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Abstract
Modelling the propagation of electromagnetic sig-
nals is critical for designing modern communica-
tion systems. While there are precise simulators
based on ray tracing, they do not lend themselves
to solving inverse problems or the integration in
an automated design loop. We propose to address
these challenges through differentiable neural sur-
rogates that exploit the geometric aspects of the
problem. We introduce the Wireless Geometric
Algebra Transformer (Wi-GATr), a generic, equiv-
ariant backbone architecture for simulating wire-
less propagation in a 3D environment. Further,
we introduce two datasets of wireless signal prop-
agation in indoor scenes. On these datasets, we
show the data-efficiency of our model on signal
prediction and applicability to inverse problems
based on differentiable predictive modelling.

1. Introduction
Innovations in modern wireless communication systems
build upon electromagnetic wave propagation. Therefore,
modelling and understanding wave propagation in space is
a core research area in wireless communication. Wireless
signal propagation follows Maxwell’s equations of electro-
magnetism and is traditionally modelled by ray-tracing sim-
ulators. However, these traditional wireless simulators take
substantial time to evaluate for each scene, cannot be fine-
tuned on measurements, and are not differentiable. It addi-
tionally limits their usefulness for solving inverse problems.

In contrast, neural models of signal propagation can be eval-
uated cheaply, can be trained on real measurements in ad-
dition to simulation, and are differentiable and thus well-
suited for solving inverse problems. However, wireless sur-
rogate modelling faces various challenges. Realistic train-
ing data is often scarce, requiring surrogate models to be
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data efficient. Wireless environments can consist of com-
plex meshes. Finally, input and output data consist of a va-
riety of data types, including the shape of extended 3D ob-
jects, point coordinates and spatial orientation of antennas,
and information associated with the transmitted signal.

In this work, we present a new approach to modelling wire-
less signal propagation. It is grounded in the observation
that wireless propagation is inherently a geometric problem:
a directional signal is transmitted by an oriented transmitting
antenna, the signal interacts with surfaces in the environ-
ment, and the signal eventually impinges an oriented receiv-
ing antenna. We argue that it is critical for neural surrogates
to model and flexibly represent geometric aspects (e. g. ori-
entations, shapes) in the propagation environment. We there-
fore develop surrogate models based on flexible geometric
representation and strong geometric inductive biases.

We propose Wireless Geometric Algebra Transformer (Wi-
GATr), a backbone architecture for wireless signal propaga-
tion problems. A key component is a new tokenizer for the
diverse, geometric data of wireless scenes. The tokens are
processed with a Geometric Algebra Transformer (GATr)
network [9]. This architecture is equivariant with respect
to the symmetries of wireless channel modelling, but main-
tains the scalability of a transformer architecture. In addi-
tion, we study Wi-GATr models as differentiable, predictive
surrogates for the simulator (see Fig. 1). We show how this
enables forward modelling, and in addition, inverse prob-
lem solving due to Wi-GATr’s differentiability.

To enable machine learning development for wireless prob-
lems, we finally introduce two new datasets, Wi3R and
WiPTR. Each dataset consists of thousands of indoor scenes
of varying complexity and include all the geometric infor-
mation that characterizes a wireless scene. We demonstrate
the predictive models on these datasets Our experiments
show that the Wi-GATr approach gives us a higher-fidelity
predictions than various baselines, generalizes robustly to
unseen settings, and requires up to 20× less data for the
same performance than a transformer baseline.

2. Background and related work

Wireless signal propagation. Wireless simulation is of-
ten based on ray-tracing approaches [1, 4, 18] which em-
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Figure 1: Geometric surrogates for modelling wireless signal propagation.: Predictive modelling of channels from 3D geometry,
transmitter, and receiver properties. Wi-GATr is a fast and differentiable surrogate for ray tracers.

ploy the approximations of geometric optics [22]. It approx-
imates the solution to Maxwell’s equations as a sum of pla-
nar waves propagating in all directions from the transmitter
(Tx). Each planar wave is represented as a ray, character-
ized by various attributes (e. g., power, phase, delay). As
a ray hits a surface, the interaction is modelled as reflec-
tion, refraction, or diffraction. During such interactions, the
power, phase, polarization, and propagation direction of the
wave can change in complex, material-dependent ways. Af-
ter multiple interactions, the rays eventually reach the re-
ceiving antenna (Rx). The Tx and Rx are then linked by
a connected path p of multiple rays. The effects on the re-
ceived signal are described by the channel impulse response
(CIR) h(τ) =

∑
p apδ(τ − τp), where ap ∈ C is the com-

plex gain and τp the delay of the incoming rays [38].

Differentiable simulations for wireless propagation. Dif-
ferentiable simulations has a rich history in physics [29, 34],
graphics [14, 21, 26, 30], robotics [17, 36], and numerous
other domains [5, 15, 32]. Specific to wireless, approaches
can be broadly categorized into analytical, hybrid, or neu-
ral techniques. At one end of the spectrum, analytical ap-
proaches (notably Sionna RT [18]) focus on performing
traditional wireless ray tracing computations in a differen-
tiable framework (Tensorflow in case of [18]). While these
approaches are differentiable, they largely employ existing
physical models (e.g., UTD [24], Antenna radiation pat-
terns) that might be unknown or inaccurate for many sce-
narios. Hybrid approaches [19, 20, 27, 31] lie in the middle
of the spectrum. Similar to NeRF [28], they propose com-
bining analytical rendering (e.g., ray tracing, volumetric
rendering) with learnable neural components (e.g., learning
scene parameters of radio material properties). Although
these techniques are fairly new and promising, they are lim-
ited to perform simulations in the exact single scene they
were trained on. At the other end of the spectrum are neu-
ral approaches [16, 25], that make minimal assumptions on
propagation physics and almost entirely rely on learning
it from data. Our proposed approach falls in this category,
where in we simulate wireless signals with a single forward
pass through a geometric transformer that is both sample-
efficient and generalizes to novel scenes.

Geometric deep learning and GATr. The field of geomet-
ric deep learning [10] aims to include structural properties of

a problem into neural network architectures and algorithms.
A central concept is equivariance to symmetry groups [11],
i. e., outputs of a network transform consistently with a sym-
metry transformation of the inputs. The Geometric Algebra
Transformer (GATr) [9] is an E(3)-equivariant architecture
for geometric problems. As we argued above, the physics of
wireless signal propagation are invariant under this group.

3. The Wireless Geometric Algebra
Transformer (Wi-GATr)

Our goal is to model the interplay between 3D environments,
transmitting and receiving antennas, and the resulting trans-
mitted wireless signals. More precisely, we consider wire-
less scenes consisting of: (a) 3D geometry F of the environ-
ment. We specify it through a triangular mesh with a dis-
crete material class associated with each mesh face; (b) A
set of transmitting antennas ti for i = 1, . . . , nt. Each ti
is characterized by a 3D position, an orientation, and any
antenna characteristics. We will often focus on the case of
a single Tx and then omit the index i; (c) Analogously, a
set of receiving antennas ri for i = 1, . . . , nr; and (d) The
channel or signal hij between each transmitter i and each
receiver j, which can be any observable function of the CIR.

In this setting, we consider two downstream tasks: (i) Signal
prediction is about predicting the signal received at a single
antenna from a single receiver h(F, t, r) with nt = nr = 1.
This is exactly the task that ray-tracing simulators solve.
(ii) Receiver localization: inferring the position and prop-
erties of a receiver r from the channel, the geometry and
one or multiple transmitters. The latter problem is an ex-
ample of inverse problems, as it inverts the graphical model
that simulators are designed for. It is not straightforward
to solve with the simulators directly, but we will show how
neural surrogates trained on simulator data can solve it.

3.1. Backbone

Core to our approach is the Wireless Geometric Algebra
Transformer (Wi-GATr) backbone. It consists of a novel
tokenizer and a network architecture.

Wireless GA tokenizer. The tokenizer takes as input some
subset of the information characterizing a wireless scene
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and outputs a sequence of tokens that can be processed by
the network. A key challenge in the neural modelling of
wireless problems is the diversity of types of data involved.
As we argued above, a wireless scene consists of the 3D
environment mesh F , which features three-dimensional ob-
jects such as buildings and trees, antennas t and r charac-
terized through a point-like position, an antenna orientation,
and additional information about the antenna type, and the
characteristics of the channel h.

To support all of these data types, we propose a new tok-
enizer that outputs a sequence of geometric algebra (GA)
tokens. Each token consists of a number of elements (chan-
nels) of the projective geometric algebra G3,0,1 in addition
to the usual unstructured scalar channels. We define the GA
precisely in Appendix A. Its main characteristics are that
each element is a 16-dimensional vector and can represent
various geometric primitives: 3D points including an abso-
lute position, lines, planes, and so on. This richly structured
space is ideally suited to represent the different elements en-
countered in a wireless problem. Details of our tokenization
scheme are specified in Tbl. 1 in the Appendix.

Network. After tokenizing, we process the input data with
a Geometric Algebra Transformer (GATr) [9]. This archi-
tecture naturally operates on our G3,0,1 parameterization of
the scene. It is equivariant with respect to permutations of
the input tokens as well as E(3), the symmetry group of
translations, rotations, and reflections. These are exactly the
symmetries of wireless signal propagation, with one excep-
tion: wireless signals have an additional reciprocity symme-
try that specifies that the signal is invariant under an role
exchange between transmitter and receiver. We will later
show how we can incentivize this additional symmetry prop-
erty through data augmentation.1 Finally, because GATr is
a transformer, it can process sequences of variable lengths
and scales well to systems with many tokens. Both proper-
ties are crucial for complex wireless scenes, which can in
particular involve a larger number of mesh faces.

3.2. Predictive modelling

We demonstrate predictive modelling of the measured chan-
nel information as a function of the complete 3D environ-
ment and the information characterizing the transmitter and
receiver, hθ(F, t, r). This regression model is trained in a
supervised way on simulated or measured wireless scenes.

Forward prediction. The network learns a differentiable,
deterministic surrogate for the simulator model hsim(F, t, r).
At test time, we can use the network instead of a simulator
to predict the signals in unseen, novel scenes. Compared

1We also experimented with a reciprocity-equivariant variation
of the architecture, but that led to a marginally worse performance
without a significant gain in sample efficiency.

to a simulator based on ray tracing, it has three advantages:
it can be evaluated in microseconds rather than seconds or
minutes, it can be finetuned on real measurements, and it is
differentiable.

Inverse problems. This differentiability makes such a
surrogate model well-suited to solve inverse problems. In
this paper, we consider the problem of receiver localiza-
tion [6, 23, 35, 37]: given a 3D environment F , trans-
mitters {ti}, and corresponding signals {hi}, we can find
the most likely receiver position and orientation as r̂ =
argminr

∑
i∥hθ(F, ti, r)− h∥2. The minimization can be

performed numerically through gradient descent, thanks to
the differentiability of the Wi-GATr surrogate.

4. New datasets
While several datasets of wireless simulations and measure-
ments exist [2, 3, 31, 40], they lack either geometric informa-
tion, diversity, or realistic signals. To facilitate the develop-
ment of machine learning methods with a focus on geometry,
we generate two new datasets of simulated wireless scenes.2

Both feature indoor scenes and channel information gener-
ated with a state-of-the-art ray-tracing simulator [1] at a fre-
quency of 3.5 GHz. They provide detailed characteristics
for each path between Tx and Rx, such as gain, delay, angle
of departure and arrival at Tx/Rx, and the electric field at the
receiver itself, which allows users to compute various quanti-
ties of interest themselves. We provide a summary of the two
datasets here and discuss additional details in Appendix B.

Wi3R dataset. Our first dataset focuses on simplicity:
each of 5000 floor plans has the same size and number
of rooms, and all walls have the same material across lay-
outs. They differ only in their layouts, which we take from
Wi3Rooms [31], Tx positions, and Rx positions.

WiPTR dataset. Next, we generate a more varied, realistic
dataset based on the floor layouts in ProcTHOR-10k [12].
We extract the 3D mesh information including walls, win-
dows, doors, and door frames and assign 6 different dielec-
tric materials for different groups of objects. WiPTR stands
out among wireless datasets in terms of its level of detail
and scale. Moreover, it is based on ProcTHOR-10k is
well-suited for integration with embodied AI research.

5. Experiments
We train predictive surrogates hθ(F, t, r) that predict the
time-averaged non-coherent received power h =

∑
p |ap|2

as a function of the Tx position and orientation t, Rx position
and orientation r, and 3D environment mesh F . We compare
the prediction accuracy to several baselines on both the

2We are preparing the publication of the datasets.
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Figure 2: Signal prediction error, on the
received power as a function of the training
data on WiPTR. Wi-GATr outperforms the
transformer and PLViT baselines. SEGNN
does not scale to WiPTR.
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Figure 3: Inverse Rx localization error, as a function of the number of Tx on Wi3R
(right) and WiPTR (left). Lines and error band show mean and its standard error over
240 measurements. Our learned differentiable simulation surrogate models provides
gradients to solve this inverse problem.

Wi3R and WiPTR datasets, and we show the benefits of
differentiability by solving the inverse receiver localization
problem through gradient descent. All models are trained
with reciprocity augmentation, i. e., randomly flipping Tx
and Rx labels during training. This improves data efficiency
slightly, especially for the transformer baseline.

In addition to our Wi-GATr model, described in Sec. 3, we
train several baselines. The first is a vanilla transformer [39],
based on the same inputs and tokenization of the wireless
scene, but without the geometric inductive biases. Next, we
compare to the E(3)-equivariant SEGNN [8], though we
were only able to fit this model into memory for the Wi3R
dataset. In addition, we train a PLViT model, a state-of-the-
art neural surrogate for wireless scenes [16] that represent
wireless scenes as an image centered around the Tx posi-
tion. Finally, we attempt to compare Wi-GATr also to WiN-
eRT [31], a neural ray tracer. However, this architecture,
which was developed to be trained on several measurements
on the same floor plan, was not able to achieve useful pre-
dictions on our diverse datasets with their focus on gener-
alization across floor plans. Our experiment setup and the
baselines are described in detail in Appendix C.

Signal prediction. Next, we study the data efficiency and
accuracy of the different surrogates for signal prediction
in Fig. 2. Wi-GATr is more data-efficient than any other
method with the exception of the E(3)-equivariant SEGNN
on Wi3R (see Appendix C). This confirms that equivari-
ance is a useful inductive bias when data is scarce. But Wi-
GATr scales better than SEGNN to larger number of sam-
ples, showing that our architecture combines the small-data
advantages of strong inductive biases with the large-data ad-
vantages of a transformer architecture.

Inference speed. One of the advantages of neural surro-

gates is their test-time speed. Both Wi-GATr and a trans-
former are over a factor of 20 faster than the ground-truth
ray tracer (see Appendix C).

Receiver localization. Next, we show how differentiable
surrogates let us solve inverse problems, focusing on the
problem of receiver localization. We infer the Rx position
with the predictive surrogate models by optimizing through
the neural surrogate of the simulator as discussed in Sec. 3.2.
Neither the SEGNN nor PLViT baselines are fully differen-
tiable with respect to object positions when using the offi-
cial implementations from Refs. [7, 16]. We were therefore
not able to accurately infer the transmitter positions with
these architectures. The performance of our surrogate mod-
els is shown in Fig. 3. The two neural surrogates achieve a
similar performance when only one or two transmitters are
available, a setting in which the receiver position is highly
ambiguous. With more measurements, Wi-GATr lets us lo-
calize the transmitter more precisely.

6. Conclusion
Wireless signal transmission through electromagnetic wave
propagation is an inherently geometric and symmetric prob-
lem. We developed a class of neural surrogates grounded in
geometric representations and strong inductive biases. In
our experiments, we demonstrated the predictive capabili-
ties and data efficiency of our approach as well as the bene-
fits of its differentiability for solving inverse problems, such
as receiver localization. Augmenting or replacing the image-
based or general-purpose representations and architectures
prevalent in wireless modelling with geometric approaches
has the potential of solving inverse problems through dif-
ferentiability while improving data efficiency, performance,
and robustness.
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A. Geometric algebra
As representation, Wi-GATr uses the projective geometric
algebra G3,0,1. Here we summarize key aspects of this
algebra and define the canonical embedding of geometric
primitives in it. For a precise definition and pedagogical
introduction, we refer the reader to Dorst [13].

Geometric algebra. A geometric algebra Gp,q,r consists
of a vector space together with a bilinear operation, the
geometric product, that maps two elements of the vector
space to another element of the vector space.

The elements of the vector space are known as multivectors.
Their space is constructed by extending a base vector space
Rd to lower orders (scalars) and higher-orders (bi-vectors,
tri-vectors, . . . ). The algebra combines all of these orders
(or grades) in one 2d-dimensional vector space. From a
basis for the base space, for instance (e1, e2, e3), one can
construct a basis for the multivector space. A multivector
expressed in that basis then reads, for instance for d = 3,
x = x∅ + x1e1 + x2e2 + x3e3 + x12e1e2 + x13e1e3 +
x23e2e3 + x123e1e2e3.

The geometric product is fully defined by bilinearity, asso-
ciativity, and the condition that the geometric product of a
vector with itself is equal to its norm. The geometric prod-
uct generally maps between different grades. For instance,
the geometric product of two vectors will consist of a scalar,
the inner product between the vectors, and a bivector, which
is related to the cross-product of R3. In particular, the con-
ventional basis elements of grade k > 1 are constructed as
the geometric product of the vector basis elements ei. For
instance, e12 = e1e2 is a basis bivector. From the defining
properties of the geometric products it follows that the geo-
metric product between orthogonal basis elements is anti-
symmetric, eiej = −ejei. Thus, for a d-dimensional basis
space, there are

(
d
k

)
independent basis elements at grade k.

Projective geometric algebra. To represent three-
dimensional objects including absolute positions, we use a
geometric algebra based on a base space with d = 4, adding
a homogeneous coordinate to the 3D space.3 We use a basis
(e0, e1, e2, e3) with a metric such that e20 = 0 and e2i = 1
for i = 1, 2, 3. The multivector space is thus 24 = 16-
dimensional. This algebra is known as the projective geo-
metric algebra G3,0,1.

Canonical embedding of geometric primitives. In G3,0,1,
we can represent geometric primitives as follows:

• Scalars (data that do not transform under transla-
3A three-dimensional base space is not sufficient to represent

absolute positions and translations acting on them in a convenient
form. See Brehmer et al. [9], Dorst [13], Ruhe et al. [33] for an
in-depth discussion.

tion, rotations, and reflections) are represented as the
scalars of the multivectors (grade k = 0).

• Oriented planes are represented as vectors (k = 1),
encoding the plane normal as well as the distance from
the origin.

• Lines or directions are represented as bivectors (k =
2), encoding the direction as well as the shift from the
origin.

• Points or positions are represented as trivectors (k =
3).

For more details, we refer the reader to Tbl. 1 in Brehmer
et al. [9], or to Dorst [13].

Wi-GATr tokenization details. Table 1 lists details of
the tokenization schemes proposed for wireless propagation
modelling.

B. Datasets
Table 2 summarizes major characteristics of the two datasets.
In the following we explain more details on data splits and
generation.

Wi3R dataset. Based on the layouts of the Wi3Rooms
dataset by Orekondy et al. [31], we run simulations for 5000
floor layouts that are split into training (4500), validation
(250), and test (250). These validation and test splits thus
represent generalization across unseen layouts, transmitter,
and receiver locations. From the training set, we keep 10
Rx locations as additional test set to evaluate generalization
only across unseen Rx locations. To evaluate the generaliza-
tion performance, we also introduce an out-of-distribution
(OOD) set that features four rooms in each of the 250 floor
layouts. In all layouts, the interior walls are made of brick
while exterior walls are made of concrete. The The Tx and
Rx locations are sampled uniformly within the bounds of
the floor layouts (10m × 5m × 3m).

WiPTR dataset. Based on the floor layouts in the
ProcTHOR-10k dataset for embodied AI research [12], we
extract the 3D mesh information including walls, windows,
doors, and door frames. The layouts comprise between 1 to
10 rooms and can cover up to 600 m2. We assign 6 differ-
ent dielectric materials for different groups of objects (see
Tbl. 3). The 3D Tx and Rx locations are randomly sam-
pled within the bounds of the layout. The training data com-
prises 10k floor layouts, while test and validation sets each
contain 1k unseen layouts, Tx, and Rx locations. Again,
we introduce an OOD validation set with 5 layouts where
we manually remove parts of the walls such that two rooms
become connected. While the multi-modality in combina-
tion with the ProcTHOR dataset enables further research for
joint sensing and communication in wireless, our dataset set
is also, to the best of our knowledge, the first large-scale 3D
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Data type Input parameterization Tokenization Channels (G3,0,1 embedding)

3D environment F • Triangular mesh 1 token per mesh face • Mesh face center (point)
• Vertices (points)
• Mesh face plane (oriented plane)

• Material classes • One-hot material emb. (scalars)

Antenna ti / ri • Position 1 token per antenna • Position (point)
• Orientation • Orientation (direction)
• Receiving / transmitting • One-hot type embedding (scalars)
• Additional characteristics • Characteristics (scalars)

Channel hij • Antennas 1 token per link • Tx position (point)
• Rx position (point)
• Tx-Rx vector (direction)

• Received power • Normalized power (scalar)
• Phase, delay, . . . • Additional data (scalars)

Table 1: Wireless GA tokenizer. We describe how the mesh parameterizing the 3D environment and the information about antennas and
their links are represented as a sequence of geometric algebra tokens. The mathematical representation of G3,0,1 primitives like points or
orientated planes is described in Appendix A.

Wi3R WiPTR

Total Channels 5M >5.5M
Materials 2 6
Transmitters per layout 5 1-15
Receivers per layout 200 Up to 200
Floor layouts 5k 12k
Simulated frequency 3.5 GHz 3.5 GHz
Reflections 3 6
Transmissions 1 3
Diffractions 1 1
Strongest paths retained 25 25
Antennas Isotropic Isotropic
Waveform Sinusoid Sinusoid

Table 2: Dataset details and simulation settings for dataset genera-
tion.

Object Material name

Ceiling ITU Ceiling Board
Floor ITU Floor Board
Exterior walls Concrete
Interior walls ITU Layered Drywall
Doors and door frames ITU Wood
Windows ITU Glass

Table 3: Dielectric material properties of objects in WiPTR.

wireless indoor datasets suitable for embodied AI research.

C. Experiments

Models. We use an Wi-GATr model that is 32 blocks deep
and 16 multivector channels in addition to 32 additional
scalar channels wide. We use 8 attention heads and multi-
query attention. Overall, the model has 1.6 · 107 parameters.
These settings were selected by comparing five differently

sized networks on an earlier version of the Wi3R dataset,
though somewhat smaller and bigger networks achieved a
similar performance.

Our Transformer model has the same width (translating to
288 channels) and depth as the Wi-GATr model, totalling
16.7 · 106 parameters. These hyperparameters were inde-
pendently selected by comparing five differently sized net-
works on an earlier version of the Wi3R dataset.

For SEGNN, we use representations of up to ℓmax = 3, 8
layers, and 128 hidden features. The model has 2.6 · 105
parameters. We selected these parameters in a scan over
all three parameters, within the ranges used in Brandstetter
et al. [8].

The PLViT model is based on the approach introduced
by Hehn et al. [16]. We employ the same centering and ro-
tation strategy as in the original approach around the Tx.
Further, we extend the original approach to 3 dimensions by
providing the difference in z-direction concatenated with the
2D x-y-distance as one token. Since training from scratch re-
sulted in poor performance, we finetuned a ViT-B-16 model
pretrained on ImageNet and keeping only the red channel.
This resulted in a model with 85.4 · 107 parameters and also
required us to use a fixed image size for each dataset that
ensures the entire floor layout is visible in the image data.

Optimization. All models are trained on the mean squared
error between the model output and the total received power
in dBm. We use a batch size of 64 (unless for SEGNN,
where we use a smaller batch size due to memory limita-
tions), the Adam optimizer, an initial learning rate of 10−3,
and a cosine annealing scheduler. Models are trained for
5 · 105 steps on the Wi3R dataset and for 2 · 105steps on the
WiPTR dataset.

Data efficiency and accuracy. In addition to the result
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Figure 4: Signal prediction. We show the mean absolute error
on the received power as a function of the training data on Wi3R.
Wi-GATr outperforms the transformer and PLViT baselines at any
amount of training data, and scales better to large data or many
tokens than SEGNN.

shown in the paper on WiPTR, Fig. 4 shows the prediction
results on Wi3R. Notably, the SEGNN baseline performs
almost as well as our Wi-GATr in the small data regime. As
discussed in the paper, however, SEGNN does not scale to
large scenes. In Fig. 6 we illustrate the prediction task on a
WiPTR floor plan. We show signal predictions for the sim-
ulator as well as for surrogate models trained on only 100
floor plans. Despite this floor plan not being part of the train-
ing set, Wi-GATr is able to capture the propagation pattern
well, while the transformer and ViT show memorization ar-
tifacts.

In Tbl. 4 we compare surrogate models trained on the full
Wi3R and WiPTR datasets. Both when interpolating Rx po-
sitions on the training floor plans as well as when evaluating
on new scenes unseen during training, Wi-GATr offers the
highest-fidelity approximation of the simulator. Wi-GATr
as well as the equivariant baselines are by construction ro-
bust to symmetry transformations, while the performance
of a vanilla transformer degrades substantially. All methods
but SEGNN struggle to generalize to an OOD setting on the
Wi3R dataset. This is not surprising given that the training
samples are so similar to each other. On the more diverse
WiPTR dataset, Wi-GATr is robust under domain shift.

Inference speed. To quantify the trade-off between infer-
ence speed and accuracy of signal prediction, we compare
the ray tracing simulation with our machine learning ap-
proaches. For this purpose, we evaluate the methods on a
single room of the validation set with 2 different Tx loca-
tions and two equidistant grids at z ∈ {2.3, 0.3} with each
1637 Rx locations. Figure 5 summarizes the average infer-
ence times per link with the corresponding standard devia-
tion. While Wireless InSite (6/3/1, i.e., 6 reflections/3 trans-

10 2 10 1 100
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Figure 5: Inference wall time vs signal prediction error per Tx/Rx
prediction on the first room of the WiPTR validation set.

missions/1 diffraction) represents our method that was used
to generate the ground truth data, it is also by far the slowest
approach. Note that we only measure the inference speed of
Wireless InSite for each Tx individually without the prepro-
cessing of the geometry. By reducing the complexity, e.g.,
reducing the number of allowed reflections or transmissions,
of the ray tracing simulation the inference time can be re-
duced significantly. For example, the configuration 3/2/1
shows a significant increase in inference speed, but at the
same time we can already see that the simulation results
do not match the ground truth anymore. This effect is even
more pronounced for the case of Wireless InSite 3/1/1. Our
machine learning solutions outperform all tested configura-
tions of Wireless InSite in terms of inference speed, while
at the same time keeping competitive performance in terms
of prediction accuracy (MAE) compared to the data genera-
tion simulation itself in a simpler configuration setting.

In addition, the differentiability of ML approches enables
them to solve inverse problems and such as finetuning to
real-world measurement data. Finetuning, often referred to
as calibration, remains challenging for simulation software
and will likely lead to increased MAE as the ground truth is
not given by Wireless InSite itself anymore.
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Figure 6: Qualitative signal prediction results. We show a single floor plan from the WiPTR test set. The black lines indicate the walls
and doors, the colors show the received power as a function of the transmitter location (brighter colours mean a stronger signal). The
transmitting antenna is shown as a black cross. The z coordinates of transmitter and receiver are all fixed to the same height. We compare
the ground-truth predictions (top left) to the predictions from different predictive models, each trained on only 100 WiPTR floor plans.
Wi-GATr is able to generalize to this unseen floor plan even with such a small training set.

Wi3R dataset WiPTR dataset

Wi-GATr Transf. SEGNN PLViT Wi-GATr Transf. PLViT(ours) (ours)

In distribution
Rx interpolation 0.63 1.14 0.92 4.52 0.39 0.62 1.27
Unseen floor plans 0.74 1.32 1.02 4.81 0.41 0.69 1.28

Symmetry transformations
Rotation 0.74 78.68 1.02 4.81 0.41 38.51 1.28
Translation 0.74 64.05 1.02 4.81 0.41 4.96 1.28
Permutation 0.74 1.32 1.02 4.81 0.41 0.69 1.28
Reciprocity 0.80 1.32 1.01 10.15 0.41 0.69 1.28

Out of distribution
OOD layout 7.03 14.06 2.34 5.89 0.43 0.86 1.23

Table 4: Signal prediction results. We show the mean absolute error on the received power in dBm (lower is better, best in bold). Top:
In-distribution performance. Middle: Generalization under symmetry transformations. Bottom: Generalization to out-of-distribution
settings. In almost all settings, Wi-GATr is the highest-fidelity surrogate model.
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