
MixFlows: principled variational inference via mixed flows

Zuheng Xu 1 Naitong Chen 1 Trevor Campbell 1

Abstract
This work presents mixed variational flows
(MixFlows), a new variational family that con-
sists of a mixture of repeated applications of a
map to an initial reference distribution. First, we
provide efficient algorithms for i.i.d. sampling,
density evaluation, and unbiased ELBO estima-
tion. We then show that MixFlows have MCMC-
like convergence guarantees when the flow map
is ergodic and measure-preserving, and provide
bounds on the accumulation of error for practical
implementations where the flow map is approx-
imated. Finally, we develop an implementation
of MixFlows based on uncorrected discretized
Hamiltonian dynamics combined with determin-
istic momentum refreshment. Simulated and real
data experiments show that MixFlows can pro-
vide more reliable posterior approximations than
several black-box normalizing flows, as well as
samples of comparable quality to those obtained
from state-of-the-art MCMC methods.

1. Introduction
Bayesian statistical modelling and inference provides a prin-
cipled approach to learning from data. However, for all but
the simplest models, exact inference is not possible and com-
putational approximations are required. A standard method-
ology for Bayesian inference is Markov chain Monte Carlo
(MCMC) [Robert & Casella, 2004; Robert & Casella, 2011;
Gelman et al., 2013, Ch. 11,12], which involves simulating a
Markov chain whose stationary distribution is the Bayesian
posterior distribution, and then treating the sequence of
states as draws from the posterior. MCMC methods are
supported by theory that guarantees that if one simulates
the chain for long enough, Monte Carlo averages based on
the sequence of states will converge to the exact posterior
expectation of interest (e.g., (Roberts & Rosenthal, 2004)).

1University of British Columbia, Department of Statistics,
Vancouver, Canada. Correspondence to: Trevor Campbell
<trevor@stat.ubc.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

This “exactness” property is quite compelling: regardless of
how well one is able to tune the Markov chain, the method
is guaranteed to eventually produce an accurate result given
enough computation time. Nevertheless, it remains a chal-
lenge to assess and optimize the performance of MCMC in
practice with a finite computational budget. One option is
to use a Stein discrepancy (Gorham & Mackey, 2015; Liu
et al., 2016; Chwialkowski et al., 2016; Gorham & Mackey,
2017; Anastasiou et al., 2021), which quantifies how well a
set of MCMC samples approximates the posterior distribu-
tion. But standard Stein discrepancies are not reliable in the
presence of multimodality (Wenliang & Kanagawa, 2020),
are computationally expensive to estimate, and suffer from
the curse of dimensionality, although recent work addresses
the latter two issues to an extent (Huggins & Mackey, 2018;
Gong et al., 2021). The other option is to use a traditional
diagnostic, e.g., Gelman–Rubin (Gelman & Rubin, 1992;
Brooks & Gelman, 1998), effective sample size (Gelman
et al., 2013, p. 286), Geweke (1992), or others (Cowles
& Carlin, 1996). These diagnostics detect mixing issues,
but do not comprehensively quantify how well the MCMC
samples approximate the posterior.

Variational inference (VI) (Jordan et al., 1999; Wainwright
& Jordan, 2008; Blei et al., 2017) is an alternative to MCMC
that does provide a straightforward quantification of pos-
terior approximation error. In particular, VI involves ap-
proximating the posterior with a probability distribution—
typically selected from a parametric family—that enables
both i.i.d. sampling and density evaluation (Wainwright
& Jordan, 2008; Rezende & Mohamed, 2015a; Ranganath
et al., 2016; Papamakarios et al., 2021). Because one can
both obtain i.i.d. draws and evaluate the density, one can esti-
mate the ELBO (Blei et al., 2017), i.e., the Kullback-Leibler
(KL) divergence (Kullback & Leibler, 1951) to the posterior
up to a constant. The ability to estimate this quantity, in turn,
enables scalable tuning via straightforward stochastic gra-
dient descent algorithms (Hoffman et al., 2013; Ranganath
et al., 2014), optimally mixed approximations (Jaakkola &
Jordan, 1998; Gershman et al., 2012; Zobay, 2014; Guo
et al., 2016; Wang, 2016; Miller et al., 2017; Locatello
et al., 2018b;a; Campbell & Li, 2019), model selection (Cor-
duneau & Bishop, 2001; Masa-aki, 2001; Constantinopou-
los et al., 2006; Ormerod et al., 2017; Chérief-Abdellatif
& Alquier, 2018; Tao et al., 2018), and more. However,

1

MixFlows: principled variational inference via mixed flows

VI typically does not possess the same “exactness regard-
less of tuning” that MCMC does. The optimal variational
distribution is not usually equal to the posterior due to the
use of a limited parametric variational family; and even if
it were, one could not reliably find it due to nonconvexity
of the KL objective (Xu & Campbell, 2022). Recent work
addresses this problem by constructing variational families
from parametrized Markov chains targeting the posterior.
Many are related to annealed importance sampling (Sali-
mans et al., 2015; Wolf et al., 2016; Geffner & Domke,
2021; Zhang et al., 2021; Thin et al., 2021b; Jankowiak
& Phan, 2021); these methods introduce numerous aux-
iliary variables and only have convergence guarantees in
the limit of increasing dimension of the joint distribution.
Those based on flows (Neal, 2005; Caterini et al., 2018;
Chen et al., 2022) avoid the increase in dimension with flow
length, but typically do not have guaranteed convergence to
the target. Methods involving the final-state marginal of fi-
nite simulations of standard MCMC methods (e.g., Zhang &
Hernández-Lobato, 2020) do not enable density evaluation.

The first contribution of this work is a new family of mixed
variational flows (MixFlows), constructed via averaging
over repeated applications of a pushforward map to an initial
reference distribution. We develop efficient methods for i.i.d.
sampling, density evaluation, and unbiased ELBO estima-
tion. The second contribution is a theoretical analysis of
MixFlows. We show (Theorems 4.1 and 4.2) that when the
map family is ergodic and measure-preserving, MixFlows
converge to the target distribution for any value of the varia-
tional parameter, and hence have guarantees regardless of
tuning as in MCMC. We then extend these results (Theo-
rem 4.3 and Corollary 4.4) to MixFlows based on approx-
imated maps—which are typically necessary in practice—
with bounds on error with increasing flow length. The third
contribution of the work is an implementation of MixFlows
via uncorrected discretized Hamiltonian dynamics. Simu-
lated and real data experiments compare performance to the
No-U-Turn sampler (NUTS) (Hoffman & Gelman, 2014),
standard Hamiltonian Monte Carlo (HMC) (Neal, 2011),
and several black-box normalizing flows (Rezende & Mo-
hamed, 2015b; Dinh et al., 2017). Our results demonstrate a
comparable sample quality to NUTS, similar computational
efficiency to HMC, and more reliable posterior approxima-
tions than standard normalizing flows.

Related work. Averages of Markov chain state distribu-
tions in general were studied in early work on shift-coupling
(Aldous & Thorisson, 1993), with convergence guarantees
established by Roberts & Rosenthal (1997). However, these
guarantees involve minorization and drift conditions that are
designed for stochastic Markov chains, and are not applica-
ble to MixFlows. Averages of deterministic pushforwards
specifically to enable density evaluation have also appeared

in more recent work. Rotskoff & Vanden-Eijnden (2019);
Thin et al. (2021a) use an average of pushforwards generated
by simulating nonequilibrium dynamics as an importance
sampling proposal. The proposal distribution itself does not
come with any convergence guarantees—due to the use of
non-measure-preserving, non-ergodic damped Hamiltonian
dynamics—or tuning guidance. Our work provides com-
prehensive convergence theory and establishes a convenient
means of optimizing hyperparameters.

MixFlows are also related to past work on deterministic
MCMC (Murray & Elliott, 2012; Neal, 2012; ver Steeg &
Galstyan, 2021; Neklyudov et al., 2021). Murray & Elliott
(2012) developed a Markov chain Monte Carlo procedure
based on an arbitrarily dependent random stream via aug-
mentation and measure-preserving bijections. ver Steeg
& Galstyan (2021) designed a specialized momentum dis-
tribution that generates valid Monte Carlo samples solely
through the simulation of deterministic Hamiltonian dynam-
ics. Neklyudov et al. (2021) proposed a general form of
measure-preserving dynamics that can be utilized to con-
struct deterministic Gibbs samplers. These works all involve
only deterministic updates, but do not construct variational
approximations, provide total variation convergence guaran-
tees, or provide guidance on hyperparameter tuning. Finally,
some of these works involve discretization of dynamical sys-
tems, but do not characterize the resultant error (ver Steeg
& Galstyan, 2021; Neklyudov et al., 2021). In contrast, our
work provides a comprehensive convergence theory, with
error bounds for when approximate maps are used.

2. Background
2.1. Variational inference with flows

Consider a set X ⊆ Rd and a target probability distribution
π on X whose density with respect to the Lebesgue mea-
sure we denote π(x) for x ∈ X . In the setting of Bayesian
inference, π is the posterior distribution that we aim to ap-
proximate, and we are only able to evaluate a function p(x)
such that p(x) = Z · π(x) for some unknown normalization
constant Z > 0. Throughout, we will assume all distribu-
tions have densities with respect to the Lebesgue measure
on X , and will use the same symbol to denote a distribution
and its density; it will be clear from context what is meant.

Variational inference involves approximating the target
distribution π by minimizing the Kullback-Leibler (KL)
divergence from π to members of a parametric family
{qλ : λ ∈ Λ}, Λ ⊆ Rp, i.e.,

λ? = arg min
λ∈Λ

DKL (qλ||π)

= arg min
λ∈Λ

∫
qλ(x) log

qλ(x)

p(x)
dx.

(1)

The two objective functions in Equation (1) differ only by

2

MixFlows: principled variational inference via mixed flows

the constant logZ. In order to be able to optimize λ using
standard techniques, the variational family qλ, λ ∈ Λ must
enable both i.i.d. sampling and density evaluation. A com-
mon approach to constructing such a family is to pass draws
from a simple reference distribution q0 through a measur-
able function Tλ : X → X ; Tλ is often referred to as a flow
when comprised of repeated composed functions (Tabak &
Turner, 2013; Rezende & Mohamed, 2015a; Kobyzev et al.,
2021). If Tλ is a diffeomorphism, i.e., differentiable and has
a differentiable inverse, then we can express the density of
X = Tλ(Y), Y ∼ q0 as

∀x∈X , qλ(x)=
q0(T−1

λ (x))

Jλ(T−1
λ (x))

, Jλ(x)=|det∇xTλ(x)| .

In this case the optimization in Equation (1) can be rewritten
using a transformation of variables as

λ? = arg min
λ∈Λ

∫
q0(x) log

q0(x)

Jλ(x)p(Tλ(x))
dx. (2)

One can solve the optimization problem Equation (2) using
unbiased stochastic estimates of the gradient1 with respect
to λ based on draws from q0 (Salimans & Knowles, 2013;
Kingma & Welling, 2014),

∇λDKL (qλ||π)≈∇λlog
q0(X)

Jλ(X)p(Tλ(X))
, X ∼ q0.

2.2. Measure-preserving and ergodic maps

Variational flows are often constructed from a flexible,
general-purpose parametrized family {Tλ : λ ∈ Λ} that
is not specialized for any particular target distribution (Pa-
pamakarios et al., 2021); it is the job of the KL divergence
minimization Equation (2) to adapt the parameter λ such
that qλ becomes a good approximation of the target π. How-
ever, there are certain functions—in particular, those that are
both measure-preserving and ergodic for π—that naturally
provide a means to approximate expectations of interest
under π without the need for tuning. Intuitively, a measure-
preserving map T will not change the distribution of draws
from π: if X ∼ π, then T (X) ∼ π. And an ergodic map
T , when applied repeatedly, will not get “stuck” in a subset
of X unless it has probability either 0 or 1 under π. The
precise definitions are given in Definitions 2.1 and 2.2.

Definition 2.1 (Measure-preserving map (Eisner et al., 2015,
pp. 73, 105)). T : X → X is measure-preserving for π if
Tπ = π, where Tπ is the pushforward measure given by
π(T−1(A)) for each measurable set A ⊆ X .

Definition 2.2 (Ergodic map (Eisner et al., 2015, pp. 73,
105)). T : X → X is ergodic for π if for all measurable
sets A ⊆ X , T (A) = A implies that π(A) ∈ {0, 1}.

1We assume throughout that differentiation and integration can
be swapped wherever necessary.

If a map T satisfies both Definitions 2.1 and 2.2, then long-
run averages resulting from repeated applications of T will
converge to expectations under π, as shown by Theorem 2.3.
When X is compact, this result shows that the discrete
measure 1

N

∑N−1
n=0 δTnx converges weakly to π (Dajani &

Dirksin, 2008, Theorem 6.1.7).
Theorem 2.3 (Ergodic Theorem [Birkhoff, 1931; Eisner
et al., 2015, p. 212]). Suppose T : X → X is measure-
preserving and ergodic for π, and f ∈ L1(π). Then

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
fdπ π-a.e.x ∈ X .

Based on this result, one might reasonably consider building
a measure-preserving variational flow, i.e., X = T (X0)
where X0 ∼ q0. However, it is straightforward to show that
measure-preserving bijections T do not decrease the KL
divergence (or any other f -divergence, e.g., total variation
and Hellinger (Qiao & Minematsu, 2010, Theorem 1)):

DKL (Tq||π) = DKL (Tq||Tπ) = DKL (q||π) .

3. Mixed variational flows (MixFlows)
In this section, we develop a general family of mixed varia-
tional flows (MixFlows) as well as algorithms for tractable
i.i.d. sampling, density evaluation, and ELBO estimation.
MixFlows consist of a mixture of normalizing flows ob-
tained via repeated application of a pushforward map. This
section introduces general MixFlows; later in Sections 4
and 5 we will provide convergence guarantees and examples
based on Hamiltonian dynamics.

3.1. Variational family

Define a reference distribution q0 on X for which i.i.d. sam-
pling and density evaluation is tractable, and a collection of
measurable functions Tλ : X → X parametrized by λ ∈ Λ.
Then the MixFlow family generated by q0 and Tλ is

qλ,N =
1

N

N−1∑
n=0

Tnλ q0 for λ ∈ Λ, N ∈ N,

where Tnλ q0 denotes the pushforward of the distribution q0

under n repeated applications of Tλ.

3.2. Density evaluation and sampling

If Tλ : X → X is a diffeomorphism with Jacobian Jλ :
X → R, we can express the density of qλ,N by using a
transformation of variables formula on each component in
the mixture:

qλ,N (x) =
1

N

N−1∑
n=0

q0(T−nλ x)∏n
j=1 Jλ(T−jλ x)

.

3

MixFlows: principled variational inference via mixed flows

This density can be computed efficiently using N − 1 eval-
uations of T−1

λ and Jλ each (Algorithm 2). For sampling,
we can obtain an independent draw X ∼ qλ,N by treating
qλ,N as a mixture of N distributions:

K ∼ Unif{0, 1, . . . , N − 1} X0 ∼ q0 X = TKλ (X0).

The procedure is given in Algorithm 1. On average, this
computation requires E[K] = N−1

2 applications of Tλ, and
at most it requires N − 1 applications. However, one often
takes samples from qλ,N to estimate the expectation of some
test function f : X → R. In this case, one can use all
intermediate states over a single pass of a trajectory rather
than individual i.i.d. draws. In particular, we obtain an
unbiased estimate of

∫
f(x)qλ,N (dx) via

X0 ∼ q0
1

N

N−1∑
n=0

f(TnλX0). (3)

We refer to this estimate as the trajectory-averaged estimate
of f . The trajectory-averaged estimate of f is preferred
over the naı̈ve estimate based on a single draw f(X), X ∼
qλ,N , as its cost is of the same order (N − 1 applications
of Tλ) and its variance is bounded above by that of the
naı̈ve estimate f(X), as shown in Proposition 3.1. See
Appendix E.2, and Figure 6 in particular, for empirical
verification of Proposition 3.1.

Proposition 3.1.

Var

[
1

N

N−1∑
n=0

f(TnX0)

]
≤ Var [f(X)] .

3.3. ELBO estimation

We can minimize the KL divergence from qλ,N to π by
maximizing the ELBO (Blei et al., 2017), given by

ELBO (λ,N) =

∫
qλ,N (x) log

p(x)

qλ,N (x)
dx

=

∫
q0(x)

(
1

N

N−1∑
n=0

log
p(Tnλ x)

qλ,N (Tnλ x)
dx

)
.

The trajectory-averaged ELBO estimate is thus

X0 ∼ q0, ÊLBO(λ,N)=
1

N

N−1∑
n=0

log
p(TnλX0)

qλ,N (TnλX0)
. (4)

The naı̈ve method to compute this estimate—sampling
X0 and then computing the log density ratio for each
term—requires O(N2) computation because each evalu-
ation of qλ,N (x) is O(N). Algorithm 3 provides an ef-
ficient way of computing ÊLBO(λ,N) in O(N) opera-
tions, which is on par with taking a single draw from

Algorithm 1 Sample(qλ,N): Take a draw from qλ,N

Input: reference distribution q0, flow map Tλ, number
of steps N
K ← Sample(Unif{0, 1, . . . , N − 1})
x0 ← Sample(q0)
Return: TKλ (x0)

Algorithm 2 log qλ,N (x): Evaluate the log-density of qλ,N
Input: location x, reference distribution q0, flow map Tλ,
Jacobian Jλ, number of steps N
L← 0
w0 ← log q0(x)
for n = 1, . . . , N − 1 do
x← T−1

λ (x)
L← L+ log Jλ(x)
wn ← log q0(x)− L

end for
Return: LogSumExp(w0, . . . , wN−1)− logN

qλ,N or evaluating qλ,N (x) once. The key insight in Al-
gorithm 3 is that we can evaluate the collection of values
{qλ,N (X0), qλ,N (TλX0), . . . , qλ,N (TN−1

λ X0)} incremen-
tally, starting from qλ,N (X0) and iteratively computing each
qλ,N (TnλX0) for increasing n in constant time. Specifically,
in practice one computes qλ,N (x) with a complexity of
O(N) and iteratively updates qλ,N (T kλx) and the Jacobian
for k = 1, 2, . . . N − 1. Each update requires only constant
cost if one precomputes and stores T−N+1

λ x, . . . , TN−1
λ x

and Jλ(T−N+1
λ x), . . . , Jλ(TN−1

λ x). This then implies that
Algorithm 3 requires O(N) memory; Algorithm 5 in Ap-
pendix B provides a slightly more complicated O(N) time,
O(1) memory implementation of Equation (4).

4. Guarantees for MixFlows
In this section, we show that when Tλ is measure-preserving
and ergodic for π—or approximately so—MixFlows come
with convergence guarantees and bounds on their approx-
imation error as a function of flow length. Proofs for all
results may be found in Appendix A.

4.1. Ergodic MixFlows

Ergodic MixFlow families are those where ∀λ ∈ Λ, Tλ
is measure-preserving and ergodic for π. In this setting,
Theorems 4.1 and 4.2 show that MixFlows converge to the
target weakly and in total variation asN →∞ regardless of
the choice of λ (i.e., regardless of parameter tuning effort).
Thus, ergodic MixFlow families provide the same com-
pelling convergence result as MCMC, but with the added
benefit of unbiased ELBO estimates. We first demonstrate
setwise and weak convergence. Recall that a sequence of

4

MixFlows: principled variational inference via mixed flows

Algorithm 3 EstELBO(λ,N): Obtain an unbiased esti-
mate of the ELBO for qλ,N .

Input: reference q0, unnormalized target p, flow map Tλ,
Jacobian Jλ, number of flow steps N
x0 ← Sample(q0), J0 ← Jλ(x0)
for n = 1, . . . , N − 1 do
xn ← Tλ(xn−1), Jn ← Jλ(xn)
x−n ← T−1

λ (x−n+1), J−n ← Jλ(x−n)
end for
z0 ← qλ,N (x0) (via Algorithm 2)
J ←

∏N−1
j=1 J−j

for n = 1, . . . , N − 1 do
q̄n ← 1

N q0(x−N+n)/J
zn ← (zn−1 − q̄n) /Jn−1 + 1

N q0(xn)
if n < N − 1 then
J ← J · Jn−1/J−N+n

end if
end for
ÊLBO(λ,N)← 1

N

∑N−1
n=0 (log p(xn)− log zn)

Return: ÊLBO(λ,N)

distributions qn converges weakly to π if for all bounded,
continuous f : X → R, limn→∞

∫
f(x)qn(dx) =∫

f(x)π(dx), and converges setwise to π if for all mea-
surable A ⊆ X , limn→∞ qn(A) = π(A).

Theorem 4.1. Suppose q0 � π and Tλ is measure-
preserving and ergodic for π. Then qλ,N converges both
setwise and weakly to π as N →∞.

Using Theorem 4.1 as a stepping stone, we can obtain
convergence in total variation. Recall that a sequence
of distributions qn converges in total variation to π if
DTV(qn, π) = supA |qn(A)− π(A)| → 0 as n → ∞.
Note that similar nonasymptotic results exist for the ergodic
average law of Markov chains (Roberts & Rosenthal, 1997),
but as previously mentioned, these results do not apply to
deterministic Markov kernels.

Theorem 4.2. Suppose q0 � π and Tλ is measure-
preserving and ergodic for π. Then qλ,N converges in total
variation to π as N →∞.

4.2. Approximated MixFlows

In practice, it is rare to be able to evaluate a measure-
preserving map exactly; but approximations are commonly
available. For example, in Section 5 we will create a
measure-preserving map using Hamiltonian dynamics, and
then approximate that map with a discretized leapfrog inte-
grator. We therefore need to extend the result in Section 4.1
to apply to approximated maps.

Suppose we have two maps, T and T̂ , with corresponding
MixFlow families qn and q̂n (suppressing λ for brevity).

Theorem 4.3 shows that the error of the MixFlow family
q̂N reflects an accumulation of the difference between the
pushforward of each qn under T̂ and T .

Theorem 4.3. Suppose T̂ is a bijection. Then

DTV (q̂N , π) ≤ DTV (qN , π) +

N−1∑
n=0

n

N
DTV

(
Tqn, T̂ qn

)
.

Suppose T is measure-preserving and ergodic for π and
q0 � N . Then Theorem 4.2 implies that DTV(qN , π)→ 0,
and for the second term, we (very loosely) expect that
DTV(Tqn, T̂ qn) ≈ DTV(π, T̂π) for large n. Therefore, the
second term should behave like O(N · DTV(π, T̂π)), i.e.,
increase linearly in N proportional to how “non-measure-
preserving” T̂ is. This presents a trade-off between flow
length and approximation quality: better approximations
enable longer flows and lower minimal error bounds. Our
empirical findings in Section 6 generally confirm this behav-
ior. Corollary 4.4 further provides a more explicit character-
ization of this trade-off when T̂ and its log-Jacobian log Ĵ
are uniformly close to their exact counterparts T and log J ,
and log qn and log J are uniformly (over n ∈ N) Lipschitz
continuous. The latter assumption is reasonable in practical
settings where we observe that the log-density of qn closely
approximates π (see the experimental results in Section 6).

Corollary 4.4. Suppose that for all x ∈ X ,

max
{
‖T̂−1x− T−1x‖, | log Ĵ(x)− log J(x)|

}
≤ ε,

for all n ∈ [N − 1], log qn and log J are `-Lipschitz contin-
uous, and that T, T̂ are diffeomorphisms. Then

DTV (q̂N , π) ≤ DTV (qN , π) +Nε(`+ 1)e(2`+1)ε.

This result states that the overall map-approximation error
is O(Nε) when ε is small. Theorem 1 of Butzer & Westphal
(1971) also suggests that DTV(qN , π) = O(1/N) in many
cases, which hints that the bound should decrease roughly
until N = O(1/

√
ε), with error bound O(

√
ε). We leave a

more careful investigation of this trade-off for future work.

4.3. Discussion

Our main convergence results (Theorems 4.1 and 4.2) re-
quire that π dominates the reference q0, and that T is both
measure-preserving and ergodic. It is often straightforward
to design a dominated reference q0. Designing a measure-
preserving map T with an implementable approximation
T̂ ≈ T is also often feasible. However, verifying the er-
godicity of T conclusively is typically a very challenging
task. As a consequence, most past work involving measure-
preserving transformations just asserts the ergodic hypoth-
esis without proof; see the discussions in ver Steeg & Gal-
styan (2021, p. 4) and Tupper (2005, p. 2-3).

5

MixFlows: principled variational inference via mixed flows

But because MixFlows provide the ability to estimate the
Kullback-Leibler divergence up to a constant, it is not crit-
ical to prove convergence a priori (as it is in the case of
MCMC, for example). Instead, we suggest using the re-
sults of Theorems 4.1 to 4.3 and Corollary 4.4 as a guiding
recipe for constructing principled variational families. First,
start by designing a family of measure-preserving maps Tλ,
λ ∈ Λ. Next, approximate Tλ with some tractable Tλ,ε
including a tunable fidelity parameter ε ≥ 0, such as that
ε→ 0, Tλ,ε becomes closer to Tλ. Finally, build a MixFlow
from Tλ,ε, and tune both λ and ε by maximizing the ELBO.
We follow this recipe in Section 5 and verify it empirically
in Section 6.

5. Uncorrected Hamiltonian MixFlows
In this section, we provide an example of how to design a
MixFlow by starting from an exactly measure-preserving
map and then creating a tunable approximation to it. The
construction is inspired by Hamiltonian Monte Carlo (HMC)
(Neal, 2011; 1996), in which each iteration involves simu-
lating Hamiltonian dynamics followed by a stochastic mo-
mentum refreshment; our method replaces the stochastic re-
freshment with a deterministic transformation. In particular,
consider the augmented target density on X × Rd × [0, 1],

π̄(x, ρ, u)=π(x)m(ρ)1[0≤u≤1], m(ρ)=

d∏
i=1

r(ρi),

with auxiliary variables ρ ∈ Rd, u ∈ [0, 1], and some
almost-everywhere differentiable univariate probability den-
sity r : R → R+. The x-marginal distribution of π̄ is the
original target distribution π

5.1. Measure-preserving map via Hamiltonian
dynamics

We construct Tλ by composing the following three steps,
which are all measure-preserving for π̄:

(1) Hamiltonian dynamics We first apply

(x′, ρ′)← HL(x, ρ),

where HL : X × Rd → X × Rd is the map of Hamiltonian
dynamics with position x and momentum ρ simulated for a
time interval of length L ∈ R+,

dρ

dt
= ∇ log π(x)

dx

dt
= −∇ logm(ρ). (5)

One can show that this preserves density (and hence is
measure preserving) and is also unit Jacobian (Neal, 2011).

(2) Pseudotime shift Second, we apply a constant shift to
the pseudotime variable u,

u′ ← u+ ξ mod 1,

where ξ ∈ R is a fixed irrational number (say, ξ = π/16).
As this is a constant shift, it is unit Jacobian and density-
preserving (and hence measure-preserving). The u compo-
nent will act as a notion of “time” of the flow, and ensures
that the refreshment of ρ in step (3) below will take a differ-
ent form even if x visits the same location again.

(3) Momentum refreshment Finally, we refresh each of
the momentum variables via

∀i = 1, . . . , d, ρ′′i ← R−1(R(ρ′i) + z(x′i, u
′) mod 1),

where R is the cumulative distribution function (CDF) of
density r, and z : X × [0, 1] → R is any differentiable
function; this generalizes the map from Neal (2012); Murray
& Elliott (2012) to enable the shift to depend on the state x
and pseudotime u. This step (3) is an attempt to replicate
the independent resampling of ρ ∼ m from HMC using
only deterministic maps. This map is measure-preserving as
it involves mapping the momentum to a Unif[0, 1] random
variable via the CDF, shifting by an amount that depends
only on x, u, and then mapping back using the inverse CDF.
The Jacobian is the momentum density ratio m(ρ′)/m(ρ′′).

5.2. Approximation via uncorrected leapfrog
integration

In practice, we cannot simulate the dynamics in step (1)
perfectly. Instead, we approximate the dynamics in Equa-
tion (5) by running L steps of the leapfrog method, where
each leapfrog map Ĥε : R2d → R2d involves interleaving
three discrete transformations with step size ε > 0,

ρ̂k+1 = ρk +
ε

2
∇ log π(xk)

xk+1 = xk − ε∇ logm(ρ̂k+1)

ρk+1 = ρ̂k+1 +
ε

2
∇ log π(xk+1)

.

Denote the map Tλ,ε to be the composition of the three steps
with Hamiltonian dynamics replaced by the leapfrog integra-
tor; Algorithm 6 in Appendix C provides the pseudocode.
The final variational tuning parameters for the MixFlow
are the step size ε—which controls how close Tλ,ε is to be-
ing measure-preserving for π̄—the Hamiltonian simulation
length L ∈ N, and the flow lengthN . In our experiments we
tune the number of leapfrog steps L and the step size ε by
maximizing the ELBO. We also tune the number of refresh-
mentsN to achieve a desirable computation-quality tradeoff
by visually inspecting the convergence of the ELBO.

5.3. Numerical stability

Density evaluation (Algorithm 2) and ELBO estimation
(Algorithm 3) both involve repeated applications of Tλ and
T−1
λ . This poses no issue in theory, but in a computer—with

6

MixFlows: principled variational inference via mixed flows

(a) Gaussian (b) Gaussian mixture (c) Cauchy

(d) Banana (e) Funnel (f) Cross (g) Warp

Figure 1. Marginal samples (first row) and pairs of exact and ap-
proximate joint log density (second row) for Gaussian (1a), mixture
(1b), and Cauchy (1c) targets. Marginal samples (third row), pairs
of sliced exact and approximate joint log density (fourth row) for
banana (1d), funnel (1e), cross (1f), and warped Gaussian (1g).

floating point computations—one should code the map Tλ
and its inverse T−1

λ in a numerically precise way such that
(TKλ) ◦ (T−Kλ) is the identity map for large K ∈ N. Fig-
ure 8 in Appendix E.2 displays the severity of the numerical
error when Tλ and T−1

λ are not carefully implemented. In
practice, we check the stability limits of our flow by taking
draws from q0 and evaluating TKλ followed by T−Kλ (and
vice versa) for increasing K until we cannot reliably invert
the flow. See Figure 7 in the appendix for an example usage
of this diagnostic. Note that for sample generation specifi-
cally (Algorithm 1), numerical stability is not a concern as
it only requires forward evaluation of the map Tλ.

6. Experiments
In this section, we demonstrate the performance of our
method (MixFlow) on 7 synthetic targets and 7 real data
targets. See Appendix E for the details of each target.
Both our synthetic and real data examples are designed
to cover a range of challenging features such as heavy
tails, high dimensions, multimodality, and weak identifiabil-
ity. We compare posterior approximation quality to several
black-box normalizing flow methods (NF): PlanarFlow,
RadialFlow, and RealNVP with various architectures
(Papamakarios et al., 2021). To make the methods com-
parable via the ELBO, we train all NFs on the same joint
space as MixFlow. We also compare the marginal sam-
ple quality of MixFlow against 5,000 samples from NUTS
and NFs. Finally, we compare sampling time with all com-
petitors, and effective sample size (ESS) per second with
HMC. For all experiments, we use the standard Laplace
distribution as the momentum distribution due to its nu-

merical stability (see Figure 7 in Appendix E). Additional
comparisons to variational inference based on uncorrected
Hamiltonian annealing (UHA) (Geffner & Domke, 2021) and
nonequilibrium orbit sampling (NEO) (Thin et al., 2021a,
Algorithm 2) may be found in Appendix E. All experi-
ments were conducted on a machine with an AMD Ryzen
9 3900X and 32GB of RAM. Code is available at https:

//github.com/zuhengxu/Ergodic-variational-flow-code.

6.1. Qualitative assessment

We begin with a qualitative examination of the i.i.d. samples
and the approximated targets produced by MixFlow initial-
ized at q0 = N (0, 1) for three one-dimensional synthetic
distributions: a Gaussian, a mixture of Gaussians, and the
standard Cauchy. We excluded the pseudotime variable u
here in order to visualize the full joint density of (x, ρ) in
2 dimensions. More details can be found in Appendix E.1.
Figures 1a to 1c show histograms of 10,000 i.i.d. x-marginal
samples generated by MixFlow for each of the three tar-
gets, which nearly perfectly match the true target marginals.
Figures 1a to 1c also show that log qλ,N is generally a good
approximation of the log target density.

We then present similar visualizations on four more chal-
lenging synthetic target distributions: the banana (Haario
et al., 2001), Neal’s funnel (Neal, 2003), a cross-shaped
Gaussian mixture, and a warped Gaussian. All four ex-
amples have a 2-dimensional state x ∈ R2, and hence
(x, ρ, u) ∈ R5. In each example we set the initial distri-
bution q0 to be the mean-field Gaussian approximation.
More details can be found in Appendix E.2. Figures 1d
to 1g shows the scatter plots consisting of 1,000 i.i.d. x-
marginal samples drawn from MixFlow, as well as the
approximated MixFlow log density and exact log density
sliced as a function of x ∈ R2 for a single value of (ρ, u)
chosen randomly via (ρ, u) ∼ Lap(0, I)×Unif[0, 1] (which
is required for visualization, as (x, ρ, u) ∈ R5). We see that,
qualitatively, both the samples and approximated densities
from MixFlow closely match the target. Finally, Figure 9
in Appendix E.2 provides a more comprehensive set of sam-
ple histograms (showing the x-, ρ-, and u-marginals). These
visualizations support our earlier theoretical analysis.

6.2. Posterior approximation quality

Next, we provide a quantitative comparison of MixFlow,
NFs, NUTS on 7 real data experiments outlined in Ap-
pendix E.5. We tune each NF method under various settings
(Tables 1 and 2 and Appendix E.5.5), and present the best
one for each example. ELBOs of MixFlow are estimated
with Algorithm 3, averaging over 1,000 independent trajec-
tories. ELBOs of NFs are based on 2,000 samples. To obtain
an assessment for the target marginal distribution itself (not
the augmented target), we also compare methods using the

7

https://github.com/zuhengxu/Ergodic-variational-flow-code
https://github.com/zuhengxu/Ergodic-variational-flow-code

MixFlows: principled variational inference via mixed flows

(a) linear
regression

(b) linear regres-
sion (heavy)

(c) logistic
regression

(d) Poisson
regression

(e) student t
regression

(f) sparse
regression

(g) sparse regres-
sion (high dim)

Figure 2. ELBO and KSD comparison for real data examples. Figure 2a displays the effect of step size for the linear regression problem:
ε1 = 0.0001, ε2 = 0.001 and tuned ε = 0.0005; see Figure 17 for step sizes for all other experiments. Lines indicate the median, and
error regions indicate 25th to 75th percentile from 5 runs. Figure 2b does not include ELBOs of PlanarFlow as values are significantly
worse than all other methods and are hard to visualize (see its ELBOs in Figure 17b).

kernel Stein discrepancy (KSD) with an inverse quadratic
(IMQ) kernel (Gorham & Mackey, 2017). NUTS and NFs
use 5,000 samples for KSD estimation, while MixFlow is
based on 2,000 i.i.d. draws (Algorithm 1). For KSD com-
parisons, all variational methods are tuned by maximizing
the ELBO (Figures 2 and 17).

Augmented target distribution Figure 2 displays the
ELBO comparison. First, Figure 2a shows how different
step sizes ε and number of refreshments N affects approx-
imation quality. Overly large step sizes typically result in
errors due to the use of discretized Hamiltonian dynamics,
while overly small step sizes result in a flow that makes
slow progress towards the target. MixFlow with a tuned
step size generally shows a comparable joint ELBO value
to the best NF method, yielding a competitive target ap-
proximation. Similar comparisons and assessment of the
effect of step size for the synthetic examples are presented
in Figures 5, 10 and 16. Note that in three examples (Fig-
ures 2a, 2d and 2g), the tuned RealNVP ELBO exceeds
MixFlow by a small amount; but this required expensive
architecture search and parameter tuning, and as we will
describe next, MixFlow is actually more reliable in terms
of target marginal sample quality and density estimation.

Original target distribution The second row of Figure 2
displays a comparison of KSD for the target distribution
itself (instead of the augmented target). In particular,
MixFlow produces comparable sample quality to that from
NUTS—an exact MCMC method—and clearly outperforms
all of the NF competitors. The scatter plots of samples in
Figure 20 confirm the improvement in sample quality of
MixFlow over variational competitors. Further, Figure 3
shows the (sliced) densities on two difficult real data ex-
amples: Bayesian student-t regression (with a heavy-tailed
posterior), and a high-dimensional sparse regression (pa-
rameter dimension is 84). This result demonstrates that
the densities provided by MixFlow more closely match
those of the original target distribution than those of the best

NF. Notice that MixFlow accurately captures the skew and
heavy tails of the exact target, while the NF density fails to
do so and contains many spurious modes.

6.3. Ease of tuning

In order to tune MixFlow, we simply run a 1-dimensional
parameter sweep for the step size ε, and use a visual inspec-
tion of the ELBO to set an appropriate number of flow steps
N . Tuning an NF requires optimizing its architecture, num-
ber of layers, and its (typically many) parameters. Not only
is this time consuming—in our experiments, tuning took 10
minutes to roughly 1 hour (Figure 4)—but the optimization
can also behave in unintuitive ways. For example, perfor-
mance can be heavily dependent on the number of flow
layers, and adding more layers does not necessarily improve
quality. Figure 16, Tables 1 and 2, and Appendix E.5.5 show
that using more layers does not necessarily help, and slows
tuning considerably. In the case of RealNVP specifically,
tuning can be unstable, especially for more complex models.
The optimizer often returns NaN values for flow parameters
during training (see Table 1). This instability has been noted
in earlier work (Dinh et al., 2017, Sec. 3.7).

6.4. Time efficiency

Finally, Figure 4 presents timing results for two of the real
data experiments (additional comparisons in Figures 14
and 19). In this figure, we use MixFlow iid to refer to
i.i.d. sampling from MixFlow, and MixFlow single
to refer to collecting all intermediate states on a single
trajectory. This result shows that the per sample time of
MixFlow single is similar to NUTS and HMC as one
would expect. MixFlow iid is the slowest because each
sample is generated by passing through the entire flow. The
NF generates the fastest draws, but recall that this comes
at the cost of significant initial tuning time; in the time it
takes NF to generate its first sample, MixFlow single
has generated millions of samples in Figure 4. See Ap-

8

MixFlows: principled variational inference via mixed flows

(a) student t regression (b) sparse regression (high dim)

Figure 3. Sliced log conditional densities on student-t regression
(Figure 3a) and high-dimensional sparse regression (Figure 3b).
We visualize the log conditional density of the first coordinate by
fixing other coordinates to value 0. The NF methods are chosen
to be the best performing ones from Figures 2e and 2g. Since we
only know the log posterior density up to an unknown constant,
we shift all lines to have maximal value 0 for visualization.

(a) sparse regression (high dim) (b) student t regression

Figure 4. Timing results (100 trials), showing sampling time (first
row) and ESS per second (second row).

pendix E.4 for a detailed discussion of this trade-off.

Figures 4 and 19 further show the computational efficiency
in terms of ESS per second on real data examples, which
reflects the autocorrelation between drawn samples. Results
show that MixFlow produce comparable ESS per second
to HMC. MixFlow single behaves similarly to HMC as
expected since the pseudo-momentum refreshment we pro-
posed (steps (2-3) of Section 5) resembles the momentum
resample step of HMC. The ESS efficiency of MixFlow
iid depends on the trade-off between a slower sampling
time and i.i.d. nature of drawn samples. In these real data
examples, MixFlow iid typically produces a high ESS
per second; but in the synthetic examples (Figure 14b),
MixFlow iid is similar to the others.

7. Conclusion
This work presented MixFlows, a new variational family
constructed from mixtures of pushforward maps. Experi-

ments demonstrate a comparable sample quality to NUTS
and more reliable posterior approximations than standard
normalizing flows. A main limitation of our methodology is
numerical stability; reversing the flow for long trajectories
can be unstable in practice. Future work includes devel-
oping more stable momentum refreshment schemes and
extensions via involutive MCMC (Neklyudov et al., 2020;
Spanbauer et al., 2020; Neklyudov & Welling, 2022).

Acknowledgements
The authors gratefully acknowledge the support of a Na-
tional Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant and a UBC four year
doctoral fellowship.

References
Aldous, D. and Thorisson, H. Shift-coupling. Stochastic

Processes and their Applications, 44:1–14, 1993.

Anastasiou, A., Barp, A., Briol, F.-X., Ebner, B., Gaunt,
R., Ghaderinezhad, F., Gorham, J., Gretton, A., Ley, C.,
Liu, Q., Mackey, L., Oates, C., Reinert, G., and Swan, Y.
Stein’s method meets statistics: a review of some recent
developments. arXiv:2105.03481, 2021.

Birkhoff, G. Proof of the ergodic theorem. Proceedings
of the National Academy of Sciences, 17(12):656–660,
1931.

Blei, D., Kucukelbir, A., and McAuliffe, J. Variational infer-
ence: a review for statisticians. Journal of the American
Statistical Association, 112(518):859–877, 2017.

Brooks, S. and Gelman, A. General methods for moni-
toring convergence of iterative simulations. Journal of
Computational and Graphical Statistics, 7(4):434–455,
1998.

Butzer, P. and Westphal, U. The mean ergodic theorem and
saturation. Indiana University Mathematics Journal, 20
(12):1163–1174, 1971.

Campbell, T. and Li, X. Universal boosting variational
inference. In Advances in Neural Information Processing
Systems, 2019.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich,
B., Betancourt, M., Brubaker, M., Guo, J., Li, P., and
Riddell, A. Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1), 2017.

Caterini, A., Doucet, A., and Sejdinovic, D. Hamiltonian
variational auto-encoder. In Advances in Neural Informa-
tion Processing Systems, 2018.

9

MixFlows: principled variational inference via mixed flows

Chen, N., Xu, Z., and Campbell, T. Bayesian inference
via sparse Hamiltonian flows. In Advances in Neural
Information Processing Systems, 2022.

Chérief-Abdellatif, B.-E. and Alquier, P. Consistency of
variational Bayes inference for estimation and model se-
lection in mixtures. Electronic Journal of Statistics, 12
(2):2995–3035, 2018.

Chwialkowski, K., Strathmann, H., and Gretton, A. A kernel
test of goodness of fit. In International Conference on
Machine Learning, 2016.

Constantinopoulos, C., Titsias, M., and Likas, A. Bayesian
feature and model selection for Gaussian mixture mod-
els. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(6):1013–1018, 2006.

Corduneau, A. and Bishop, C. Variational Bayesian model
selection for mixture distributions. In Artificial Intelli-
gence and Statistics, 2001.

Cowles, M. K. and Carlin, B. Markov chain Monte Carlo
convergence diagnostics: a comparative review. Journal
of the American Statistical Association, 91(434):883–904,
1996.

Dajani, K. and Dirksin, S. A simple intro-
duction to ergodic theory, 2008. URL:
https://webspace.science.uu.nl/ kraai101/lecturenotes2009.pdf.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using Real NVP. In International Conference on
Learning Representations, 2017.

Eisner, T., Farkas, B., Haase, M., and Nagel, R. Operator
Theoretic Aspects of Ergodic Theory. Graduate Texts in
Mathematics. Springer, 2015.

Fjelde, T. E., Xu, K., Tarek, M., Yalburgi, S., and Ge, H.
Bijectors.jl: Flexible transformations for probability dis-
tributions. In Symposium on Advances in Approximate
Bayesian Inference, pp. 1–17, 2020.

Geffner, T. and Domke, J. MCMC variational inference
via uncorrected Hamiltonian annealing. In Advances in
Neural Information Processing Systems, 2021.

Gelman, A. and Rubin, D. Inference from iterative simula-
tion using multiple sequences. Statistical Science, 7(4):
457–472, 1992.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A.,
and Rubin, D. Bayesian data analysis. CRC Press, 3rd
edition, 2013.

Gershman, S., Hoffman, M., and Blei, D. Nonparametric
variational inference. In International Conference on
Machine Learning, 2012.

Geweke, J. Evaluating the accuracy of sampling-based
approaches to the calculation of posterior moments. In
Bernardo, J. M., Berger, J. O., and Dawid, A. P. (eds.),
Bayesian Statistics, volume 4, pp. 169–193, 1992.

Gong, W., Li, Y., and Hernández-Lobato, J. M. Sliced
kernelized Stein discrepancy. In International Conference
on Learning Representations, 2021.

Gorham, J. and Mackey, L. Measuring sample quality with
Stein’s method. In Advances in Neural Information Pro-
cessing Systems, 2015.

Gorham, J. and Mackey, L. Measuring sample quality with
kernels. In International Conference on Machine Learn-
ing, 2017.

Guo, F., Wang, X., Fan, K., Broderick, T., and Dunson, D.
Boosting variational inference. In Advances in Neural
Information Processing Systems, 2016.

Haario, H., Saksman, E., and Tamminen, J. An adaptive
Metropolis algorithm. Bernoulli, pp. 223–242, 2001.

Hamidieh, K. A data-driven statistical model for predicting
the critical temperature of a superconductor. Computa-
tional Materials Science, 154:346–354, 2018.

Harrison Jr., D. and Rubinfeld, D. Hedonic housing prices
and the demand for clean air. Journal of Environmental
Economics and Management, 5(1):81–102, 1978.

Hoffman, M. and Gelman, A. The No-U-Turn Sampler:
adaptively setting path lengths in Hamiltonian Monte
Carlo. Journal of Machine Learning Research, 15(1):
1593–1623, 2014.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research, 14:1303–1347, 2013.

Huggins, J. and Mackey, L. Random feature Stein discrep-
ancies. In Advances in Neural Information Processing
Systems, 2018.

Jaakkola, T. and Jordan, M. Improving the mean field
approximation via the use of mixture distributions. In
Learning in graphical models, pp. 163–173. Springer,
1998.

Jankowiak, M. and Phan, D. Surrogate likelihoods for varia-
tional annealed importance sampling. arXiv:2112.12194,
2021.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. An
introduction to variational methods for graphical models.
Machine Learning, 37:183–233, 1999.

10

MixFlows: principled variational inference via mixed flows

Kakutani, S. Iteration of linear operations in complex Ba-
nach spaces. Proceedings of the Imperial Academy, 14
(8):295–300, 1938.

Kingma, D. and Welling, M. Auto-encoding variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Kobyzev, I., Prince, S., and Brubaker, M. Normalizing
flows: an introduction and review of current methods.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 43(11):3964–3979, 2021.

Kullback, S. and Leibler, R. On information and suffi-
ciency. The Annals of Mathematical Statistics, 22(1):
79–86, 1951.

Liu, C. and Rubin, D. ML estimation of the t distribution
using EM and its extensions, ECM and ECME. Statistica
Sinica, pp. 19–39, 1995.

Liu, Q., Lee, J., and Jordan, M. A kernelized Stein discrep-
ancy for goodness-of-fit tests and model evaluation. In
International Conference on Machine Learning, 2016.

Locatello, F., Dresdner, G., Khanna, R., Valera, I., and
Rätsch, G. Boosting black box variational inference.
In Advances in Neural Information Processing Systems,
2018a.

Locatello, F., Khanna, R., Ghosh, J., and Rätsch, G. Boost-
ing variational inference: an optimization perspective. In
International Conference on Artificial Intelligence and
Statistics, 2018b.

Masa-aki, S. Online model selection based on the variational
Bayes. Neural Computation, 13(7):1649–1681, 2001.

Miller, A., Foti, N., and Adams, R. Variational boosting:
iteratively refining posterior approximations. In Interna-
tional Conference on Machine Learning, 2017.

Moro, S., Cortez, P., and Rita, P. A data-driven approach
to predict the success of bank telemarketing. Decision
Support Systems, 62:22–31, 2014.

Murray, I. and Elliott, L. Driving Markov chain Monte
Carlo with a dependent random stream. arXiv:1204.3187,
2012.

Neal, R. Bayesian Learning for Neural Networks. Lecture
Notes in Statistics, No. 118. Springer-Verlag, 1996.

Neal, R. Slice sampling. The Annals of Statistics, 31(3):
705–767, 2003.

Neal, R. Hamiltonian importance sampling. Banff Interna-
tional Research Station (BIRS) Workshop on Mathemati-
cal Issues in Molecular Dynamics, 2005.

Neal, R. MCMC using Hamiltonian dynamics. In Brooks,
S., Gelman, A., Jones, G., and Meng, X.-L. (eds.), Hand-
book of Markov chain Monte Carlo, chapter 5. CRC Press,
2011.

Neal, R. How to view an MCMC simulation as permutation,
with applications to parallel simulation and improved
importance sampling. arXiv:1205.0070, 2012.

Neklyudov, K. and Welling, M. Orbital MCMC. In Artificial
Intelligence and Statistics, 2022.

Neklyudov, K., Welling, M., Egorov, E., and Vetrov, D. In-
volutive MCMC: a unifying framework. In International
Conference on Machine Learning, 2020.

Neklyudov, K., Bondesan, R., and Welling, M. Determin-
istic gibbs sampling via ordinary differential equations.
arXiv:2106.10188, 2021.

Ormerod, J., You, C., and Müller, S. A variational Bayes
approach to variable selection. Electronic Journal of
Statistics, 11(2):3549–3594, 2017.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22:1–64, 2021.

Qiao, Y. and Minematsu, N. A study on invariance of
f -divergence and its application to speech recognition.
IEEE Transactions on Signal Processing, 58(7):3884–
3890, 2010.

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In International Conference on Artificial
Intelligence and Statistics, 2014.

Ranganath, R., Tran, D., and Blei, D. Hierarchical varia-
tional models. In International Conference on Machine
Learning, 2016.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, 2015a.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, pp. 1530–1538. PMLR, 2015b.

Riesz, F. Some mean ergodic theorems. Journal of the
London Mathematical Society, 13(4):274–278, 1938.

Robert, C. and Casella, G. Monte Carlo Statistical Methods.
Springer, 2nd edition, 2004.

Robert, C. and Casella, G. A short history of Markov Chain
Monte Carlo: subjective recollections from incomplete
data. Statistical Science, 26(1):102–115, 2011.

11

MixFlows: principled variational inference via mixed flows

Roberts, G. and Rosenthal, J. Shift-coupling and conver-
gence rates of ergodic averages. Stochastic Models, 13
(1):147–165, 1997.

Roberts, G. and Rosenthal, J. General state space Markov
chains and MCMC algorithms. Probability Surveys, 1:
20–71, 2004.

Rotskoff, G. and Vanden-Eijnden, E. Dynamical compu-
tation of the density of states and Bayes factors using
nonequilibrium importance sampling. Physical Review
Letters, 122(15):150602, 2019.

Salimans, T. and Knowles, D. Fixed-form variational poste-
rior approximation through stochastic linear regression.
Bayesian Analysis, 8(4):837–882, 2013.

Salimans, T., Kingma, D., and Welling, M. Markov chain
Monte Carlo and variational inference: bridging the gap.
In International Conference on Machine Learning, 2015.

Spanbauer, S., Freer, C., and Mansinghka, V. Deep
involutive generative models for neural MCMC.
arXiv:2006.15167, 2020.

Tabak, E. and Turner, C. A family of non-parametric density
estimation algorithms. Communications on Pure and
Applied Mathematics, 66(2):145–164, 2013.

Tao, C., Chen, L., Zhang, R., Henao, R., and Carin, L.
Variational inference and model selection with general-
ized evidence bounds. In International Conference on
Machine Learning, 2018.

Thin, A., Janati, Y., Le Corff, S., Ollion, C., Doucet, A.,
Durmus, A., Moulines, É., and Robert, C. NEO: non
equilibrium sampling on the orbit of a deterministic trans-
form. Advances in Neural Information Processing Sys-
tems, 2021a.

Thin, A., Kotelevskii, N., Durmus, A., Panov, M., Moulines,
E., and Doucet, A. Monte Carlo variational auto-
encoders. In International Conference on Machine Learn-
ing, 2021b.

Tupper, P. Ergodicity and the numerical simulation of Hamil-
tonian systems. SIAM Journal on Applied Dynamical
Systems, 4(3):563–587, 2005.

U.S. Department of Justice Federal Bureau of Investi-
gation. Crime in the United States, 1995. URL:
https://ucr.fbi.gov/crime-in-the-u.s/1995.

ver Steeg, G. and Galstyan, A. Hamiltonian dynamics with
non-Newtonian momentum for rapid sampling. In Ad-
vances in Neural Information Processing Systems, 2021.

Wainwright, M. and Jordan, M. Graphical models, exponen-
tial families, and variational inference. Foundations and
Trends in Machine Learning, 1(1–2):1–305, 2008.

Wang, X. Boosting variational inference: theory and exam-
ples. Master’s thesis, Duke University, 2016.

Wenliang, L. and Kanagawa, H. Blindness of score-based
methods to isolated components and mixing proportions.
arXiv:2008.10087, 2020.

Wolf, C., Karl, M., and van der Smagt, P. Variational infer-
ence with Hamiltonian Monte Carlo. arXiv:1609.08203,
2016.

Xu, K., Ge, H., Tebbutt, W., Tarek, M., Trapp, M., and
Ghahramani, Z. AdvancedHMC.jl: A robust, modu-
lar and efficient implementation of advanced HMC al-
gorithms. In Symposium on Advances in Approximate
Bayesian Inference, 2020.

Xu, Z. and Campbell, T. The computational asymptotics
of variational inference and the Laplace approximation.
Statistics and Computing, 32(4):1–37, 2022.

Yosida, K. Mean ergodic theorem in Banach spaces. Pro-
ceedings of the Imperial Academy, 14(8):292–294, 1938.

Zhang, G., Hsu, K., Li, J., Finn, C., and Grosse, R. Dif-
ferentiable annealed importance sampling and the perils
of gradient noise. In Advances in Neural Information
Processing Systems, 2021.

Zhang, Y. and Hernández-Lobato, J. M. Ergodic in-
ference: accelerate convergence by optimisation. In
arXiv:1805.10377, 2020.

Zobay, O. Variational Bayesian inference with Gaussian-
mixture approximations. Electronic Journal of Statistics,
8:355–389, 2014.

12

MixFlows: principled variational inference via mixed flows

A. Proofs
Proof of Proposition 3.1. Because both estimates are unbiased, it suffices to show that E[f2(X)] ≥

E
[(

1
N

∑N−1
n=0 f(TnX0)

)2
]

, which itself follows by Jensen’s inequality:

E

(1

N

N−1∑
n=0

f(TnX0)

)2
 ≤ E

[
1

N

N−1∑
n=0

f2(TnX0)

]
= E[f2(X)].

Proof of Theorem 4.1. Since setwise convergence implies weak convergence, we will focus on proving setwise convergence.
We have that qλ,N converges setwise to π if and only if for all measurable bounded f : X → R,

Ef(XN)→ Ef(X), XN ∼ qλ,N , X ∼ π.

The proof proceeds by directly analyzing Ef(XN):

Ef(XN) =

∫
f(x)qλ,N (dx)

=
1

N

N−1∑
n=0

∫
f(x)(Tnλ q0)(dx)

=
1

N

N−1∑
n=0

∫
f(Tnλ x)q0(dx)

=

∫
1

N

N−1∑
n=0

f(Tnλ x)q0(dx).

Since q0 � π, by the Radon-Nikodym theorem, there exists a density of q0 with respect to π, so

Ef(XN) =

∫
1

N

N−1∑
n=0

f(Tnλ x)
dq0

dπ
(x)π(dx).

By the pointwise ergodic theorem (Theorem 2.3), fN (x) = 1
N

∑N−1
n=0 f(Tnλ x) converges pointwise π-a.e. to

∫
fdπ; and

because f is bounded, fN is uniformly bounded for all N ∈ N. Hence by the Lebesgue dominated convergence theorem,

lim
N→∞

Ef(XN) = lim
N→∞

∫
1

N

N−1∑
n=0

f(Tnλ x)
dq0

dπ
(x)π(dx)

=

∫ (∫
fdπ

)
dq0

dπ
(x)π(dx)

=

(∫
fdπ

)
· 1 = Ef(X).

Theorem A.1 (Mean ergodic theorem in Banach spaces [Yosida, 1938; Kakutani, 1938; Riesz, 1938; Eisner et al., 2015,
Theorem 8.5]). Let T be a bounded linear operator on a Banach space E, define the operator

AN =
1

N

N−1∑
n=0

Tn,

and let

fix(T) = {v ∈ E : Tv = v} = ker(I − T).

13

MixFlows: principled variational inference via mixed flows

Suppose that supN∈N ‖AN‖ <∞ and that 1
N T

Nv → 0 for all v ∈ E. Then the subspace

V =
{
v ∈ E : lim

N→∞
ANv exists

}
is closed, T -invariant, and decomposes into a direct sum of closed subspaces

V = fix(T)⊕ range(I − T).

The operator T |V on V is mean ergodic. Furthermore, the operator

A : V → fix(T) Av = lim
N→∞

ANv

is a bounded projection with kernel ker(A) = range(I − T) and AT = A = TA.

Proof of Theorem 4.2. We suppress λ subscripts for brevity. Consider the Banach spaceM(π) of signed finite measures
dominated by π endowed with the total variation norm ‖m‖ = supA⊆X m(A)− infA⊆X m(A). Then the pushforward Tm
of m ∈M(π) under T is dominated by π since

π(A) = 0 =⇒ π(T−1(A)) = 0 =⇒ m(T−1(A)) = 0.

Note the slight abuse of notation involving the same symbol for T : X → X and the associated operator. Hence
T :M(π)→M(π) is a linear operator onM(π). Further,

‖Tm‖ = sup
A⊆X

m(T−1(A))− inf
A⊆X

m(T−1(A)) ≤ sup
A⊆X

m(A)− inf
A⊆X

m(A) = ‖m‖,

and so T is bounded with ‖T‖ ≤ 1. Hence 1
N T

Nm→ 0 for all m ∈M(π), and if we define the operator

∀N ∈ N, AN =
1

N

N−1∑
n=0

Tn,

we have that supN∈N ‖AN‖ ≤ 1. Therefore by the mean ergodic theorem in Banach spaces [Yosida, 1938; Kakutani, 1938;
Riesz, 1938; Eisner et al., 2015, Theorem 8.5], we have that

A : V → fix(T) Am = lim
N→∞

ANm

where V = {m ∈M(π) : limN→∞ANm exists}. Eisner et al. (2015, Theorem 8.20) guarantees that V = M(π) as
long as the weak limit of ANm exists for each m ∈ M(π). Note that sinceM(π) and L1(π) are isometric (via the map
m 7→ dm

dπ), and π is σ-finite, the dual ofM(π) is the set of linear functionals

m 7→
∫
φ(x)m(dx), φ ∈ L∞(π).

So therefore we have that V =M(π) if for each m ∈M(π), there exists a g ∈M(π) such that

∀φ ∈ L∞(π),

∫
φ(x)(ANm)(dx)→

∫
φ(x)g(dx).

The same technique using a transformation of variables and the pointwise ergodic theorem from the proof of Theorem 4.1
provides the desired weak convergence. Therefore we have that ANm converges in total variation to fix(T) for all
m ∈M(π), and hence ANq0 converges in total variation to fix(T). Furthermore Theorem 4.1 guarantees weak convergence
of ANq0 to π, and π ∈ fix(T), so thus DTV(qλ,N , π)→ 0.

Proof of Theorem 4.3. We suppress λ subscripts for brevity. By the triangle inequality,

DTV (q̂N , π) ≤ DTV (q̂N , qN) + DTV (qN , π) .

14

MixFlows: principled variational inference via mixed flows

Focusing on the error term, we have that

DTV (q̂N , qN) = DTV

(
1

N

N−1∑
n=1

T̂nq0,
1

N

N−1∑
n=1

Tnq0

)

=
N − 1

N
DTV

(
1

N − 1

N−1∑
n=1

T̂nq0,
1

N − 1

N−1∑
n=1

Tnq0

)

=
N − 1

N
DTV

(
T̂

1

N − 1

N−1∑
n=1

T̂n−1q0, T
1

N − 1

N−1∑
n=1

Tn−1q0

)

=
N − 1

N
DTV

(
T̂

1

N − 1

N−2∑
n=0

T̂nq0, T
1

N − 1

N−2∑
n=0

Tnq0

)

=
N − 1

N
DTV

(
T̂ q̂N−1, T qN−1

)
=
N − 1

N
DTV

(
q̂N−1, T̂

−1TqN−1

)
,

where the last equality is due to the fact that T̂ is a bijection. The triangle inequality yields

DTV (q̂N , qN) ≤ N − 1

N

(
DTV (q̂N−1, qN−1) + DTV

(
qN−1, T̂

−1TqN−1

))
=
N − 1

N

(
DTV (q̂N−1, qN−1) + DTV

(
T̂ qN−1, T qN−1

))
.

Then iterating that technique yields

DTV (q̂N , qN) ≤
N−1∑
n=1

n

N
DTV

(
T̂ qn, T qn

)
, (6)

which completes the proof.

Proof of Corollary 4.4. Examining the total variation in its L1 distance formulation yields that for n = 1, . . . , N − 1,

DTV

(
T̂ qn, T qn

)
=

∫ ∣∣∣∣∣ T̂ qn(x)

Tqn(x)
− 1

∣∣∣∣∣Tqn(dx)

=

∫ ∣∣∣exp
{

log qn(T̂−1x)− log qn(T−1x) + log J(T−1x)− log Ĵ(T̂−1x)
}
− 1
∣∣∣Tqn(dx).

By assumption, ∣∣∣log qn(T̂−1x)− log qn(T−1x)
∣∣∣ ≤ ` ∥∥∥T̂−1x− T−1x

∥∥∥ ≤ `ε,
and ∣∣∣log J(T−1x)− log Ĵ(T̂−1x)

∣∣∣ ≤ ∣∣∣log J(T−1x)− log J(T̂−1x)
∣∣∣+
∣∣∣log J(T̂−1x)− log Ĵ(T̂−1x)

∣∣∣
≤ `

∥∥∥T̂−1x− T−1x
∥∥∥+ ε

≤ (`+ 1)ε.

Combining these two bounds yields

DTV

(
T̂ qn, T qn

)
≤ exp((2`+ 1)ε)− 1 ≤ (2`+ 1)ε exp((2`+ 1)ε).

Therefore, by Equation (6), we obtain that

DTV (q̂N , qN) ≤
N−1∑
n=1

n

N
DTV

(
T̂ qn, T qn

)
≤ N − 1

2
e(2`+1)ε · (2`+ 1)ε ≤ Nε(`+ 1)e(2`+1)ε.

Finally, combining the above with Theorem 4.3 yields the desired result.

15

MixFlows: principled variational inference via mixed flows

Algorithm 4 DensityTriple(x): Evaluate T−N+1
λ (x), qλ,N (x), and

∏N−1
j=1 Jλ(T−jλ x) withO(N)-time,O(1)-memory

Input: location x, reference distribution q0, flow map Tλ, Jacobian Jλ, number of steps N
L← 0
w ← q0(x)
for n = 1, . . . , N − 1 do
x← T−1

λ (x)
L← L+ log Jλ(x)
w ← LogSumExp(w, log q0(x)− L)

end for
w ← w − logN
Return: x, exp(w), exp(L)

Algorithm 5 EstELBO(λ,N): Estimate the ELBO for qλ,N in O(N)-time, O(1)-memory.

Input: reference q0, unnormalized target p, flow map Tλ, Jacobian Jλ, number of flow steps N
x← Sample(q0)
x′, z, J ← DensityTriple(x)
f ← log p(x)
g ← log z
for n = 1, . . . , N − 1 do
q̄ ← 1

N q0(x′)/J
Jn−1 ← Jλ(x)
z ← (z − q̄) /Jn−1

x← Tλ(x)
z ← z + 1

N q0(x)
f ← f + log p(x)
g ← g + log z
if n < N − 1 then
J ← J · Jn−1/Jλ(x′)

end if
x′ ← Tλ(x′)

end for
Return: ÊLBO(λ,N)← 1

N (f − g)

ÊLBO(λ,N)

B. Memory efficient ELBO estimation

C. Hamiltonian flow pseudocode

D. Extensions
Tunable reference So far we have assumed that the reference distribution q0 for the flow is fixed. Given that q0 is often
quite far from the target π, this forces the variational flow to spend some of its steps just moving the bulk of the mass to π.
But this can be accomplished much easier with, say, a simple linear transformation that efficiently allows large global moves
in mass. For example, if q0 = N (0, I), we can include a map Mθ

qλ,N =
1

N

N−1∑
n=0

TnλMθq0,

where Mθ(x) = θ1x+ θ2, where θ1 ∈ Rd×d and θ2 ∈ Rd. Note that it is possible to optimize the reference and flow jointly,
or to optimize the reference distribution by itself first and then use that fixed reference in the flow optimization.

16

MixFlows: principled variational inference via mixed flows

Algorithm 6 Compute Tλ,ε and its Jacobian Jλ,ε for Hamiltonian flow with leapfrog integrator

Input: initial state x ∈ X , ρ ∈ Rd, u ∈ [0, 1], step size ε, shift ξ ∈ R, pseudorandom shift z(·, ·)
x0, ρ0 ← x, ρ
for ` = 1, . . . , L do
x`, ρ` ← Ĥε(x`−1, ρ`−1)

end for
x′, ρ′ ← xL, ρL
u′ ← u+ ξ mod 1
for i = 1, . . . , d do
ρ′′i ← R−1(R(ρ′i) + z(x′i, u

′) mod 1)
end for
J ← m(ρ′)/m(ρ′′)
Return: (x′, ρ′′, u′), J

Automated burn-in A common practice in MCMC is to throw away a first fraction of the states in the sequence to ensure
that the starting sample is in a high probability region of the target distribution, thus reducing the bias from initialization
(“burn-in”). Usually one needs a diagnostic to check when burn-in is completed. In the case of MixFlow, we can monitor
the burn-in phase in a principled way by evaluating the ELBO. Once the flow is trained, the variational distribution with M
burn-in samples is simply

qλ,M,N =
1

N −M

N−1∑
n=M

Tnλ q0,

We can easily optimize this by estimating the ELBOs for M = 1, . . . , N .

Mixtures of MixFlows One can build multiple MixFlows starting from multiple different initial reference distributions;
when the posterior is multimodal, it may be the case that some of these MixFlows converge to different modes but do not
mix across modes. In this scenario, it can be helpful to average several MixFlows, i.e., build an approximation of the form

q?λ,N =

K∑
k=1

wk(qλ,N)k,

K∑
k=1

wk = 1.

Because each component flow provides access to i.i.d. samples and density evaluation, MixFlow provides the ability to
optimize the weights by maximizing the ELBO (i.e., minimizing the KL divergence).

E. Additional experimental details
In this section, we provide details for each experiment presented in the main text, as well as additional results regarding
numerical stability and a high-dimensional synthetic experiment. Aside from the univariate synthetic example, all examples
include a pseudotime shift step with ξ = π/16, and a momentum refreshment with z(x, u) = 0.5 sin(2x+ u) + 0.5. For
the kernel Stein discrepancy, we use a IMQ kernel k(x, y) = (c2 + ‖x− y‖22)β with β = −0.5, c = 1, the same setting as
in (Gorham & Mackey, 2017).

For all experiments, unless otherwise stated, NUTS uses 20,000 steps for adaptation, targeting at an average acceptance ratio
0.7, and generates 5,000 samples for KSD estimation. The KSD for MixFlow is estimated using 2,000 samples. The KSD
estimation for NEO is based on 5,000 samples generated by a tuned NEO after 20,000 burn-in steps. We adopted two tuning
strategies for NEO: (1) choosing among the combinations of several fixed settings of discretization step (ε = 0.2, 0.5, 1.0),
friction parameter γ of nonequilibrium Hamiltonian dynamics (γ = 0.2, 0.5, 1.0), integration steps (K = 10, 20), and
mass matrix of momentum distribution (M = I); (2) fixing the integration steps (K = 10, 20) and friction parameter
(γ = 0.2, 0.5, 1.0), and using windowed adaptation (Carpenter et al., 2017) to adapt the mass matrix and integration step
size, targeting at an average acceptance ratio at 0.7. The optimal setting of NEO is considered to be the one that produces
lowest average marginal KSD over 3 runs with no NaN values encountered. Performance of NEO across various settings for
each example is summarized in Table 4. In each of NEO MCMC transition, we run 10 deterministic orbits and computes

17

MixFlows: principled variational inference via mixed flows

corresponding normalizing constant estimates in parallel. Aside from NEO, all other methods are deployed using a single
processor.

As for NUTS, we use the Julia package AdvancedHMC.jl (Xu et al., 2020) with all default settings. NEO adaptation is
also conducted using AdvancedHMC.jl with the number of simulation steps set to the number of integration steps of NEO.
The ESS is computed using the R package mcmcse, which is based on batch mean estimation. We implement all NFs using
the Julia package Bijectors.jl (Fjelde et al., 2020). The flow layers of PlanarFlow and RadialFlow, as well as
the coupling layers of RealNVP are implemented in Bijectors.jl. The affine coupling functions of RealNVP—a
scaling function and a shifting function—are both parameterized using fully connected neural networks of three layers, of
which the activation function is LeakyReLU and number of hidden units is by default the same dimension as the target
distribution, unless otherwise stated.

E.1. Univariate synthetic examples

The three target distributions tested in this experiment were

• normal: N (2, 22),

• synthetic Gaussian mixture: 0.5N (−3, 1.52) + 0.3N (0, 0.82) + 0.2N (3, 0.82), and

• Cauchy: Cauchy(0, 1).

For all three examples, we use a momentum refreshment without introducing the pseudotime variable; this enables us to plot
the full joint density of (x, ρ) ∈ R2:

ρ′′ ← R−1
Lap(RLap(ρ′) + (sin(2x′) + 1)/2 mod 1).

For the three examples, we used the leapfrog stepsize ε = 0.05 and run L = 50 leapfrogs between each refreshment.
For both the Gaussian and Gaussian mixture targets, we use 100 refreshments. In the case of the Cauchy, we used 1,000
refreshments.

E.2. Multivariate synthetic examples

The three target distributions tested in this experiment were

• the banana distribution (Haario et al., 2001):

y =

[
y1

y2

]
∼ N

(
0,

[
100 0
0 1

])
, x =

[
y1

y2 + by2
1 − 100b

]
, b = 0.1;

• Neals’ funnel (Neal, 2003):

x1 ∼ N
(
0, σ2

)
, x2 | x1 ∼ N

(
0, exp

(x1

2

))
, σ2 = 36;

• a cross-shaped distribution: in particular, a Gaussian mixture of the form

x ∼ 1

4
N
([

0
2

]
,

[
0.152 0

0 1

])
+

1

4
N
([
−2
0

]
,

[
1 0
0 0.152

])
+

1

4
N
([

2
0

]
,

[
1 0
0 0.152

])
+

1

4
N
([

0
−2

]
,

[
0.152 0

0 1

])
;

• and a warped Gaussian distribution

y =

[
y1

y2

]
∼ N

(
0,

[
1 0
0 0.122

])
, x =

[
‖y‖2 cos

(
atan2 (y2, y1)− 1

2‖y‖2
)

‖y‖2 sin
(
atan2 (y2, y1)− 1

2‖y‖2
)] ,

where atan2(y, x) is the angle, in radians, between the positive x axis and the ray to the point (x, y).

18

MixFlows: principled variational inference via mixed flows

We used flows with 500 and 2000 refreshments for the banana distribution, Neal’s Funnel respectively, and a flow with
1000 refreshments for both cross distribution and warped Gaussian. Between each refreshment we used 200 leapfrog steps
for the banana distribution, 60 for the cross distribution, and 80 for the funnel and warped Gaussian. Note that in all four
examples, we individually tuned the step size ε by maximizing the estimated ELBO, as shown in Figure 5a. Figure 5b also
demonstrates how the ELBO varies versus the number of refreshments N . For small step sizes ε, the discretized Hamiltonian
dynamics approximates the continuous dynamics, and the ELBO generally increases with N indicating convergence to the
target. For larger step sizes ε, the ELBO increases to a peak and then decreases, indicating that the discretized dynamics do
not exactly target the desired distribution.

Figure 6 presents a comparison of the uncertainty involved in estimating the expectations of a test function f for both
MixFlow iid and MixFlow single. Specifically, it examines the streaming estimation of E[f(X)], X ∼ qN ,
where f(x) = ‖x‖1, based on samples generated from MixFlow iid and MixFlow single under 50,000 flow map
evaluations over 10 independent trials. Note that we assess computational cost via the number of flow map evaluations,
not by the number of draws, because the cost per draw is random in MixFlow iid (due to K ∼ Unif{0, . . . , N − 1}),
while the cost per draw is fixed to N evaluations for the trajectory estimate in MixFlow single. The results indicate
that, given equivalent computational resources, the trajectory-averaged estimates generally exhibit lower variances between
trials than the naı̈ve i.i.d. Monte Carlo estimate. This observation validates Proposition 3.1.

Figure 7 shows why we opted to use a Laplace momentum distribution as opposed to a Gaussian momentum. In particular,
the numerical error of composing TKλ ◦ T

−K
λ and T−Kλ ◦ TKλ (denoted as “Bwd” and “Fwd” in the legend, respectively)

indicate that the flow using the Laplace momentum is more reliably invertible for larger numbers of refreshments than
the flow with a Gaussian momentum. Figure 8 uses a high-precision (256 bit) floating point representation to further
illustrate the rapid escalation of numerical error when evaluating forward and backward trajectories on Gaussian Hamiltonian
MixFlows. For all four synthetic examples, after approximately 100 flow transformations, MixFlows with Gaussian
momentum exhibits an error on the scale of the target distribution itself (per the contour plots (d)-(g) in Figure 1). This may
be due to the fact that the normal has very light tails; for large momentum values in the right tail, the CDF is ≈ 1, which
gets rounded to exactly 1 in floating point representation. Our implementation of the CDF and inverse CDF was fairly naı̈ve,
so it is possible that stability could be improved with more care taken to prevent rounding error. We leave a more careful
examination of this error to future work; for this work, using a Laplace distribution momentum sufficed to maintain a low
numerical error.

Finally, Figure 9 provides a more comprehensive set of sample histograms for these experiments, showing the x-, ρ-, and
u-marginals. It is clear that MixFlow generates samples for each variable reliably from the target marginal.

E.3. Higher-dimensional synthetic experiment

We also tested two higher dimensional Neal’s funnel target distributions of x ∈ Rd where d = 5, 20. In particular, we used
the target distribution

x1 ∼ N
(
0, σ2

)
, and ∀i ∈ {2, · · · , d}, xi | x1

i.i.d.∼ N
(

0, exp
(x1

2

))
,

with σ2 = 36. We use 80 leapfrogs between refreshments and ε = 0.0009 when d = 5, and 100 leapfrogs between
refreshments and ε = 0.001 when d = 20 (Figures 10a and 10c shows the ELBO comparison used to tune the step size ε).
Figures 10b and 10d confirm via the KSD that the method performs as well as NUTS in higher-dimensional cases.

E.4. Additional experiments for synthetic examples

In this section, we provide additional comparisons of MixFlow against NUTS, HMC, NEO and a generic normalizing flow
method—planar flow (NF) (Rezende & Mohamed, 2015b) on all four synthetic examples in Appendix E.2. For this set of
experiments, all of the settings for MixFlow are the same as outlined in Appendix E.2. HMC uses the same leapfrog step size
and number of leapfrogs steps (between refreshments) as MixFlow. For NF, 5 Planar layers (Rezende & Mohamed, 2015b)
that contain 45 parameters to be optimized (9 parameters for each Planar layer of a 4-dimensional Planar flow) are used
unless otherwise stated. We train NF using ADAM until convergence (100, 000 iterations except where otherwise noted)
with the initial step size set to 0.001. And at each step, 10 samples are used for gradient estimation. The initial distribution
for MixFlow, NF and NUTS is set to be the mean-field Gaussian approximation, and HMC and NUTS are initialized using
the learned mean of the mean-field Gaussian approximation. All parameters in NF are initialized using random samples
from the standard Gaussian distribution.

19

MixFlows: principled variational inference via mixed flows

(a): ELBO versus step size ε.

(b): ELBO of MixFlow versus number of refreshments N over different step sizes, and comparision to tuned PlanarFlow

Figure 5. MixFlow tuning for the four multivariate synthetic examples

Figure 6. Comparison of Monte Carlo estimates of E[f(X)], X ∼ qN , f(x) = ‖x‖1 based on individual i.i.d. draws (blue) and trajectory-
averaged estimates in Equation (3) (orange) on four synthetic examples. The vertical axis indicates the estimate of E[f], and the horizontal
axis indicates the total number of flow transformations evaluated, i.e., total computational cost. Note that in each example, N is fixed;
the number of refreshments on the horizontal axis increases because we average over increasingly many draws X i.i.d.∼ qN (blue) or
increasingly many trajectory averages (orange). We run 10 trials to assess the quality of each estimate: lines indicate the mean, and error
regions indicate standard deviation.

Figure 7. Stability of composing T−K
λ ◦ TKλ (Fwd) and TKλ ◦ T−K

λ (Bwd) for the four multivariate experiments with flows constructed
using Gaussian (Gauss) and Laplace (Lap) momentum distributions. The vertical axis shows the 2-norm error of reconstructing (x, ρ, u)
sampled from q0; the horizontal axis shows increasing numbers of refreshments K. The lines indicate the median, and error regions
indicate 25th to 75th percentile for 100 independent samples.

Figure 11 compares the sliced log density of tuned MixFlow and the importance sampling proposal of tuned NEO, visualized
in a similar fashion as Figure 1 in Section 6.1. It is clear that NEO does not provide a high-quality density approximation,
while the log density of MixFlow visually matches the target. Indeed, unlike our method, due to the use of a nonequilibrium
dynamic, NEO does not provide a similar convergence guarantee of its proposal distribution as simulation length increases.

Figure 12 presents comparisons of the marginal sample qualities of MixFlow to NUTS and NEO—both are exact MCMC
methods. Results show that MixFlow produces comparable marginal sample quality, if not slightly better, than both MCMC

20

MixFlows: principled variational inference via mixed flows

(a): Banana (b): Neal’s Funnel (c): Cross (d): Warped Gaussian

Figure 8. Large numerical errors exhibited by Hamiltonian MixFlow with Gaussian momentum on synthetic examples. Figure shows
forward (fwd) error ‖T kx − T̂ kx‖ and backward (bwd) error ‖T−kx − B̂kx‖ comparing k transformations of the forward approx-
imate/exact maps T̂ ≈ T and backward approximate/exact maps B̂ ≈ T−1. For the exact maps we use a 256-bit BigFloat
representation, and for the numerical approximations we use 64-bit Float representation. The lines indicate the median, and error
regions indicate 25th to 75th percentile over 100 initialization draws from the reference distribution q0.

methods. Note that it involves a nontrivial tuning process to achieve the displayed performance of NEO. Concrete tuning
strategies are explained in the beginning of Appendix E. In fact, finding a good combination of discretization step, friction
parameter, simulation length, and mass matrix of momentum distribution is necessary for NEO to behave reasonably; Table 4
summarizes the performance of NEO under various settings for both synthetic and real data experiments. The standard
deviation of marginal sample KSD can change drastically across different settings, meaning that the marginal sample quality
can be sensitive to the choice of hyperparameters. Moreover, due to the usage of an unstable Hamiltonian dynamics (with
friction), one must choose hyperparameters carefully to avoid NaN values. The last column of Table 4 shows the number of
hyperparameter combinations that lead to NaN values during sampling.

Figure 5b compares the joint ELBO values across various leapfrog step sizes for MixFlow against that of NF. We see
that in all four examples, NF produces a smaller ELBO than MixFlow with a reasonable step size, which implies a lower
quality target approximation. Indeed, Figure 13 shows that the trained NFs fail to capture the shape of the target distributions.
Although one may expect the performance of NF to improve if it were given more layers, we will show that this is not the
case in a later paragraph.

Figure 14a compares the sampling efficiency of MixFlow against NUTS, HMC, and NF. We see that MixFlow iid is the
slowest, because each sample is generated by passing through the entire flow. However, we see that by taking all intermediate
samples as in MixFlow single, we can generate samples just as fast as NUTS and HMC. On the other hand, while NF is
fastest for sampling, it requires roughly 2 minutes for training, which alone allows MixFlow single, NUTS, and HMC to
generate over 1 million samples in these examples. A more detailed discussion about this trade-off for NF is presented later.

Figure 14b further shows the computational efficiency in terms of effective samples size (ESS) per second. The smaller per
second ESS of MixFlow iid is due to its slower sampling time. However, we emphasize that these samples are i.i.d..
NUTS overall achieves a higher per second ESS. NUTS is performant because of the much longer trajectories it produces
(it only terminates once it detects a “U-turn”). This is actually an illustration of a limitation of the ESS per unit time as a
measurement of performance. Because NUTS generates longer trajectories, it has a lower sample autocorrelation and a
higher ESS; but Figure 15 shows that the actual estimation performance of NUTS is comparable to the other methods. Note
that it is also possible to incorporate the techniques used in NUTS to our method, which we leave for future work.

As mentioned above, ESS mainly serves as a practical index for the relative efficiency of using a sequence of dependent
samples, as opposed to independent samples, to estimate certain summary statistics of the target distribution. In this case,
MixFlow single can be very useful. Figure 15 demonstrate the performance of MixFlow single, NUTS, HMC, and
NF when estimating the coordinate-wise means and standard deviations (SD) of target distributions. We see that MixFlow
single, NUTS, and HMC generally show similar performance in terms of convergence speed and estimation precision.
While NF converges very quickly due to i.i.d. sampling, it does seem to struggle more at identifying the correct statistics,
particularly the standard deviation, given its limited approximation quality. It is worth noting that, unlike MixFlow and
general MCMC methods, sample estimates of target summaries obtained from NF are typically not asymptotically exact, as
the sample quality is fundamentally limited by the choice of variational family and how well the flow is trained.

Finally, we provide an additional set of results for NF (Figure 16), examining its performance as we increase the number
of planar layers (5, 10, 20, 50). All settings for NF are identical to the above, except that we increase the optimization
iteration to 500, 000 to ensure the convergence of flows with increased numbers of layers. As demonstrated in the second

21

MixFlows: principled variational inference via mixed flows

(a) Banana distribution

(b) Neal’s funnel

(c) Cross distribution

(d) Warped Gaussian

Figure 9. Scatter plots and histograms for the x-, ρ-, and u-marginals in the four synthetic experiments.

and third column of Figure 16, both training time and sampling time scale with the number of layers roughly linearly.
Although a trained NF is still generally faster in sample generation (see also Figure 14a), for these synthetic examples with
4-dimensional joint target distributions, training time can take up to 30 minutes. More importantly, the corresponding target
approximations of NF are still not as good as those of MixFlow in all four examples, even when we increase the number of
layers to 50, which corresponds to optimizing 450 parameters from the flow. One may also notice from Figure 16 that a
more complex normalizing flow does not necessarily lead to better performance. This is essentially because the (usually
non-convex) KL optimization problem of standard NF becomes more complex to solve as the flow becomes more flexible.
As a result, even though theoretically, NF becomes more expressive with more layers, there is no guarantee on how well
it approximates the target distribution. In contrast, MixFlow is optimization-free and is asymptotically exact—with a
proper choice of hyper-parameter, more computation typically leads to better performance (Figure 5b). With the 30 minutes
training time of NF, MixFlow iid can generate 18, 000 i.i.d. samples and MixFlow single can generate over 10

22

MixFlows: principled variational inference via mixed flows

(a) (b) (c) (d)

Figure 10. ELBO versus step size (10a,10c) and KSD comparison with NUTS (10b,10d) for the 5- and 20-dimensional Neal’s funnel
examples.

(a) Banana. From left to right: True, MixFlow, and NEO (b) Neal’s Funnel. From left to right: True, MixFlow, and NEO

(c) Cross. From left to right: True, MixFlow, and NEO (d) Warped Gauss. From left to right: True, MixFlow, and NEO

Figure 11. Visualization of sliced exact (left) and MixFlow-approximated (middle) joint log density (middle), and sliced joint log density
of tuned NEO importance sampling proposal (right) for banana (11a), funnel (11b), cross (11c), and warped Gaussian (11d).

Figure 12. Marginal KSD of tuned MixFlow versus number of refreshments N , and comparison to NUTS and NEO

Figure 13. Scatter plot of 5000 i.i.d. samples generated from trained NF.

million samples, both of which are more than sufficient for most estimations under these target distributions.

23

MixFlows: principled variational inference via mixed flows

(a): Sampling time comparison to NF,NUTS, and HMC (100 trials).

(b): Per second ESS comparison to NUTS and HMC (100 trials).

Figure 14. Time results for four multivariate synthetic examples: from left to right, each column corresponds to Banana, Neal’s funnel,
Cross, and warped Gaussian respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. Streaming mean and standard deviation (SD) estimation (50, 000 samples) for four 2-dimensional synthetic distributions. For
each distribution, the two plots on the top row correspond to the two marginal means, and the two plots on the bottom row correspond to
the two marginal SDs. Each plot shows the evolution of coordinate-wise mean/SD estimates, using samples from MixFlow single
(green), NUTS (blue), HMC (red), and NF (purple); black dashed line indicates the true target mean/SD, which is estimated using 50, 000
samples from the actual synthetic target distribution. The lines indicate the median, and error regions indicate 25th to 75th percentile from
10 runs.

E.5. Real data examples

All settings for MixFlow, NUTS, NEO and HMC are identical to those in synthetic examples. All NFs are trained using
ADAM for 200,000 iterations with initial step size set to be 0.001. We remark that comparison NEO is not included for high
dimensional sparse regression example—the most challenging example—due to its high consumption of RAM, which hits
the ceiling of our computation resources. Overall we observe similar phenomenons as for synthetic examples Appendix E.2.
Additionally, we include comparison to UHA on real data examples. The tuning procedure of UHA involves architectural
search (i.e., leapfrog steps between refreshments, and number of refreshments), and hyperparameter optimization (i.e.,
leapfrog step size, and tempering path). We choose among the combination of several fixed architectural settings of leapfrog
steps between refreshments (L = 10, 20, 50), and number of refreshment (N = 5, 10), and optimize hyperparameters using
ADAM for 20,000 iterations (each gradient estimate is based on 5 independent samples); each setting is repeated for 5 times.

24

MixFlows: principled variational inference via mixed flows

(a) Banana distribution

(b) Neal’s funnel

(c) Cross distribution

(d) Warped Gaussian

Figure 16. Additional NF results with number of planar layers (5, 10, 20, 50). First column shows the ELBO value. Each ELBO is
estimated using 2000 i.i.d. samples from trained flow. The second and third columns correspond to the training time and per-sample time
(100 trials) of NF given increasing planar layers.

Table 5 presents median, IQR of the resulting ELBOs of UHA under different architectural settings. We pick the best settings
for UHA based on the ELBO performance and compare UHA under the selected settings with our method in terms of target
approximation quality and marginal sample quality. Both ELBO and KSD of UHA are estimated using 5,000 samples.

25

MixFlows: principled variational inference via mixed flows

Figure 17 offers a comparison of the ELBO performance between UHA and MixFlow. While MixFlow demonstrates
similar or superior ELBO performance in the linear regression, logistic regression, student-t regression, and sparse regression
problems, it is outperformed by UHA in the remaining three real data examples. The higher ELBO of UHA in these examples
might be due to its incorporation of annealing, which facilitates exploration of complex target distributions. We leave
studying the use of annealing in MixFlows to future work.

However, it is essential to note that for variational methods that augment the original target space, a higher ELBO does
not necessarily equate to improved marginal sample quality. As demonstrated in Figure 18, the marginal sample quality of
UHA, as evaluated by marginal KSD, is worse than that of MixFlow and the two Monte Carlo methods (NUTS and NEO),
although it surpasses that of parametric flows (e.g. RealNVP).

It is also worth noting that tuning augmentation methods like UHA can be very expensive. For instance, in the Student-t
regression problem, UHA required 20 minutes (1223.8 seconds) to run 20,000 optimization steps, with each gradient
estimated using 5 Monte Carlo samples. This is approximately 40 times slower than RealNVP, which required around 10
minutes for 200,000 optimization steps with stochastic gradients based on 10 Monte Carlo samples. Conversely, evaluating
one ELBO curve (averaged over 1,000 independent trajectories) for MixFlow across six different flow lengths (i.e., flow
length = 100, 200, 500, 1000, 1500, 2000) only took 8 minutes, while adapting NUTS with 20,000 iterations was completed
within a few seconds.

E.5.1. BAYESIAN LINEAR REGRESSION

We consider two Bayesian linear regression problems, with both a standard normal prior and a heavy tail prior using two
sets of real data. The two statistical models take the following form:

log σ2 i.i.d.∼ N (0, 1), yj | β, σ2 indep∼ N
(
xTj β, σ

2
)

Normal:β i.i.d.∼ N (0, 1) Cauchy:β i.i.d.∼ Cauchy(0, 1)

where yj is the response and xj ∈ Rp is the feature vector for data point j. For linear regression problem with a normal
prior, we use the Boston housing prices dataset (Harrison Jr. & Rubinfeld, 1978). Dataset available in the MLDatasets
Julia package at https://github.com/JuliaML/MLDatasets.jl. containing J = 506 suburbs/towns in the Boston area; the
goal is to use suburb information to predict the median house price. We standardize all features and responses. For
linear regression with a heavy-tail prior, we use the communities and crime dataset (U.S. Department of Justice Federal
Bureau of Investigation, 1995), available at http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime. The original
dataset contains 122 attributes that potentially connect to crime; the goal is to predict per-capita violent crimes using the
information of the community, such as the median family income, per capita number of poluce officers, and etc. For the data
preprocessing, we drop observations with missing values, and using Principle component analysis for feature dimension
reduction; we selected 50 principal components with leading eigenvalues. The posterior dimensions of the two linear
regression inference problems are 15 and 52, repsectively.

E.5.2. BAYESIAN GENERALIZED LINEAR REGRESSION

We then consider two Bayesian generalized linear regression problems—a hierachical logistic regression and a poisson
regression:

Logis. Reg.: α ∼ Gam(1, 0.01), β | α ∼ N (0, α−1I),

yj | β
indep∼ Bern

(
1

1 + e−x
T
j β

)
,

Poiss. Reg.: β ∼ N (0, I),

yj | β
indep∼ Poiss

(
log
(

1 + e−x
T
j β
))

,

For logistic regression, we use a bank marketing dataset (Moro et al., 2014) downsampled to J = 400 data points. Original
dataset is available at https://archive.ics.uci.edu/ml/datasets/bank+marketing. the goal is to use client information to
predict whether they subscribe to a term deposit. We include 8 features from the bank marketing dataset (Moro et al., 2014):
client age, marital status, balance, housing loan status, duration of last contact, number of contacts during campaign, number
of days since last contact, and number of contacts before the current campaign. For each of the binary variables (marital

26

https://github.com/JuliaML/MLDatasets.jl
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
https://archive.ics.uci.edu/ml/datasets/bank+marketing

MixFlows: principled variational inference via mixed flows

status and housing loan status), all unknown entries are removed. All features of the dataset are also standardized. Hence the
posterior dimension of the logistic regression problem is 9 and the overall (x, ρ, u) state dimension of the logistic regression
inference problems are 19.

For Poisson regression problem, we use an airport delays dataset with 15 features and J = 500 data points (subsampled),
resulting a 16-dimensional posterior distribution. The airport delays dataset was constructed using flight delay data from
http://stat-computing.org/dataexpo/2009/the-data.html and historical weather information from https://www.wunderground.

com/history/. relating daily weather information to the number of flights leaving an airport with a delay of more than 15
minutes. All features are standardized as well.

E.5.3. BAYESIAN STUDENT-T REGRESSION

We also consider a Bayesian Student-t regression problem, of which the posterior distribution is heavy-tail. The Student-t
regression model is as follows:

yi | Xi, β ∼ T5(XT
i β, 1), β

i.i.d.∼ Cauchy(0, 1).

In this example, we use the creatinine dataset (Liu & Rubin, 1995), containing a clinical trial on 34 male patients with
3 covariates. Original dataset is available in https://github.com/faosorios/heavy/blob/master/data/creatinine.rda. The 3
covariates consist of body weight in kg(WT), serum creatininte concentration (SC), and age in years. The goal is to predict
the endogenous cretinine clearance (CR) using these covariates. We apply the data transformation recommended by Liu &
Rubin (1995) by transferring response into log(CR), and transferring covariats into log(WT), log(SC), log(140− age).

E.5.4. BAYESIAN SPARSE REGRESSION

Finally, we compare the methods on the Bayesian sparse regression problem applied to two datasets: a prostate can-
cer dataset containing 9 covariates and 97 observations, and a superconductivity dataset (Hamidieh, 2018), contain-
ing 83 features and 100 observations (subsampled). The prostate cancer dataset is available at https://hastie.su.

domains/ElemStatLearn/datasets/prostate.data. The superconductivity dataset is available at https://archive.ics.uci.edu/
ml/datasets/superconductivty+data. The model is as follows:

log σ2 i.i.d.∼ N (0, 1), βi
i.i.d.∼ 1

2
N (0, τ2

1) +
1

2
N (0, τ2

2),

yj | β, σ2 indep∼ N
(
xTj β, σ

2
)

For both two datasets, we set τ1 = 0.1, τ2 = 10. The resulting posterior dimension for both datasets are 10 and 84
respectively. When data information is weak, the posterior distribution in this model typically contains multiple modes (Xu
& Campbell, 2022). We standardize the covariates during the preprocessing procedure for both datasets.

E.5.5. ADDITIONAL EXPERIMENT FOR REAL DATA EXAMPLES

27

http://stat-computing.org/dataexpo/2009/the-data.html
https://www.wunderground.com/history/
https://www.wunderground.com/history/
https://github.com/faosorios/heavy/blob/master/data/creatinine.rda
https://hastie.su.domains/ElemStatLearn/datasets/prostate.data
https://hastie.su.domains/ElemStatLearn/datasets/prostate.data
https://archive.ics.uci.edu/ml/datasets/superconductivty+data
https://archive.ics.uci.edu/ml/datasets/superconductivty+data

MixFlows: principled variational inference via mixed flows

Table 1. Comparison of ELBO between MixFlow and RealNVP with different number of layers on real data example. Each setting
of RealNVP is run in 5 trials. ELBOs of MixFlow are estimated using 1000 independent trajectories and ELBOs of RealNVP are
estimated using 2000 independent samples.

MixFlow

STEPSIZE #LEAPFROG #REFRESHMENT ELBO #SAMPLE

Lin Reg 0.0005 30 2000 -429.98 1000
Lin Reg Heavy 0.000025 50 2500 117.1 1000

Log Reg 0.002 50 1500 -250.5 1000
Poiss Reg 0.0001 50 2000 82576.9 1000

Student t Reg 0.0008 80 2000 -145.41 1000
Sparse Reg 0.001 30 600 -125.9 1000

Sparse Reg High Dim 0.0012 50 2000 -538.36 2000
RealNVP

#LAYER #HIDDEN MEDIAN IQR #NAN

Lin Reg 5 15 -429.43 (-429.56, -429.42) 0
Lin Reg 10 15 -429.41 (-429.43, -429.36) 1

Lin Reg Heavy 5 52 116.47 (116.34, 116.49) 0
Lin Reg Heavy 8 52 116.65 (116.56, 116.73) 3
Lin Reg Heavy 10 52 116.26 (116.11,116.41) 3

Log Reg 5 9 -250.76 (-250.76, -250.75) 3
Log Reg 8 9 -250.65 (-250.75, -250.64) 2

RealNVP

#LAYER #HIDDEN MEDIAN IQR #NAN

Poiss Reg 3 16 82576.87 (82575.57, 82577.53) 1
Poiss Reg 5 16 82580.77 (82580.13, 82583.72) 2
Poiss Reg 8 16 N/A N/A 5

Student t Reg 5 4 -145.52 (-145.53, -145.51) 0
Student t Reg 10 4 -145.52 (-145.52, -145.49) 0

RealNVP

#LAYER #HIDDEN MEDIAN IQR #NAN

Sparse Reg 5 10 -126.33 (-126.36, -126.32) 0
Sparse Reg 8 10 -126.35 (-126.36, -126.33) 1

Sparse Reg High Dim 5 20 -531.75 (-533.41, -522.60) 0
Sparse Reg High Dim 8 20 N/A N/A 5

28

MixFlows: principled variational inference via mixed flows

Table 2. Comparison of ELBO between MixFlow and PlanarFlow with different number of layers on real data example. Each setting
of PlanarFlow is run in 5 trials. ELBOs of MixFlow are estimated using 1000 independent trajectories and ELBOs of PlanarFlow
are estimated using 2000 independent samples.

MixFlow

STEPSIZE #LEAPFROG #REFRESHMENT ELBO #SAMPLE

Lin Reg 0.0005 30 2000 -429.98 1000
Lin Reg Heavy 2.50E-05 50 2500 117.1 1000

Log Reg 0.002 50 1500 -250.5 1000
Poiss Reg 0.0001 50 2000 82576.9 1000

Student t Reg 0.0008 80 2000 -145.41 1000
Sparse Reg 0.001 30 600 -125.9 1000

Sparse Reg High Dim 0.0012 50 2000 -538.36 2000
PlanarFlow

#LAYER MEDIAN IQR #NAN

Lin Reg 5 -434.73 (-435.01, -434.65) 0
Lin Reg 10 -438.79 (-439.25, -436.77) 0
Lin Reg 20 -442.4384675 (-444.64, -440.93) 0

Lin Reg Heavy 5 79.65 (-75.92, 99.10) 0
Lin Reg Heavy 10 23.13 (21.29, 100.10) 0
Lin Reg Heavy 20 -879.1909019 (-1641.19, -392.80) 0

Log Reg 5 -251.71 (-251.85, -251.41) 0
Log Reg 10 -251.8 (-252.03, -251.80) 0
Log Reg 20 -252.0937812 (-252.20, -251.93) 0

PlanarFlow

#LAYER MEDIAN IQR #NAN

Poiss Reg 5 82569.58 (82569.33, 82569.68) 0
Poiss Reg 10 82568.49 (82568.12, 82569.57) 0
Poiss Reg 20 82566.40441 (82552.57, 82568.05) 2

Student t Reg 5 -145.69 (-145.71, -145.64) 0
Student t Reg 10 -145.72 (-145.73, -145.69) 0
Student t Reg 20 -145.7579931 (-145.77, -145.72) 0

PlanarFlow

#LAYER MEDIAN IQR #NAN

Sparse Reg 5 -127.58 (-127.60, -127.42) 0
Sparse Reg 10 -127.75 (-127.87, -127.68) 0
Sparse Reg 20 -127.6677415 (-128.48, -127.65) 0

Sparse Reg High Dim 5 -571.97 (-572.09, -565.10) 0
Sparse Reg High Dim 10 -571.7 (-573.22, -565.55) 0
Sparse Reg High Dim 20 -577.1338885 (-580.30, -569.39) 0

29

MixFlows: principled variational inference via mixed flows

Table 3. Comparison of ELBO between MixFlow and RadialFlow with different number of layers on real data example. Each setting
of RadialFlow is run in 5 trials. ELBOs of MixFlow are estimated using 1000 independent trajectories and ELBOs of RadialFlow
are estimated using 2000 independent samples.

MixFlow

STEPSIZE #LEAPFROG #REFRESHMENT ELBO #SAMPLE

Lin Reg 0.0005 30 2000 -429.98 1000
Lin Reg Heavy 2.50E-05 50 2500 117.1 1000

Log Reg 0.002 50 1500 -250.5 1000
Poiss Reg 0.0001 50 2000 82576.9 1000

Student t Reg 0.0008 80 2000 -145.41 1000
Sparse Reg 0.001 30 600 -125.9 1000

Sparse Reg High Dim 0.0012 50 2000 -538.36 2000
RadialFlow

#LAYER MEDIAN IQR #NAN

Lin Reg 5 -434.14 (-434.36, -434.12) 0
Lin Reg 10 -434.12 (-434.19, -434.12) 0
Lin Reg 20 -433.82 (-434.21, -433.73) 0

Lin Reg Heavy 5 111.99 (111.91, 112.01) 0
Lin Reg Heavy 10 111.99 (111.89 , 112.00) 0
Lin Reg Heavy 20 111.7 (111.61, 111.71) 0

Log Reg 5 -251.33 (-251.49, -251.31) 0
Log Reg 10 -251.17 (-251.21 , -251.06) 0
Log Reg 20 -250.96 (-250.97, -250.95) 0

RadialFlow

#LAYER MEDIAN IQR #NAN

Poiss Reg 5 82570.5 (82570.19, 82570.57) 0
Poiss Reg 10 82571.02 (82570.76 , 82571.05) 0
Poiss Reg 20 82571.08 (82570.90, 82571.12) 0

Student t Reg 5 -145.61 (-145.62, -145.61) 0
Student t Reg 10 -145.59 (-145.60, -145.59) 0
Student t Reg 20 -145.58 (-145.60, -145.57) 0

RadialFlow

#LAYER MEDIAN IQR #NAN

Sparse Reg 5 -127.28 (-127.37, -127.27) 0
Sparse Reg 10 -127 (-127.03, -126.88) 0
Sparse Reg 20 -126.68 (-126.69, -126.61) 0

Sparse Reg High Dim 5 -548.05 (-548.54, -547.98) 0
Sparse Reg High Dim 10 -547.2 (-547.74, -547.16) 0
Sparse Reg High Dim 20 -547.03 (-547.78, -546.76) 0

30

MixFlows: principled variational inference via mixed flows

(a) Linear regression (b) Linear regression (heavy tail) (c) Logistic regression

(d) Poisson regression (e) Student-t regression (f) Sparse regression

(g) Sparse regression (high dim)

Figure 17. ELBO comparison against NFs for real examples (except for linear regression, which is displayed in Figure 2a. Each NF
method is tuned under various settings, and only the best one is present for each example. Each figure also shows the effect of step sizes
on MixFlow; overly large or small step sizes influence the performance of MixFlow negatively. Lines indicate the median, and error
regions indicate 25th to 75th percentile from 5 runs.

(a) linear regression (b) linear regression (heavy) (c) logistic regression (d) poisson regression

(e) student t regression (f) sparse regression (g) sparse regression (high dim)

Figure 18. KSD comparison for real data examples.

31

MixFlows: principled variational inference via mixed flows

(a) Linear regression (b) Linear regression (heavy tail) (c) Logistic regression

(d) Poisson regression (e) Sparse regression

Figure 19. Time results (sampling time comparison to NF, NUTS, NEO, and HMC, and per second ESS comparison to HMC; each
repeated 100 trials) for two linear regression problems (Figures 19a and 19b), two generalized linear regression problems (Figures 19c
and 19d), and one sparse regression problem (Figure 19e).

32

MixFlows: principled variational inference via mixed flows

(a) Linear reg.: first 5 dimensions (b) Linear reg. (Cauchy): first 10 dimensions (c) Poisson reg.: all 8 dimensions

(d) Sparse reg. (high dim): first 10 dimensions

Figure 20. Sample quality visualization of 2,000 i.i.d. samples draw from each of MixFlow (green scatters) and NF (orange scatters) on
4 real data examples: linear regression, linear regression with heavy tail prior, poisson regression, and high-dimensional sparse regression.
Pairwise kernel density estimation (KDE) is based on 20,000 NUTS samples, which is initialized with the Gaussian mean of the mean-field
Gaussian approximation to posterior distribution, uses 20,000 steps for adaptation (targeting at an average acceptance rate 0.7). NF is
chosen to be the same one as compared in Figures 4 and 19.

33

MixFlows: principled variational inference via mixed flows

Table 4. Minimum, average, and standard deviation of KSD obtained from NEO for each of the examples across all tuning settings. #Fail
indicates the number of tuning settings that resulted in NaN outputs. The final KSDs obtained from MixFlow are also included for
comparion.

MIXFLOW KSD MIN. KSD AVG. KSD SD. KSD #FAIL

banana 0.06 0.06 1.3 1.69 7/24
cross 0.13 0.11 2.78 3.09 12/24

Neal’s funnel 0.04 0.04 0.76 1.84 6/24
warped Gaussian 0.15 0.23 0.55 0.25 0/14

linear regression 1.64 9.37 143.56 84.16 18/24
linear regression (heavy tail) 51.43 396.97 1589.71 599.47 18/24

logistic regression 0.34 0.72 19.28 11.7 18/24
Poisson regression 10.57 639.08 1642.81 670.8 18/24

t regression 0.11 0.15 4.79 5.03 12/24
sparse regression 0.44 1.26 43.83 25.58 18/24

34

MixFlows: principled variational inference via mixed flows

Table 5. ELBO results of UHA with different number of leapfrogs and number of refreshments on real data examples. Each setting of UHA
is run in 5 trials. ELBOs of UHA are estimated using 5000 independent samples.

#LFRG #REF MEDIAN IQR #SAMPLE

Lin Reg 10 5 -430.438 (-430.488, -430.411) 5000
Lin Reg 20 5 -430.589 (-430.596, -430.541) 5000
Lin Reg 50 5 -432.215 (-432.268, -432.146) 5000
Lin Reg 10 10 -430.468 (-430.511, -430.457) 5000
Lin Reg 20 10 -431.404 (-431.441, -431.202) 5000
Lin Reg 50 10 -432.462 (-432.56, -432.327) 5000

Lin Reg Heavy 10 5 120.188 (120.08, 120.401) 5000
Lin Reg Heavy 20 5 119.126 (118.806, 119.796) 5000
Lin Reg Heavy 50 5 119.134 (118.994, 119.247) 5000
Lin Reg Heavy 10 10 118.222 (118.125, 118.245) 5000
Lin Reg Heavy 20 10 118.191 (118.151, 118.202) 5000
Lin Reg Heavy 50 10 118.059 (117.718, 118.175) 5000

Log Reg 10 5 -250.588 (-250.607, -250.553) 5000
Log Reg 20 5 -250.555 (-250.565, -250.551) 5000
Log Reg 50 5 -250.601 (-250.64, -250.567) 5000
Log Reg 10 10 -250.643 (-250.662, -250.584) 5000
Log Reg 20 10 -250.578 (-250.615, -250.563) 5000
Log Reg 50 10 -250.913 (-251.006, -250.839) 5000

Poiss Reg 10 5 82578.439 (82578.43, 82578.459) 5000
Poiss Reg 20 5 82578.453 (82578.372, 82578.522) 5000
Poiss Reg 50 5 82578.421 (82578.342, 82578.465) 5000
Poiss Reg 10 10 82578.45 (82578.435, 82578.488) 5000
Poiss Reg 20 10 82578.449 (82578.368, 82578.458) 5000
Poiss Reg 50 10 82578.369 (82578.322, 82578.414) 5000

Student t Reg 10 5 -145.46 (-145.461, -145.438) 5000
Student t Reg 20 5 -145.424 (-145.451, -145.423) 5000
Student t Reg 50 5 -145.427 (-145.43, -145.421) 5000
Student t Reg 10 10 -145.441 (-145.454, -145.404) 5000
Student t Reg 20 10 -145.439 (-145.466, -145.411) 5000
Student t Reg 50 10 -145.41 (-145.417, -145.407) 5000
Sparse Reg 10 5 -125.936 (-125.953, -125.931) 5000
Sparse Reg 20 5 -125.954 (-125.981, -125.944) 5000
Sparse Reg 50 5 -126.279 (-126.28, -126.226) 5000
Sparse Reg 10 10 -125.978 (-125.988, -125.931) 5000
Sparse Reg 20 10 -126.032 (-126.057, -125.961) 5000
Sparse Reg 50 10 -126.557 (-126.559, -126.525) 5000

Sparse Reg High Dim 10 5 -501.201 (-501.201, -500.778) 5000
Sparse Reg High Dim 20 5 -499.467 (-499.471, -499.387) 5000
Sparse Reg High Dim 50 5 -498.968 (-499.001, -498.656) 5000
Sparse Reg High Dim 10 10 -488.7 (-488.799, -488.561) 5000
Sparse Reg High Dim 20 10 -487.216 (-487.662, -487.042) 5000
Sparse Reg High Dim 50 10 -486.423 (-486.477, -485.83) 5000

35

