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Figure 1: We present a feed-forward human performance capture method that progressively updates a
canonical space to reconstruct humans in alignment with past observations from a monocular RGB
stream. For example, given only a side-view input live frame (green box), our method reconstructs
the striped shirt pattern in the frontal view by retrieving information observed in past frames from the
canonical space. Furthermore, by utilizing the probabilistic rendering, we achieve high-fidelity view
synthesis. (Gray regions in the canonical space indicate unobserved areas with no information.)

ABSTRACT

We present a feed-forward human performance capture method that renders novel
views of a performer from a monocular RGB stream. A key challenge in this setting
is the lack of sufficient observations, especially for unseen regions. Assuming the
subject moves continuously over time, we take advantage of the fact that more body
parts become observable by maintaining a canonical space that is progressively
updated with each incoming frame. This canonical space accumulates appearance
information over time and serves as a context bank when direct observations are
missing in the current live frame. To effectively utilize this context while respecting
the deformation of the live state, we formulate the rendering process as proba-
bilistic regression. This resolves conflicts between past and current observations,
producing sharper reconstructions than deterministic regression approaches. Fur-
thermore, it enables plausible synthesis even in regions with no prior observations.
Experiments on in-domain (4D-Dress) and out-of-distribution (MVHumanNet)
datasets demonstrate the effectiveness of our approach.

1 INTRODUCTION

Imagine watching a ballet dancer performing a pirouette. At any given moment, we only see a partial
view of the dancer—perhaps the side or the back. Yet, as the dancer spins gracefully, we naturally
accumulate visual cues over time. By the end of the motion, our mind has pieced together a complete
understanding of the dancer’s appearance, despite never having seen every part at once.

Inspired by this intuition, we propose a feed-forward human performance capture method that renders
high-fidelity novel views of a performer from a monocular RGB stream. At the core of our approach
is a progressively updated canonical space that integrates new observations over time. To achieve this,
we leverage 4D correspondences defined by a human template model (e.g., SMPL-X (Pavlakos et al.,
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2019)) to establish consistent mappings between the live frames and the canonical space. This use of
SMPL-X is not our core contribution, but rather a means to enable temporal alignment. Specifically,
as each new frame arrives, we extract live-frame features and aggregate them into the canonical
feature map. Over time, the canonical space is gradually completed and serves as a temporal context
bank, enabling reconstructions that reflect previously observed appearances, even when they are not
directly visible in the current frame. This stands in stark contrast to per-frame reconstruction methods,
which either regress toward averaged appearances seen in the training distribution (Saito et al., 2019;
Choi et al., 2022; Zhao et al., 2022; Hu et al., 2023; Kwon et al., 2021; 2025; Li et al., 2024a) or
generate realistic but unrelated details to prior observations (Zhu et al., 2024b; Hu, 2024; Madges
et al., 2017; Qiu et al., 2025; Li et al., 2024b; Ho et al., 2024; Zhang et al., 2024; He et al., 2024;
Shao et al., 2024a; Xu et al., 2024).

To synthesize novel views that are both grounded in the canonical context and coherent with the live
deformation state (i.e., deformation state of the current input frame), an intuitive approach is to apply
deterministic regression with pixel-wise supervision (e.g., mean squared error between the predicted
novel view and ground truth). However, this formulation struggles when past and current frames
exhibit misalignments. For example, a shirt seen in a leaning pose in the past may not perfectly align
with the upright pose in the live frame, causing the model to suppress high-frequency details and
produce blurry outputs (see Fig. 1-NHP and Fig. 3).

To address this, we formulate our rendering process as probabilistic regression using a diffusion-
based model (Rombach et al., 2022). While the usage of probabilistic rendering alone is not our
primary contribution, it plays a key role in enabling effective use of the canonical context. Rather than
enforcing exact pixel-wise alignment, the probabilistic regression supervision encourages perceptually
realistic synthesis. This allows the model to incorporate semantically relevant cues from the canonical
space, such as textures or patterns, even when misalignments in pose or geometry exist. Moreover,
the probabilistic nature of our model enables plausible synthesis in regions where the canonical space
lacks prior observations—for example, rendering a frontal view even when no frontal information
has been previously stored (see Fig. 2 canonical space visualization).

We validate the effectiveness of our approach on both in-domain (Wang et al., 2024, 4D-Dress) and
out-of-distribution (Xiong et al., 2024, MVHumanNet) datasets. Comparisons with both deterministic
(per-frame and temporal) and probabilistic regression baselines demonstrate that our method benefits
from the combination of progressively evolving canonical space and the probabilistic rendering.

2 RELATED WORK

Deep learning-based methods have enabled human performance capture from sparse or single views,
addressing some of these accessibility limitations of traditional methods. Certain optimization meth-
ods (Habermann et al., 2019; 2020; 2021; Zhu et al., 2024a; Pang et al., 2024; Xiang et al., 2023; Shetty
et al., 2024) model high-quality non-rigid deformations corresponding to pose changes; however,
they are heavily dependent on the quality of pre-captured template mesh. Recent optimization-based
methods (Peng et al., 2023; 2024; Geng et al., 2023; Weng et al., 2022; Hu et al., 2024b; Qian et al.,
2024; Ma et al., 2024; Moon et al., 2024; Hu et al., 2024a; Shao et al., 2024b; Li et al., 2024c) instead
leverage human templates (Pavlakos et al., 2019) to optimize vertex point features, which are then
rendered into novel views and poses. Yet, they cannot generalize to new subjects.

More recent feed-forward methods (Huang et al., 2020; Saito et al., 2019; 2020; He et al., 2020;
Li et al., 2020; He et al., 2021) bypass the need for test-time optimization by conditioning on the
image features or pixel-aligned features. However, these methods struggle with complex poses due
to limited understanding of 3D structure. To address complex human reconstruction in sparse input
settings, a line of methods (Zhao et al., 2022; Chen et al., 2022; Choi et al., 2022; Hu et al., 2023;
Pan et al., 2024; Li et al., 2024a) incorporates 3D human templates to aggregate features across
the view axis. However, these approaches struggle to extrapolate unobserved details, particularly
in single-view scenarios. NHP (Kwon et al., 2021) uses a human template to aggregate temporal
information and compensate for insufficient observations. However, it produces blurry, averaged
appearances to avoid misalignment penalties between past and current frames, which is a known
challenge for deterministic regression models.

The emergence of probabilistic regression models (e.g., diffusion model (Rombach et al., 2022))
has provided new opportunities for realistic single-view synthesis by harnessing their generative
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Figure 2: Our method renders novel views of live frames in a feed-forward manner from a monocular
RGB stream. Given a live frame It, feature map Ft is extracted and aligned to the SMPL-X template
mesh, resulting in vertex-aligned feature set St. St is fused into the canonical feature set Scan,
updating temporal history. The canonical feature set Scan is then warped and densified into the live
space, forming the input Gcontext,t for the denoising network Udenoiser. The denoising network denoises
the noisy image Z into the final novel view live frame, conditioned on the live frame’s state Glive,t.
The right side shows the progressive update of the canonical space. The first column shows the
feature map; the second shows its RGB rendering. Our method synthesizes realistic details even
without observations (top row) and refines the canonical space as more frames are incorporated.

capabilities to hallucinate unobserved details (Liu et al., 2023; 2024; Long et al., 2024). While these
methods can produce visually compelling results, they often introduce distortions and artifacts. Some
approaches (Huang et al., 2023; 2024; Zhang et al., 2024; Ho et al., 2024; Hu, 2024; Madges et al.,
2017; Xu et al., 2024; He et al., 2024; Shao et al., 2024a; Li et al., 2024b; Zhu et al., 2024b; Qiu
et al., 2025; Sengupta et al., 2024) integrate human templates to mitigate these distortions; however,
as per-frame methods that do not incorporate temporal history, they often generate details that are not
aligned with past observations.

In this work, we propose to leverage temporal information from incoming frames to progressively
build a comprehensive canonical space. This canonical space provides context for synthesis, even
when certain regions are not visible in the current frame, enabling synthesis that aligns with previous
frames. Furthermore, to be able to effectively utilize the context stored in the canonical space, we
employ the probabilistic rendering model.

3 METHOD

Given a monocular RGB video of a performer, corresponding fitted human templates (i.e., SMPL-
X (Pavlakos et al., 2019)), and camera parameters for both input and novel views, our goal is to
generate novel views of the live frame (i.e., input frame at the current time step) in a manner that
aligns with past observations. To achieve this, we introduce a feed-forward method that progressively
updates the shared canonical space and utilizes it as a context for synthesizing live novel views.
Figure 2 illustrates how our framework processes input live frames by aligning them to the canonical
space and updating the canonical space with a visibility-based fusion process (Section 3.2). The
updated canonical space is then warped into the live space and rendered into novel view frames
conditioned on the live deformation (Section 3.3). Section 3.4 provides training and inference details.

3.1 MOTIVATION

Capturing human performance from a single monocular RGB stream poses challenges due to insuffi-
cient observations. While each frame provides only a partial observation, different frames over time
can reveal additional details as the subject moves in front of the camera. By continuously updating
the canonical space with each new frame, we can build a progressively complete representation,
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compensating for missing information in individual live frames. An additional challenge involves
transforming the canonical space back into the live space. Traditional methods rely on optimizing
an SE(3) transformation to warp the canonical space to the live space, which is difficult with only
monocular input and dynamic subjects undergoing non-rigid deformations. This work, therefore,
emphasizes gradually completing the canonical space and effectively renders the live space out of it.

3.2 CANONICAL SPACE CONSTRUCTION AND PROGRESSIVE UPDATING

Initialization. To begin, the canonical space feature set is initialized as Scan = 0 ∈ RM×L, where
M denotes the number of vertices in the human template mesh (i.e., SMPL-X) and L is the channel
dimension (e.g., L=256). Additionally, we employ a visibility frequency map Vcan, initialized as
0 ∈ RM×1, to record the visibility frequency of each vertex over time.

Aligning Live Frames to the Canonical Space. To integrate live frame information into the
canonical space, we align the current live frame at time t to the canonical space using a fitted human
template model. This alignment also incorporates the temporal history of previously integrated frames
and their features, allowing the canonical representation to be progressively updated through feature
accumulation and fusion over time. The use of the template model establishes 4D correspondences
across frames, enabling effective alignment between the live frames and the canonical space.

For the current live frame It, we extract hierarchical feature maps Ft from the first three layers of
ResNet-18. These feature maps progressively downsample the resolution to 1/2, 1/4, and 1/8 of the
input image. This multi-level representation captures both fine-grained details (e.g., textures) and
high-level semantic context (e.g., region-level features). Notably, the receptive fields in ResNet allow
these feature maps to encode contextual information such as clothing or hair that may extend beyond
the SMPL-X surface. The extracted feature map Ft is then aligned to the SMPL-X template mesh.
This process begins with a 3D-to-2D projection operation Proj which maps the 3D world coordinates
of the SMPL-X vertices Xt onto the 2D image plane using the input view camera parameters Cinput.
Next, a bilinear sampling operation Π samples the corresponding features from Ft at the 2D projected
vertex locations. This results in a vertex-aligned feature set St ∈ RM×L, where M is the number of
SMPL-X vertices and L is the feature dimension. Formally, St = Π(Ft, P roj(Xt, Cinput)).

The canonical feature set Scan ∈ RM×L is dynamically updated by incorporating the features St

from each live frame, progressively refining the representation. To achieve this, we utilize a visibility
frequency map Vcan ∈ RM×1, which accumulates the per-vertex visibility over time. This map
ensures that the contributions of both historical and current features are appropriately weighted based
on their observed frequency. For the current live frame at time t, the visibility map Vt ∈ RM×1 is
computed, and the corresponding canonical features St ∈ RM×L is incorporated into Scan as follows:

Scan =
(St · Vt) + (Scan · Vcan)

max(Vt + Vcan, 1)
. (1)

After updating the canonical feature, the visibility frequency map is updated to include the current
frame’s visibility Vcan = Vcan +Vt. This approach dynamically weighs the contribution of each vertex
in St, ensuring a balanced and progressively refined canonical space that integrates both historical
context and current observations. The progressively updating canonical space serves as a context
bank, enabling novel views of the live frame to be rendered in alignment with past observations, even
when those regions are not directly visible in the current live frame.

3.3 PROBABILISTIC REGRESSION OF THE LIVE SPACE

The goal of this step is to reconstruct the live frame by synthesizing realistic details that are aligned
with the context stored in the canonical space. This task is particularly challenging with a monocular
input stream, especially when dealing with dynamic, non-rigid deformations such as loose garments.

Limitations of Deterministic Regression. Deterministic regression-based approaches, which
directly map canonical features to the live frame using pixel-wise reconstruction losses like ℓ1 or
MSE, often struggle to handle high-frequency details. These losses penalize pixel-level differences
between the predicted frame and the ground truth, making them particularly problematic when
observed details change dynamically over time (see Figure 3). For example, consider a scenario
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Figure 3: Deterministic regression supervision (e.g., pixel-wise loss) penalizes deformation mismatch, leading
to blurry outputs, while probabilistic regression supervision focuses on perceptually realistic synthesis rather
than pixel-wise mismatch.

where the appearance of certain high-frequency details, such as wrinkles or fabric deformations,
evolves continuously due to non-rigid motion. If the available input only provides partial or incomplete
views of the subject over time, the model must rely on prior observations to infer unobserved regions.
However, when the ground truth for these regions reflects updated details that differ from the prior
state, pixel-wise losses penalize the model for its reliance on previous observations. This discourages
the model from predicting fine-grained details that are prone to temporal variation. Instead, it learns
to predict low-frequency information, such as general colors or shapes, resulting in pixel-averaged,
blurry outputs. To address these limitations, we adopt a probabilistic regression model, i.e., diffusion
model (Rombach et al., 2022). Rather than focusing on architectural novelty in probabilistic rendering,
our contribution lies in demonstrating how a carefully designed canonical context can significantly
improve synthesis quality when paired with off-the-shelf diffusion models. Therefore, we use a
standard pre-trained VAE model and Stable Diffusion model provided by Hugging Face.

Warping and Densifying Canonical Features into Live Space. To adapt the canonical feature
set Scan into the live space’s pose, we warp it using the 3D world coordinates of the SMPL-X mesh
vertices Xt. This warping step transforms the canonical features into the live pose, represented as
Warp(Scan, Xt). For live frame reconstruction, we project this vertex-aligned representation into the
novel view, conditioned on the camera parameters Cnovel. While Scan is warped to the live pose, it
remains a sparse, vertex-aligned representation (Scan ∈ RM×L, where M is the number of SMPL-X
vertices). To enable dense frame reconstruction, we perform barycentric interpolation which renders
the sparse features into a dense 2D image: Wt as Wt = Interpolate(Warp(Scan, Xt), Cnovel).
Here, Interpolate densifies the sparse vertex features into a dense 2D feature image aligned with the
novel view. The resulting Wt incorporates rich temporal context aggregated from Scan. This dense
representation forms the foundation for reconstructing the live frame.

Live Space Reconstruction. To reconstruct the live frame, we adopt a probabilistic regression
process that integrates warped canonical features Wt and the deformation state of the reference live
frame It. This process involves encoding the dense canonical features, capturing the live frame’s
deformation state, and synthesizing the final output through a diffusion-based denoising.

The dense canonical feature Wt, obtained through barycentric interpolation of the warped canonical
features, is first encoded into a compact representation Gcontext,t using Uenc, a network composed of
convolutional and self-attention layers: Gcontext,t = Uenc(Wt). This encoding enriches the canonical
features, providing contextual information necessary for synthesis. Simultaneously, the deformation
state of the reference live frame It is captured to represent the subject’s dynamic, non-rigid changes.
This is achieved by first encoding It using a variational autoencoder Uvae, followed by a network Ulive
which refines the encoded features into a live state-aware representation: Glive,t = Ulive(Uvae(It)). To
synthesize the final live frame, we employ a denoising network Udenoiser, inspired by Stable Diffusion
(Rombach et al., 2022). This network operates on the encoded canonical features Gcontext,t, the live
state-aware features Glive,t, and a noisy latent input Zt, progressively refining the input to reconstruct
the live frame: Udenoiser(Zt, Gcontext,t, Gdeform,t).

Our probabilistic framework is trained using a diffusion-based approach. At each diffusion
step t, the denoiser predicts the noise ϵ added to the ground-truth latent vector Z. The train-
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ing objective minimizes the difference between the predicted and the ground-truth noise: L =
E
[
∥ϵ− Udenoiser(Zt, Gcontext,t, Glive,t, i)∥2

]
, where Zt = αtZ + σtϵ. Here, Z is the ground-truth

latent, ϵ ∼ N (0, I) represents Gaussian noise, and αi and σi are diffusion parameters that define the
noise level at diffusion timestep i. This objective ensures that the model learns to synthesize realistic
frames by leveraging past observations to resolve ambiguities inherent in monocular inputs.

3.4 TRAINING AND INFERENCE

Training. The training input consists of a reference live frame at time t from the input view camera
Cinput and N preceding frames sampled at a temporal stride K. Formally, the input sequence is
{It, It−K , It−2K , . . . , It−NK}, where N is the number of preceding frames and K is the temporal
stride. During training, N is set to 10, and K is randomly sampled from the set {1, 5, 10}, introducing
variability in temporal spacing to encourage the canonical features Scan to capture a rich temporal
context. A stride of K = 1 corresponds to consecutive frames, matching the inference setting, while
K = 5 or 10 expands the temporal spacing to include a broader context for Scan. This strategy ensures
the model learns to rely on Scan as a robust context for live frame reconstruction. The model is trained
for 100,000 iterations with a learning rate of 1× 10−5, using a batch size of 1 on a single NVIDIA
L40S GPU. The total training time is approximately 24 hours. Certain components such as the VAE
and ResNet-18 feature extractor are frozen, while the feature image encoder Uenc, live frame encoder
Ulive, and denoising network Udenoiser remain trainable. The output of the training process is a novel
view synthesis of the reference live frame It from a target camera view Cnovel. The training objective
is an MSE loss between the ground-truth noise ϵ and the predicted noise at each denoising timestep i.

Inference. During inference, the model processes input frames sequentially to reconstruct live
frames. For each frame It at the current time t, consecutive frames (K = 1) are used, reflecting the
sequential nature of live streaming scenarios. The canonical feature Scan is dynamically updated with
each new frame. Our setup uses T = 10 diffusion steps.

4 EXPERIMENTS

4.1 BASELINES, DATASETS, AND METRICS

Baselines. To thoroughly evaluate the advantages of our method, which leverages temporal in-
formation and probabilistic rendering, we compare it against the following feed-forward human
reconstruction baselines: (1) per-frame deterministic regression methods, SHERF (Hu et al., 2023)
and GHG (Kwon et al., 2025); (2) a temporal deterministic regression method, NHP Kwon et al.
(2021); and (3) per-frame probabilistic methods, Champ (Zhu et al., 2024b) and SiFU (Zhang
et al., 2024). To highlight the efficiency of our feed-forward design, we additionally compare with
GauHuman (Hu et al., 2024b), which performs subject-specific optimization.

Datasets. We use the THuman2.1 (Yu et al., 2021) and 4D-Dress (Wang et al., 2024) datasets
for training, with all comparison methods trained on the same dataset and protocol. We reserve
30 subjects of the 4D-Dress dataset for testing to assess in-domain generalizability. For cross-
dataset evaluation, we test on 30 representative MVHumanNet sequences. For evaluating in-the-wild
generalizability, we use the TikTok (Jafarian & Park, 2021) dataset, where foreground masks are
obtained with RemBG (Gatis, 2022), and SMPL-X fits with SMPLest-X (Yin et al., 2025). Further
details are provided in the supplementary material.

Metrics. To evaluate frame-level quality, we use PSNR. To capture human perception, we also
employ perceptual metrics: LPIPS-VGG (Zhang et al., 2018). To assess how well the synthesis aligns
with past observations, we use Fréchet Video Distance (FVD) (Unterthiner et al., 2018), computed on
sequentially synthesized frames from a single viewpoint and averaged over the novel views.

4.2 IN-DOMAIN GENERALIZATION

In Fig. 4 and Tab. 1, we evaluate in-domain generalization on the 4D-Dress dataset, comparing
against feed-forward methods that are per-frame probabilistic (Champ, SIFU), deterministic (per-
frame SHERF, GHG; temporal NHP), and one per-subject optimization method (GauHuman). All
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Live Input GauHuman SHERFChamp GHG Ours GTSIFU
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NHP

Figure 4: In-domain generalization results on the 4D-Dress dataset. Monocular input stream is shown in
the white boxes. Our method effectively reconstructs novel views that align with past observations. Per-frame
probabilistic methods (Champ, SIFU) fail to reconstruct the details observed in prior observations. Per-frame
deterministic regression methods (SHERF, GHG) struggle with synthesizing unobserved details. Temporal
deterministic method NHP can leverage temporal context but produces blurry outputs. GauHuman requires
per-subject optimization but delivers lower visual quality and lacks generalizability.

Table 1: In-domain generalization results on the 4D-Dress dataset. Our method demonstrates
superior performance on perceptual metrics, highlighting the effectiveness of leveraging temporal
context and probabilistic rendering. For readability, LPIPS-VGG is scaled by a factor of 1000.

Method Generalizable Temporal Context Synthesis Objective PSNR (↑) LPIPS-VGG (↓) FVD (↓)

GauHuman Hu et al. (2024b) ✗ (Per-subject) ✗ Deterministic 23.19 83.34 500.8

Champ (Zhu et al., 2024b) ✓ ✗ Probabilistic 19.37 98.61 254.5
SHERF (Hu et al., 2023) ✓ ✗ Deterministic 21.86 86.34 735.3
GHG (Kwon et al., 2025) ✓ ✗ Deterministic 24.50 75.60 502.93
NHP (Kwon et al., 2021) ✓ ✗ Deterministic 24.72 96.26 630.0
Ours ✓ ✓ Probabilistic 25.07 62.97 176.7

methods except GauHuman are trained on the THuman 2.1 and 4D-Dress training splits and evaluated
on the unseen 4D-Dress test split. GauHuman is optimized for each test subject. For SIFU, which
focuses on 3D mesh reconstruction rather than rendering, we report only qualitative results.

Champ, a frame-based probabilistic method, produces sharp and visually appealing results at the
frame level due to its generative capabilities. However, its lack of temporal context leads to the
generation of details that are irrelevant to past observations. For instance, as shown in the top row
of Fig. 4, Champ neglects the black shirt underneath the blue jacket. Similarly, in the bottom row,
Champ fails to render the blue shirt, as it is occluded in the current view, and Champ does not
incorporate prior observations. SIFU also generates results that do not match past observations.

SHERF and GHG, frame-based deterministic regression methods, struggle with monocular input due
to their inability to hallucinate unobserved details, resulting in averaged outputs (Fig. 4). While they
achieve relatively high PSNR scores (Tab. 1), likely due to pixel-level supervision, their perceptual
scores are poor. NHP, a temporal deterministic method, leverages past frames but still produces blurry
results, as it suppresses sharp features to avoid misalignment penalties.

GauHuman uses per-subject optimization, tailoring models to individual test subjects. Despite its
subject-specific focus, its visual quality is not on par with other methods. Also, it lacks generalizability
and requires optimization for each new subject.

As shown in Tab. 1, our method outperforms all baselines on perceptual metrics, demonstrating its
ability to render high-quality frames that align with past observations. These results underscore
the effectiveness of integrating temporal context and probabilistic rendering for robust human
performance capture in monocular settings.
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GTLive Input Champ OursNHP GTLive Input Champ OursNHP

Figure 5: Cross-dataset generalization results on the MVHumanNet dataset. Left column presents
the monocular input stream. Champ hallucinates irrelevant details when those regions are invisible in
the current live input frame. In contrast, our method generates details relevant to past observations.

Table 2: Cross-dataset generalization on MVHumanNet. Our method effectively leverages
temporal context to synthesize details coherent with frame history. Champ, while visually appealing,
generates details that are inconsistent with past observations, as reflected in the FVD metric.

Method Generalizable Temporal Context Synthesis Objective PSNR (↑) LPIPS-VGG (↓) FVD (↓)

Champ (Zhu et al., 2024b) ✓ ✗ Probabilistic 21.06 97.61 674.1
NHP (Kwon et al., 2021) ✓ ✓ Deterministic 22.25 131.91 1321.4
Ours ✓ ✓ Probabilistic 21.25 87.85 436.9

4.3 CROSS-DATASET GENERALIZATION

To evaluate the cross-dataset generalizability, we test on the MVHumanNet dataset (Xiong et al.,
2024). We select 30 videos with notable subject motion and clothing variations, such as distinct
patterns or differences between frontal and back views. These criteria ensure a diverse temporal
context, providing a meaningful evaluation of our method’s ability to leverage temporal information.
We compare our method with the most relevant baseline NHP and Champ.

As shown in Fig. 5 and Tab. 2, our method exhibits strong generalization, producing details that align
with past observations. In contrast, NHP, while able to consult the past history, generates blurry
results. On the other hand, Champ, while having sharp results at the frame level, generates details
inconsistent with previous frames, similar to its performance in the in-domain setting.

Live Input Champ OursNHP Live Input Champ OursNHP

Figure 6: In-the-wild generalization on TikTok. Task: generate a frontal view from a back view.
Champ copies the input, NHP is blurry, and ours produces a clear, observation-faithful frontal view.

4.4 IN-THE-WILD GENERALIZATION

We evaluate in-the-wild generalizability on the TikTok dataset (Jafarian & Park, 2021). Since GT is
not available, we report only qualitative results in Fig. 6. Our method reconstructs a faithful frontal
view from a back view, while Champ copies the input, and NHP is blurry.

4.5 ABLATION

Fig. 7 and Tab. 3 shows ablation studies on the 4D Dress dataset. The experimental setup follows the
same training and testing protocol as in Sec. 4.2. We compare four variants of our method: (a) No
Temporal Context replaces the temporally aggregated feature Wt, derived from canonical space feature
Scan, with a current live frame normal map, ignoring any temporal context or history; (b) No Feature
Context replaces the encoded pixel-aligned features (Ft) used to construct Scan with raw RGB pixel
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Input (d) Our full method(a) No temporal context (b) No feature context (c) No Probabilistic objective GT

Figure 7: Ablation results on the 4D-Dress dataset. (a) Removing temporal context leads to inconsistencies,
while (b) using raw RGB values instead of encoded features limits detail recovery. (c) A deterministic regression
struggles to capture fine-grained details and dynamic deformations. (d) Our full method, combining all
components, achieves superior performance in terms of visual quality and coherence to temporal context.

Table 3: Ablation studies on the 4D-Dress dataset. (a) Without temporal context, frame-level
quality is maintained but temporal coherence degrades. (b) Using raw RGB values as input leads to a
decline in perceptual quality due to the loss of fine details. (c) The deterministic regression objective
exhibits limitations in capturing high-frequency details. (d) Our full method effectively leverages
rich temporal observations encoded in the feature representation and the probabilistic regression to
achieve high-quality results align with past observations.

Method Temporal Context Synthesis Objective PSNR (↑) LPIPS-VGG (↓) FVD (↓)

(a) No temporal context None (Normal map of current frame) Probabilistic 25.03 63.34 177.4
(b) No feature context Raw RGB values Probabilistic 24.37 64.51 191.9
(c) No probabilistic objective Encoded features (Scan) Deterministic (Pixel MSE) 25.23 95.70 572.3

(d) Our full method Encoded features (Scan) Probabilistic 25.07 62.97 176.7

values from the input frame. The temporal aggregation process follows the same visibility-weighted
algorithm described in Eq. (1); (c) No Probabilistic Objective retains the temporal context but replaces
the probabilistic diffusion-based objective with a pixel-wise deterministic regression loss; (d) Full
Method incorporates both temporal aggregation using encoded features and the diffusion-based
probabilistic objective, forming the complete version of our proposed approach.

Effect of Temporal Context. Fig. 7(a) and Tab. 3(a) show results without temporal context.
While frame-level quality remains comparable, the model produces details inconsistent with prior
observations. For example, it infers the stripe pattern from the visible region but generates mismatched
patterns in occluded areas. This highlights the importance of temporal context in reconstructing
unobserved details from monocular input.

Effect of Feature Context. Using raw RGB values instead of features (Fig. 7(b), Tab. 3(b)) allows
the method to capture some temporal information. However, raw RGB values lack the spatial richness
of encoded features. Encoded features enable our full method to recover details better aligned with
past observations, particularly in occluded regions as in Fig. 7(d).

Effect of the Probabilistic Regression Objective. Using a deterministic loss (Fig. 7(c), Tab. 3(c))
maintains temporal context but struggles with high-frequency details, as discussed in Sec. 3.3. While
the method renders regions like the striped sweater, it produces blurry outputs due to the limitations
of pixel-wise losses, which discourage fine-grained details that frequently vary over time.

Full Method. Our full method (Fig. 7(d), Tab. 3(d)) outperforms all ablated variants, highlighting
the combined benefits of temporal context, encoded features, and the diffusion-based objective.

5 CONCLUSION

We present a feed-forward human performance capture method from a monocular RGB stream.
By updating live observations into a shared canonical space, our method compensates for the
limitations of monocular input, building a complete representation over time. Further, by leveraging
a probabilistic regression-based training objective, our method enables high-fidelity live space
renderings that capture sharp details and handle non-rigid deformations effectively. Evaluations on
diverse datasets confirm that our method achieves superior rendering quality that align with past
observations compared to per-frame or deterministic methods.
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