189, 2013.
ISSN 1077-3142.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive field
distribution matching. arXiv preprint arXiv:2206.13697, 2022.

Yang Liu, Deyu Bo, and Chuan Shi. Graph distillation with eigenbasis matching. In Forty-first
International Conference on Machine Learning, 2024a.

Zhanyu Liu, Chaolv Zeng, and Guanjie Zheng. Graph data condensation via self-expressive graph
structure reconstruction. arXiv preprint arXiv:2403.07294, 2024b.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1-42, 2019.

Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way model for collective learning
on multi-relational data. In Icml, volume 11, pages 3104482-3104584, 2011.

https://openreview.net/forum?id=WigDnV-_Gq
https://openreview.net/forum?id=WLEx3Jo4QaB

Evangelos E Papalexakis, Leman Akoglu, and Dino Ience. Do more views of a graph help? community
detection and clustering in multi-graphs. In Proceedings of the 16th International Conference on
Information Fusion, pages 899-905. IEEE, 2013.

Stephan Rabanser, Oleksandr Shchur, and Stephan Giinnemann. Introduction to tensor decompositions
and their applications in machine learning. arXiv preprint arXiv:1711.10781, 2017.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis,
and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. /IEEE
Transactions on Signal Processing, 65(13):3551-3582, 2017. doi: 10.1109/TSP.2017.2690524.

Chenguang Song, Kai Shu, and Bin Wu. Temporally evolving graph neural network for fake news
detection. Information Processing & Management, 58(6):102712, 2021. ISSN 0306-4573.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A
deep learning approach to antibiotic discovery. Cell, 180(4):688-702, 2020.

Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and Frederic Andres. Sparse low rank
factorization for deep neural network compression. Neurocomputing, 398:185-196, 2020. ISSN
0925-2312. doi: https://doi.org/10.1016/j.neucom.2020.02.035.

Lin Wang, Wengqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with structure-based
neural tangent kernel. In Proceedings of the ACM on Web Conference 2024, pages 4439-4448,
2024.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th annual international
conference on machine learning, pages 1121-1128, 2009.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In ICML, pages 6861-6871. PMLR, 2019.

Zhebin Wu, Lin Shu, Ziyue Xu, Yaomin Chang, Chuan Chen, and Zibin Zheng. Robust tensor graph
convolutional networks via t-svd based graph augmentation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, page 2090-2099, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850.

Zhenbang Xiao, Yu Wang, Shunyu Liu, Huigiong Wang, Mingli Song, and Tongya Zheng. Simple
graph condensation, 2024. URL https://arxiv.org/abs/2403.14951,

Zhenbang Xiao, Yu Wang, Shunyu Liu, Bingde Hu, Huigiong Wang, Mingli Song, and Tongya Zheng.
Disentangled condensation for large-scale graphs. In Proceedings of the ACM on Web Conference
2025, WWW 25, page 4494-4506, New York, NY, USA, 2025. Association for Computing
Machinery. ISBN 9798400712746.

Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix factoriza-
tion. In Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pages 267-273, 2003.

Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hanghang
Tong. Kernel ridge regression-based graph dataset distillation. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, page 2850-2861, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030.

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart? In NeurlPS, 2023.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In /CLR, 2020.

https://arxiv.org/abs/2403.14951

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, and
Yang You. Navigating complexity: Toward lossless graph condensation via expanding window
matching. ICML 2024, 2024.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the aaai conference on artificial
intelligence, volume 35, pages 11015-11023, 2021.

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793-7804, 2020.

Unai Zulaika, Aitor Almeida, and Diego Lopez-de Ipina. Regularized online tensor factorization for
sparse knowledge graph embeddings. Neural Computing and Applications, 35(1):787-797, 2023.

10

N R 7 I NV R SR

10
11
12
13

A Algorithm

We present the detailed algorithm of GCTD in Algorithm[I} Our method takes as input the observed
entries of the multi-view graph along with the negative samples. The factor matrix and core tensor are
randomly initialized, and the absolute function is applied to ensure their nonnegativity. From lines 6
to 9 of the algorithm, the adjacency matrix is decomposed and the latent components are optimized
while maintaining their nonnegativity throughout the process. Convergence is determined either after
200 epochs or when the variation in reconstruction loss between consecutive steps falls below 1077,
as previously described. Finally, the condensed graph is uncovered by averaging the core tensor and
applying KMeans clustering to the factor matrix, extracting the necessary information to generate the
features, classes, and splits.

The split of a synthetic node is chosen based on the most frequent split among its assigned nodes,
with preference given to underrepresented splits according to the target distribution. To assign a class
label, we first filter the assigned nodes to those within the selected split and examine their class labels.
Instead of simple majority voting, we compute the class frequencies and prioritize underrepresented
classes. The first class whose current count is below its target proportion is selected; if all are satisfied,
a class is chosen randomly among the candidates. This strategy helps maintain class balance in the
condensed graph. Finally, the feature representation of the synthetic node is computed by averaging
the embeddings of its assigned nodes.

Algorithm 1: Graph Condensation via Tensor Decomposition (GCTD)

Input: Pre-computed multi-view graph X" with negative samples.
Output: Condensed graph G5 = (A%, X%, Y¥)
Initialize matrix U and core tensor R randomly.
U+ |U; R «+ |R|
while convergence is not achieved do
Reconstruct X according to Equation
Compute the reconstruction error L. according to Equation
Update U <~ U — nVu L and R+ R — NV g Lrec
U - ReLU (U); R < ReLU (R)

Compute AJ; « Average (R;;.), Vi, j

Cluster U rows according to Equation

Average embeddings of the nodes assigned by K-Means to get X°.

Assign to each synthetic node the most frequent split and class among its assigned nodes, focusing on
underrepresented classes first.

B First attempt: Single-view Graph Modeling

Motivated by prior work using Matrix Factorization (MF) for clustering Ding et al.|[2006], Xu et al.
[2003]], dimensionality reduction |Li et al.|[2013]], Babaee et al.|[2016]], and compression|[Swaminathan
et al.|[2020], /Cho et al.| [2019], which aim to simplify or reduce data complexity, our first attempt at
graph condensation was to factorize the adjacency matrix A7 of a single-view graph G7 .

We employed a variant of MF called Matrix Tri-factorization (MTF), which decomposes a matrix
into the product of three lower-dimensional factors Ding et al.| [2006]. Specifically, it computes
A7 ~ URV', where U and V capture the row and column spaces of A7, while R encodes
the interactions between them. However, given the nature of the undirected graphs, we adopted a
symmetric formulation of MTF where V = U, yielding the following reconstruction:

A7 ~ URUT, (6)

where U € RV*N and R € RV *N'_ Here, N is the number of nodes in the original graph,
N’ = rN is the number of nodes in the condensed graph, r is the condensation ratio, and N’ < N.
Note that if the core tensor in Equation [J]is a matrix, Equation|[6]is equivalent to the Equation[9]

Reconstruction objective. After computing A7, we optimize both U and R using gradient descent,
employing mean squared error (MSE) as the reconstruction loss function. Additionally, we identified
empirically that normalizing the MSE by the sum of the squared elements of the original matrix A

11

enhances convergence speed and stability. Therefore, the final loss function is defined as:

LS~ (ay; — aij)°
‘crec == I Y D) Y 5 (7)
ij Yij

where a;; and a;; represent elements from the original and reconstructed matrices, respectively.

Uncovering the condensed graph. Once U and R are optimized, we derive the condensed graph in
the same manner as outlined in Section [3] except for a minor adjustment to handle R.. Specifically,
in the single-view setting R is a matrix instead of a tensor, which allows us to use it directly as the
adjacency matrix of the condensed graph, eliminating the need for aggregation.

Remarks on single-view decomposition. While we successfully synthesize a condensed graph
through single-view decomposition, we extended this approach to a multi-view setting, as recent
studies indicate that it significantly improves model performance, generalization, and robustness|Zhao
et al.|[2021]],[Wu et al.|[2022]], |Ding et al.| [2022]. Additionally, Sectiondemonstrates that this
strategy yields notable improvements in GNN performance on the condensed graph compared to its
single-view counterpart.

C Tensor Background

Notations. Tensors are multi-dimensional arrays that generalize one-dimensional arrays (or vectors)
and two-dimensional arrays (or matrices) to higher dimensions. Throughout this paper, we use
boldface Euler script letters (e.g., X) to denote tensors, boldface capitals (e.g., A) to denote matrices,
boldface lowercases (e.g., a) to denote vectors, and unbolded letters (e.g., A, a) to denote scalars and
coefficients. We refer to a tensor’s dimension as its mode or order. The slices are two-dimensional
sections of a tensor, defined by fixing all but two indices. For example, the k-th frontal slice of
a third-order tensor X € RIX/*K is a matrix denoted as X, € R'*/. Moreover, the n-mode
product defines the multiplication of a tensor with a matrix in mode n. For example, the n-mode
product of a tensor X € R/*/*K with a matrix U € RE*! along the first mode is denoted by
X X1 U(G RRX]XK).

Tensor decomposition. Tensor decomposition techniques aim to decompose tensors into low-rank
latent components, facilitating data mining and analysis. Among the most widely used models are
CANDECOMP/PARAFAC (CP) and Tucker decompositions, both of which have seen extensive
development and application across a diverse range of fields |[Sidiropoulos et al.| [2017]], Rabanser
et al.[[2017]. In this work, we used a variant of Tucker called RESCAL |Nickel et al.|[2011] and, thus,
we describe them next.

Tucker decomposition approximates a given third mode tensor X € RY*/*X ag follows:
X~ R x UD %, UG 53 U, 8)

where X1, X9, and X3 denote the n-mode product along the first, second, and third modes, respec-
tively. Factor matrices UM € RI*f1 UR) ¢ R7*E2 and UG) € RE*%s are considered as the
principal components in each mode. The core tensor R € Rf1*R2XEs captures the interaction
between each component. Here, R, R», and R3 denote the number of components in each mode and
are smaller than I, J, K, respectively. Furthermore, it has been demonstrated that R can be viewed as
a compressed version of X |[Kolda and Bader [2009].

RESCAL was initially proposed for relational learning and is particularly useful when the frontal
slices of the given tensors exhibit symmetry. It is a special case of the Tucker decomposition, as
described in Equation with a few key differences. Specifically, the core tensor R € Rt xR2xK g
employed, and the factor matrix U(®) is set as an identity matrix. Additionally, the factor matrices
UM and U are identical and denoted by U, as follows:

X~Rx;Ux,Us X, ~UR,UT,)

where Ry, € Rf1*%2 indicates the relations between latent components. It is important to highlight
that RESCAL does not compress the third mode of the tensor.

12

D Datasets and Hyperparameters

D.1 Baselines

It is worth noting that although graph coarsening techniques |[Huang et al.|[2021]], [Loukas|[2019]], He
et al.|[2021]], Dickens et al.| [2024]] are conceptually related to graph condensation, numerous studies
have consistently shown that coarsening tends to underperform condensation methods on downstream
tasks at high condensation ratios Jin et al.|[2022]], |Yang et al.[[2023]],|Zhang et al.| [2024], Liu et al.
[2024a],|Gao et al.|[2025]]. Consequently, our evaluation focuses on distillation and condensation
baselines, which is consistent with the empirical comparison practices adopted in the majority of
recent works in this area.

D.2 Datasets

In Table[3] we provide a summary of the datasets used to evaluate our method. Consistent with prior
work in graph condensation Jin et al.|[2022]],|Yang et al.| [2023]], Zheng et al.|[2023]], our evaluation
covers six datasets ranging from a few thousand to several hundred thousand nodes: four transductive
graphs (Cora, Citeseer, Pubmed, and Ogbn-arxiv) and two inductive graphs (Flickr and Reddit).
Cora, Citeseer, and Pubmed are sourced from the PyTorch Geometric library, Flickr and Reddit from
GraphSAINT [Zeng et al.|[2020], and Ogbn-arxiv from the Open Graph Benchmark Hu et al.|[2020].
All experiments rely on the official public splits provided with each dataset.

Table 3: Statistics of the datasets. The first four datasets are transductive, while the last two are
inductive.

Dataset Nodes Edges Classes Features Train/Val/Test

Cora 2,708 5,429 7 1433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000
Pubmed 19,717 44,338 3 500 50/500/1000
Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603
Flickr 89,250 899,756 7 500 44,625/22,312/22,313
Reddit 232,965 57,307,946 210 602 153,932/23,699/55,334

D.3 Hyper-parameters

To optimize the core tensor R and the factor matrix U, we used the Adam optimizer Kingma and
Bal[2015]]. We tuned the learning rates for the reconstruction and evaluation steps within {0.1, 0.01,
0.001, 0.0001}, and the weight decay in a range of {0, 0.01, 0.001, 0.0001}. Additionally, the random
edge additions and removals used to generate each augmented view of the original adjacency matrix
are tuned across {0.05, 0.1, 0.15, 0.2}. Lastly, the number of views was tuned in a range of {1, 2, 3, 4,
5}, where the value 1 corresponds to a single-view decomposition. All hyperparameter optimization
is performed using the Bayesian optimizer provided by Weights and Biase

E Additional experiments

In this section, we present additional experiments conducted to evaluate different aspects of our
method. Specifically, we investigate the performance of alternative GNN architectures, conduct an
ablation study on synthetic node assignment by comparing a simple argmax strategy with K-Means
applied to U, provide visualizations of the generated graphs, and compare key statistics between the
original and condensed graphs.

E.1 Performance across different GNN architectures

We also evaluated the performance of various GNN architectures on the condensed graphs generated
by GCTD and compared them to GCond, SFGC, and GCDM, which represent diverse approaches to
graph condensation. Consistent with the evaluation protocol of Jin et al.| [2022] and other follow-up

"More information at wandb.ai

13

works, we trained 2-layer versions of APPNP |Gasteiger et al.|[2019], ChebyNet |Defferrard et al.
[2016], SGC|{Wu et al.| [2019]], and GraphSAGE Hamilton et al.|[2017] using the synthesized graphs
and measured their performance on the original graph’s test set. For this evaluation, we selected
datasets across three size categories: Citeseer and Cora (small), Pubmed (medium), and Flickr (large),
with condensation ratios of 1.8%, 2.6%, 0.15%, and 0.5%, respectively. We report the average
accuracy over ten runs in Table 4]

Table 4: Accuracy (%) of different GNN architectures on the graphs condensed by our method,
GCond, and SFGC. The reported values are an average of ten runs. Best and second-best averages
are in bold and underlined, respectively.

Datasets (r%) Methods Models Avg.

GCN APPNP Cheby SGC SAGE

GCond 80.1 78.5 76.0 79.3 78.4 78.5
SFGC 79.3 78.8 79.0 79.1 80.0 792
GCDM 80.5 79.7 75.5 71.7 77.5 78.2
GCTD 84.0 85.5 76.2 82.5 74.6 80.5

GCond 706 69.6 683 703 662 69.0
SFGC 69.0 705 718 718 717 710
GCDM 71.7 736 66.1 736 711 712
GCTD 765 738 752 774 735 1753

GCond 77.1 76.8 75.9 77.1 76.9 76.8
SFGC 71.5 76.3 77.7 77.8 76.3 77.1

Cora (2.6)

Citeseer (1.8)

Pubmed (0.08) opyt 777 783 715 749 770 758
GCTD 799 792 780 798 790 792
GCond 471 459 428 461 462 456
Flickr (0.5 SFGC 460 407 454 425 470 443

GCDM 464 46.0 42.4 45.8 42.6 44.6
GCTD 48.1 46.9 42.7 45.4 47.2 46.1

Focusing on GCTD, we observe that APPNP, SGC, and GCN generally achieve strong results, often
surpassing the average performance across datasets. While APPNP performs best on Cora and SGC
leads on Citeseer and Pubmed, GCN consistently stays competitive. GraphSAGE also stands out on
Flickr, achieving the highest score among the GNNs for that dataset. In contrast, ChebyNet tends to
underperform relative to the others, with below-average results on most datasets.

Analyzing the baselines, we observe that GCTD outperforms all methods in terms of average accuracy
across datasets. For instance, on Citeseer, GCTD improves over GCDM (the second-best method) by
4.1%. On Pubmed, it surpasses SFGC by 2.1%, and on Cora, it leads by 1.3%. Even on Flickr, where
all methods struggle, GCTD still achieves the best average, showing a 0.5% gain over GCond.

E.2 Ablation on the synthetic node assignment

We conducted an ablation study to evaluate the effectiveness of the synthetic node assignment method
we leveraged. Specifically, we used the argmax operation on each row of the factor matrix U,
assigning the selected node to the corresponding synthetic node. We then compared the performance
of this approach to that of K-Means, the default method in GCTD. In this ablation study, we follow
the same settings used in the previous experiment, employing Citeseer, Cora, Pubmed, and Flickr
with 1.8%, 2.6%, 0.15%, and 0.5% condensation ratios, respectively.

As shown in Figure [3] while argmax provides a simple and intuitive method for generating syn-
thetic nodes, its simplicity can sometimes limit its ability to produce high-quality synthetic nodes.
Specifically, we can observe that only selecting the maximum value in each row as the cluster
membership is insufficient to capture the necessary information for the condensed graph. On the
other hand, even though KMeans is computationally complex compared to argmax, it offers greater
performance. It typically obtains better clustering of nodes by effectively grouping them into syn-
thetic nodes based on the optimized factor matrix. This matrix, derived during the decomposition
process, captures co-clustered nodes exhibiting similar patterns, leading to more meaningful synthetic
representations (Gujral and Papalexakis| [2018].

14

[K-Means [Argmax

0
S

Accuracy [%]
N o
<) S

\.]
S

1

Citeseer Cora Pubmed Flickr

Figure 3: Accuracy of GCTD with K-Means and Argmax as the method employed to compute the
synthetic node assignments from factor matrix U. In this ablation study, we used Citeseer, Cora,
Pubmed, and Flickr with the condensation ratio set to 1.8%, 2.6%, 0.15%, and 0.5%, respectively.

E.3 Visualization of the condensed graphs

We visualize the condensed graphs generated with the smallest condensation ratio for Citeseer, Cora,
Pubmed, and Flickr in Figure[d] Several key observations emerge from these visualizations. First,
GCTD produces graphs with well-defined structures and introduces self-loops for certain nodes.
Additionally, it reduces the homophily present in the original graphs, indicating a diminished reliance
on this property. This is particularly intriguing, given that the GNNs we used typically depend on
graph homophily for optimal performance, as discussed in prior work Zhu et al.| [2020]. Finally,
GCTD generates a complete graph for Flickr, implying that the GNN now relies on information from
every node to compute individual node representations. As a result, the GNN relies on the weights
and features of nodes to differentiate between information from various neighbors.

(a) Citeseer - 0.9% (b) Cora - 1.3% (c) Pubmed - 0.08% (d) Flickr - 0.1%

Figure 4: Visualization of condensed graphs generated by GCTD. Each node represents a synthetic
node, with its color indicating the corresponding class.

E.4 Comparison with original graphs

Table [5] presents a comparison of various properties between the original graphs and the condensed
graphs generated by GCTD. The results show that GCTD achieves comparable performance on
Citeseer, Cora, Pubmed, and Flickr, while significantly reducing the number of nodes and edges,
as well as requiring less storage. Furthermore, the condensed graphs are denser than their original
counterparts, and a notable behavior is observed on Flickr, where the learned graph is complete.

Table 5: Comparison between the condensed graphs generated by GCTD and original graphs.

Citeseer (0.9%) ‘ Cora (1.3%) ‘ Pubmed (0.08%) ‘ Flickr (0.1%) ‘ Ogbn-arxiv (0.05%)
Whole GCTD Whole GCTD Whole GCTD Whole GCTD Whole GCTD
Accuracy 7.7 76.8 81.4 81.4 77.1 79.9 47.1 48.4 713 582
#Nodes 3,327 30 2,708 35 19,717 15 44,625 44 169,343 84
#Edges 4,732 93 5.429 72 44,338 67 218,140 990 1,116,243 37
Sparsity 0.09% 22.91% 0.15% 12.1% 0.01% 63.8% 0.02% 100% 0.09% 1.1%
Storage 47.1 MB 0.51 MB 14.9 MB 0.23 MB 40 MB 0.05 MB 86.8 MB 0.17 MB 100.4 MB 0.08 MB

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract states that a multi-view tensor-decomposition approach (GCTD)
condenses graphs while preserving GNN performance, and the experiments on six datasets
substantiate that claim.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We acknowledge settings where GCTD is not best (e.g., Ogbn-arxiv) and that
single-view can underperform multi-view (Cora exception).

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper provides algorithmic details and a complexity analysis, but no
formal theorems or proofs.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: An anonymized code repo is provided; datasets, baselines, training protocol,
and additional details are presented in the Appendix, enabling reproduction.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided via Anonymous Github, and all datasets used are public
(PyG/GraphSAINT/OGB with official public splits). Library requirements and a Wandb
configuration file example for training the model are available in the anonymous repository.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In both the main text and the Appendix, we report the convergence criteria
for decomposition, the GNN’s hyperparameter settings, training length, model selection
strategy, and the use of official dataset splits.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report results as averages over ten runs and include standard deviations.

8. Experiments compute resources

16

10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a runtime table and specify hardware (single NVIDIA RTX
A6000).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The study uses public benchmarks with official splits and does not involve
human subjects or sensitive data; no ethical risks beyond standard ML practice are implied.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a paragraph after the conclusion section discussing the impacts of
our work.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk models or scraped datasets are released; work relies on standard
public graph benchmark.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite baselines and datasets papers throughout the paper, providing appro-
priate references.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A new code asset is released via an anonymized repository; paper and appen-
dices document methods and settings that accompany the code. Also, a Wandb configuration
file is provided to run the model.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

17

https://neurips.cc/public/EthicsGuidelines

16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.

18

	Introduction
	Preliminaries
	Proposed Method
	Experiments
	Experimental Results

	Conclusion
	Algorithm
	First attempt: Single-view Graph Modeling
	Tensor Background
	Datasets and Hyperparameters
	Baselines
	Datasets
	Hyper-parameters

	Additional experiments
	Performance across different GNN architectures
	Ablation on the synthetic node assignment
	Visualization of the condensed graphs
	Comparison with original graphs

