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Abstract
Nowadays, Knowledge Graphs (KG) are among the most powerful mechanisms to represent knowledge
and integrate data from multiple domains. However, most of the available data sources are still described
in heterogeneous data structures, schemes, and formats. The conversion of these sources into the
desirable KG requires manual and time-consuming tasks, such as programming translation scripts,
defining declarative mapping rules, etc. In this vision paper, we analyze the trends regarding the
automation of KG construction but also the use of mapping languages for the same process, and align
the two by analyzing their tasks and a few exemplary tools. Our aim is not to have a complete study
but to investigate if there is potential in this direction and, if so, to discuss what challenges we need to
address to guarantee the maintainability, explainability, and reproducibility of the KG construction.
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1. Introduction

A lot of works on knowledge graph (KG) construction are focused on definingmapping languages
to declaratively describe the transformation process, and on optimizing the execution of such
declarative rules. The mapping languages rely on either dedicated syntaxes, such as the family
of languages around the W3C recommended R2RML1 (e.g., RML [1] or R2RML-F [2]), or on
re-purposing existing specifications, such as query languages like the W3C recommended
SPARQL2 (e.g., SPARQL-Generate [3] or SPARQL-Anything [4]), or constraints languages like
ShEx3 (e.g., ShExML [5, 6]).

Despite the plethora of mapping languages and the increasing number of optimizations
for the execution of the declarative rules, these rules are still defined through a manual and
time-consuming process, affecting negatively their adoption. Different solutions were proposed
to automate the definition of mapping rules that describe how a KG should be constructed.
On the one hand, MIRROR [7], D2RQ [8] and Ontop [9] follow a similar approach, extracting
from the RDB schema a target ontology and the mapping correspondences. On the other hand,
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AutoMap4OBDA [10] and BootOX [11] consider an input ontology and generate actual R2RML
mappings from the RDB. However, these solutions are focused on declarative solutions only
for relational databases, while recent solutions investigate non-declarative automation of KG
construction.

Beyond relational databases, the recent SemTab challenge4 present a set of tabular datasets [12]
with the aim of matching them automatically to external KGs, such as DBpedia and Wikidata.
The proposed solutions [13, 14, 15] address the problem using different techniques, such as
heuristic rules, fuzzy searching over the KGs, or knowledge graph embeddings. Although their
final objective is the same (obtain high precision and recall results) and they perform similar
procedures, each solution implements its own workflow and addresses each proposed task
by SemTab in different ways. Hence, making a fair and fine-grained comparison among the
different solutions to understand how they obtain the actual results is not an easy task.

In this vision paper, we align the tasks followed by solutions for the automation of the
semantic table annotation with concepts of existing declarative solutions. We indicatively select
and analyze a few tools for the automation of KG construction and identify common steps.
We discuss if they can be declaratively described relying on existing mapping languages, and
what the challenges are to proceed in this direction. We consider the RDF Mapping Language
(RML) [1] as a high-level and general representation to describe the schema transformations
and its extension, the Function Ontology (FnO) [16] to describe the data transformations.

Our objective is not to present a complete study, but to investigate if there is potential in this
direction. By describing the steps followed by different solutions in a more fine-grained and
standard manner, we make the steps comparable, and we can better discuss what challenges we
need to address to guarantee the maintainability, explainability and reproducibility of the KG
construction, as well as to ensure the provenance of each performed task.

2. Task alignment with mapping languages

We analyze the different steps of the SemTab challenge, inspect the relation between the SemTab
challenge tasks and align them with concepts from the declarative construction of RDF graphs
(Figure 1). To achieve this, we include the relationship between each of the tasks and their
potential declarations within a mapping language. We considered the RML mapping language
because it is commonly used and the authors are more familiar with, but we are confident that
the other mapping languages could express the same concepts. Before we proceed with the
alignment, we give a small introduction on the SemTab challenge and RML:

SemTab challenge The SemTab challenge consists of three tasks: (i) cell to KG entity
matching (CEA), which matches cells to individuals; (ii) column to KG class matching (CTA),
which matches cells to classes; and (iii) column pair to KG property matching (CPA), which
captures the relationships between pairs of columns.

RML The RDF mapping language (RML), a superset of the W3C recommended R2RML,
expresses schema transformations from heterogeneous data to RDF. An RML mapping contains

4https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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Col0 Col1 Col2 Col3

Union Depot Spier & Rohns 1902-01-01 Tudor Revival 
architecture

The 
Dorchester

Owen 
Williams 1931-01-01 Art 

Deco

Willow 
Tearooms

Charles Rennie 
Mackintosh 1903-01-01 Art Nouveau

restaurant
(Q11707) CTA

Tudor Revival Arch. 
(Q7851317)

Art Deco 
(Q173782)

Art Nouveau 
(Q34636)

CEA

CPA
architectural style

(P149)

Union Depot 
(Q7885655)

The Dorchester 
(Q2749941)

Willow Tearooms 
(Q1537781)

CEA

1 @prefix wdt: <http://www.wikidata.org/prop/direct/> .
2 @prefix wd: <http://www.wikidata.org/entity/> .
3
4 wd:Q7885655 a wd:Q11707; wdt:P149 wd:Q7851317 .
5 wd:Q2749941 a wd:Q11707; wdt:P149 wd:Q173782 .
6 wd:Q1537781 a wd:Q11707; wdt:P149 wd:Q34636 .

1 mappings:
2  triplesMap1: 
3    sources:
4     - ["input_table.csv~csv"] 
5    s: CEA_FUNCTION($(Col0))
6    po:
7      - [a, CTA_FUNCTION($(Col0))]
8      - [CPA_FUNCTION($(Col0), $(Col3)), CEA_FUNCTION($(Col3))~iri]

Figure 1: Automation tasks alignment within declarative mapping language. Example extracted
from SemTab 2021 challenge, where the CEA, CTA and CPA tasks are aligned with a declarative
construction of a knowledge graph using the RML mapping language (YARRRML serialisation).

one or more Triple Maps which on their own turn contain a Subject Map to generate the subjects
of the RDF triples, and zero or more Predicate Object Maps with pairs of Predicate and Object
Maps to generate the predicates and the objects respectively for each incoming data record. RML
was aligned with the Function Ontology (FnO) [16] to describe the data transformations which
are required to construct the desired RDF graph, ensuring that the functions are independent
from any implementation.

We analyze how the different tasks of the challenge contribute in constructing a part of an
RDF triple, and we align these tasks with the corresponding concepts of the RML mapping
language that construct the same part of an RDF triple.

Cell-Entity Annotation (CEA): This task identifies the URI of an entity from a cell. In the
target RDF graph, this is the subject or the object of the RDF triple. In Fig. 1, the Col0 values
are used to obtain the subjects of the triples while the Col3 values generate the objects (both
green colored in the RDF extract of Fig. 1). If a declarative approach is considered to generate
these triples, for example in RML, the rr:subjectMap property is used (line 5 of RML doc in
Fig. 1), which declares how the subjects of the triples are generated and the rr:objectMap (line
8 of RML doc in Fig. 1), when the expected objects are in the form of URIs.

Column-Type Annotation (CTA): This task predicts the common class of a set of items
given a column from the table. SemTab assumes that a table only generates one kind of entity
(i.e. the first column is used for CTA). In Figure 1, we can observe that the URIs retrieved
using Col0 are considered for obtaining the corresponding shared concept (i.e., restaurant)
(red colored in the RDF extract of Fig. 1). Declaring the class in RML can be done through the



shortcut rr:class property within the rr:SubjectMap (line 7 of RML doc in Fig. 1) or using a
rr:predicateObjectMap with a rdf:type fixed predicate.

Columns-Property Annotation (CPA): This task aims to predict the property that relates
the CTA column (subjects) to the rest of the columns. Fig. 1 shows a CPA task that relates the
Col0 with the Col3 through the property architectural style (wdt:P149, yellow colored in
the RDF extract). In RML, the predicates of the triples are declared using the rr:predicateMap
property (line 8 of RML doc in Fig. 1), and unlike typical mapping rules, where it is usually
assumed that predicates are constants (as they are declared in the input ontology), the predicates
depend on the data, hence they are dynamically defined.

Based on the aforementioned analysis, we conclude that the tasks performed to automate the
KG construction can be aligned with concepts from declarative mapping languages. The CEA
task is aligned with the RDF term construction for the subject or the object of the RDF triple,
the CTA task assigns the class and the CPA task aligns with the Predicate and Object Map.

3. Comparing semantic tabular matching systems

In this section, we analyze in detail the steps performed by some of the tools proposed for
solving the SemTab challenge. The comparative analysis among the three selected engines
(summarized in Table 1), is not meant to be exhaustive. We aim to identify if there are common
steps and functions that the engines perform to accomplish the challenge’s tasks and ultimately
if it is possible and desired to declaratively describe them with mapping languages.

3.1. Selected Systems

We indicatively selected the systems that: (i) obtained good results in the SemTab 2021 chal-
lenge5; and (ii) have the source code openly available. Therefore, we included in this comparison
JenTab [14], MTab [13] and MantisTable V [17]. The use of different terminologies for describing
similar tasks (e.g., majority vote in Mantis V is referred as frequency) and the complexity of the
proposed workflows, where the results from one of the task influence the others in a iterative
way, create difficulties to compare the approaches and reproduce their results.

JenTab6 participated in SemTab 2020 and 2021, and it was always positioned among the top
five solutions for most rounds. It follows a heuristic-based approach proposing the CFS (Create,
Filter, Select) approach for all tasks and with different configurations and workflows.
MTab7 participated in all SemTab editions, winning the first prize in 2019 and 2020. Apart

from the support of multilingual datasets, MTab implements several approaches for performing
the entity search (i.e., CEA): keyword search, fuzzy search, and aggregation search8.
MantisTable V9 is an extended and improved version of MantisTable [18]. Similarly to

JenTab, MantisTable has also participated in SemTab 2020 and 2021 editions. It implements a

5https://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021
6https://github.com/fusion-jena/JenTab
7https://github.com/phucty/mtab_tool
8https://mtab.app/mtabes/docs
9https://bitbucket.org/disco_unimib/mantistable-v/
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set of heuristic rules (similar as JenTab) and complex string similarity functions for the entity
recognition task (like MTab). Additionally, it provides a general and efficient tool (LamAPI) to
fetch the necessary data for all SemTab tasks, independently of the target KG.

3.2. Observations

The systems we inspected follow the same steps: they perform a preprocessing step, and setup
lookup and datatype prediction services. Then the CEA task is performed followed by the CTA
and CPA tasks which depend on the CEA task. Given that the systems follow the same steps,
we could map the three main tasks (CEA, CPA, CTA) to the Create-Filter-Select (CFS) procedure
proposed by JenTab (see Table 1).

We observe similarities in most tasks among the engines. The subtasks performed in the
preprocessing step, are very similar in the three engines. The preprocessing tasks include several
functions, such as fixing encoding issues, removing HTML tags or special characters, and
detecting missing white spaces (see Table 1), and they usually delegate them to third-party
libraries (e.g., ftfy10). We observe similar tasks are performed when declarative solutions are
used for cleaning and preparing the data. These preprocessing tasks are described with FnO
in the case of RML and executed either together with the schema transformations or as a
preprocessing task too.

The same occurs for the datatype prediction, where regular expressions are often used to
detect if cell values are entities or literals, and what type of literals (string, date, or numbers). In
the case of declarative solutions, this datatype inspection task is performed manually. However,
adjusting the datatype is possible relying on functions for data transformations.

Most of them also incorporate a lookup step to retrieve the necessary data from the KGs (e.g.,
using SPARQL queries), including similarity functions or fuzzy search. The search engine for the
KG lookups in JenTab and Mantis V is ElasticSearch, although the former implements the Jaro
Winkler distance [19] while the later embeds it in a more efficient engine and exploits its query
capabilities. Lookups were also incorporated in the case of declarative solutions [20], where
lookup services retrieve a URI to identify an entity instead of assigning a new one.

As far as the actual tasks is concerned, each engine performs its own approach for the CEA,
CTA, and CPA tasks, although we also find some similarities. The most important ones that are
implemented in the three engines are: (i) the Levenshtein distance [21] for filtering candidates,
and (ii) the majority vote (called frequency in Mantis V) for selecting the final annotations. We
believe that the use of declarative approaches, such as the Function Ontology [16] for describing
common functions (e.g., Levenshtein), could make the solutions more comparable. It would
also be clearer if they perform the same function, and more explainable, as current solutions
for the automation of KG construction act like blackboxes: neither their implementations are
open sourced nor the declarative descriptions of what they execute are available. Providing at
least declarative descriptions of the performed tasks would enhance the transparency of these
solutions.

10https://pypi.org/project/ftfy/
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Table 1
Tasks comparison among different SemTab solutions

JenTab MTab Mantis V

KG Lookup ElasticSearch on top of KG
SPARQL Queries

WikiGraph Generation
Ad-hoc API LamAPI(ElasticSearch, Mongo and Python)

Preprocessing

Fix encoding Y Y N
Special characters Y N Y
Restore
missing spaces Y N Y

Remove
HTML tags N Y N

Remove
non-cell-values N Y N

Datatype REGEX
Type-based cleaning

Cell values identification (literal, entity)
SpaCy models for potential types

Majority vote to define column type

REGEX for datatypes exceeding a threshold
Entity columns that do not exceed the threshold

CEA
CREATE

Different query
rewriting techniques

Keword search (BM25)
Fuzzy search (Levenshtein distance) LamAPI lookup with IB similarity

FILTER
Levenshtein distance

(among others)
Filter and hashing (Symetric Delete)

Context similarities by row
Levenshtein confidence score for entities

Literals XXX
SELECT Levenshtein distance Highest context similarity XXXX

CTA
CREATE Types from CEA Types from CEA Types from CEA

FILTER
Remove the less
popular types - -

SELECT Majority vote Majority vote Majority vote

CPA
CREATE

Cell annotations (CEA) and
fuzzy match for data properties

Aggregate all properties
from CEA by row Properties from CEA lookups

FILTER - - -
SELECT Majority vote Majority vote Majority vote

4. Challenges for a declarative automation of KG Construction

We identify a set of challenges that need to be addressed to declaratively describe solutions for
automatic KG construction. These challenges can be divided into two main categories: technical
challenges and conceptual challenges.

On the technical side, there is a major difference between the solutions for the automation of
KG construction and the execution of declarative KG construction solutions: The solutions for
automatic KG construction rely on iterative processes that continuously refine and improves
a task, while the different tasks influence each other. To the contrary, the declarative KG
construction is a linear process that is executed only once. Not all declarative rules are executed
linearly, solutions that restructure [6] or parallelize them [22, 23] are increasingly encountered.
Thus, if the solutions for automatic KG construction are declaratively described, their iterative
execution needs to be described as well. How do we do that with the mapping languages?

Besides the overall execution process, the iteration patterns are different. The solutions for
automatic KG construction are applied to all directions, both per column and per row, and even
combined. To the contrary, the declarative solutions are applied only per row, and the mapping
languages are designed under this assumption. Should the mapping languages be extended to
support more iteration patterns? If so, would the rml:iteration for RML and the relevant
constructs in the other mapping languages be sufficient or more adjustments are required?

The solutions for automatic KG construction rely on interrelated tasks which may produce
intermediate representations, and their results impact the rest of tasks. Thus, the declarative
KG construction solutions need to deal with dynamic and recursive steps (e.g., intermediate
representation of the input data sources and mapping rules, multiple function execution, etc.)
that can negatively impact the generation process. Hence, declaratively describing is a challenge.
Should the mapping languages be further extended then?



On the conceptual side, there are two main differences with respect to the training and target
KG. In most real projects that declarative solutions tackle, the input data and sometimes the
target ontology are only provided, but there is neither similar data to train the solutions nor
existing KGs that can be used to find entities or to predict the relationships. While relying on
ontology matching techniques between existing KGs (e.g., DBPedia, Wikidata) and the target
ontology or exploiting NLP approaches between ontology and input sources documentation
could be a solution for the latter, would it be realistic given that most ontologies are not aligned
and not all of them provide documentation?

5. Conclusions and Future Work

In this paper, we analyze the KG construction solutions and compare the automatic with the
declarative. While the tasks can be aligned with respect to what they achieve, their execution is
fundamentally different and a direct alignment is not feasible.

Automatic solutions for KG construction are required to facilitate the adoption of KGs, but
there are also merits when the automation tasks are declaratively described, with respect to
maintenability, sustainability, and reproducibility. However, directly aligning the automatic
solutions with the declarative solutions might be technically and conceptually challenging
considering their different execution and iteration patterns. Extending the existing mapping
languages would be a solution, but it would also require to address the identified challenges
and not only. Would such extensions be feasible and desired or would they lead them beyond
their purpose? Although, mapping languages are not the only approach to have declarative
descriptions. Declarative descriptions of workflows emerge as well. Would that be a more viable
solution? If so, would the automatic and declarative solutions keep on growing in different
directions? These are questions that would be nice to reflect and discuss during the workshop.
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