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ABSTRACT

This paper develops a new spherical neural network framework based on needlet
convolutions that can capture the multiscale information and rotation invariant
feature of spherical data. The spherical needlets are a wavelet tight frame on the
sphere S2 which can transform the data into a frequency domain with different
scales: the low-pass and high-passes that extract approximate and detail information
from the spherical signal. As the output signal of the spherical needlet convolution
lies on the rotation group SO(3), we generalize the needlets to SO(3) and define
SO(3) needlet convolution. Wavelet shrinkage is used as a nonlinear activation to
reduce the redundancy in the needlet high-pass representation, which enhances the
robustness of the neural network. The S2 needlet convolution can be connected
with multiple SO(3) needlet convolution layers to form a Needlet Approximate
Equivariance Spherical Neural Network, thus providing a powerful framework to
distill the geometric equivariance feature and trainable multiresolution analyzer.
Experimental results on quantum chemistry regression and gravitational wave
parameter estimation show its great potential for solving scientific challenges.

1 INTRODUCTION

Geometric deep learning (Bronstein et al., 2021; 2017) has gained a great triumph in advancing
scientific discovery (Atz et al., 2021; Baek et al., 2021; Davies et al., 2021; Méndez-Lucio et al.,
2021; Townshend et al., 2021). It provides a universal blueprint for learning stable representation of
high-dimensional data to build equivariant or invariant neural network layers which respect exact
or approximate symmetries of input data, such as translation, rotation and permutation (Cohen &
Welling, 2016; Qi et al., 2017; Cohen et al., 2018; Fuchs et al., 2020; Bronstein et al., 2021). Many
data types in the real world can be modelled as spherical data, such as omnidirectional images, 3D
LiDAR scans from autonomous cars, molecules, cosmic microwave background, climate change
data on the earth. However, simply mapping spherical signals to R2 and then applying planar
convolutions will result in distorted signals and ineffective shift equivariance. In this paper, we
develop a computational strategy to extract and learn multiscale features from spherical data while
preserving the rotation equivariance for the network. The multiscale decomposition of the geometric
data in the network learning provides a robust Needlet Approximate Equivariance Spherical Neural
Network (NES) that can increase the scalability of the geometric deep learning, and reduce the
redundancy and noise via wavelet shrinkage in the needlet transforms.

Spherical needlets are a wavelet-like system on the two dimensional sphere S2 that form a tight frame
(Narcowich et al., 2006b;a; Wang et al., 2017). They provide a multiscale representation of signals on
the sphere. The spherical needlet convolution turns the spherical data to a signal on the rotation group
SO(3). To offer a multiscale representation for the output of the S2 needlet convolution, we develop a
needlet system on SO(3), from which we then design SO(3) needlet convolution. This SO(3) needlet
convolution can be repeatedly used in the network, and with S2 needlet convolution, constitutes a
deep neural network that can distill the geometric equivariant feature of spherical data. To further
increase the robustness of the needlet convolution network, we apply wavelet shrinkage (Donoho,
1995; Baldi et al., 2009) as a nonlinear activation (Zheng et al., 2021) in the needlet transforms,
which filters out the high-pass information in the framelet domain. The needlet convolution with
shrinkage activation gains provably approximate equivariance, and the error diminishes as the scale is
sufficiently high.
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Figure 1: The framework of our needlet spherical neural network. As the left column shows, we
first carry on non-equispaced FFT with predefined weights on the spherical signal. The following
are an S2-Needlet Convolution and repeated SO(3)-Needlet Convolutions. Then we use inverse
non-equispaced FFT over the output of the SO(3)-Needlet Convolution and feed them into the
downstream predictor. The right part shows the intermediate computing process of the convolutions
with wavelet shrinkage on high-passes and Batch Normalization layers.

Our proposed needlet network model achieve state-of-the-art performance for real-world scientific
problems of regressing quantum chemistry molecules and estimating a cosmological parameter of
gravitational wave. Figure 1 shows the framework of our NES for the application in bio-molecular
prediction, where the input is a set of spherical signals centered at each atom in the molecule. The
framework is scalable to any application scenarios that can be represented by spherical signals.

2 SPHERICAL NEEDLET FRAMEWORK

2.1 MULTIRESOLUTION ANALYSIS OF SPHERICAL NEEDLETS

Needlets are a form of spherical wavelets which enjoy good localization properties in both spatial and
harmonic space and guarantee the uniqueness of the wavelet coefficients. There are two main merits
to introduce needlet representations: computationally convenient calculation and multiscale represen-
tations of approximation and detail information. Needlets onM (M takes S2 or SO(3) in our model)
is defined by a filter bank η :=

{
a; b1, . . . , br

}
⊂ l1(Z) :=

{
h = {hk}k∈Z ⊂ C :

∑
k∈Z |hk| <∞

}
and a set of associated scaling functions, Ψ = {α;β1, · · · , βr} ⊂ L1(R). Filter a is also called
low-pass filter which distills approximate information of the signal, and filers {b1, · · · , br} are called
high-pass filters which distill more detail and even noise information. The associated generating
functions and filter bank satisfy the relations in Eq. (1), where n = 1, . . . , r, and ξ ∈ R.

α̂(2ξ) = â(ξ)α̂(ξ), β̂n(2ξ) = b̂n(ξ)α̂(ξ). (1)

To discretize the continuous needlets with zero numerical error, we utilize Polynomial-exact Quadra-
ture Rule that are generated by the tensor product of the Gauss-Legendre nodes on the interval [−1, 1]
and equi-spaced nodes in the other dimension with non-equal weights. Let vj,k represent low-pass
coefficients, and wnj,k represent high-pass coefficients of the signal function f . They are defined as
the inner products of (low-pass / high-pass ) needlets and f . In the implementation of our model, we
simply calculate the coefficients in the Fourier space, as shown in Eq. (2), which can be computed
fast and conveniently. The f̂` is the generalized Fourier coefficients of f at degree `. More details of
the needlets are given in Appendix A.2.

v̂j,` = f̂`α̂

(
λ`
2j

)
, ŵnj−1,` = f̂`β̂n

(
λ`

2j−1

)
. (2)
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2.2 ROTATION-EQUIVARIANT CONVOLUTION

A neural network (or function) Φ is called rotation-equivariant if for any rotation operator LR there
exists some operator TR such that Φ ◦ LR = TR ◦ Φ. A rotation-equivariant neural network can
predict the output of rotated signals with theoretical guarantee more efficiently and precisely than
without rotation-equivariance. Formally, the rotation equivariant convolution over S2 and SO(3)
is defined as [φ ? f ](R) = 〈LRφ, f〉 =

∫
M φ(R−1x)f(x)dx, where f is a signal, φ is a learnable

locally supported filter, LRφ(x) = φ(R−1x), andM represents S2 or SO(3). It is provable that
the convolution defined above satisfies a Fourier theorem: [φ̂ ? f ]` = f̂` · φ̂†` , where † denotes
the conjugate transpose operation and ` is the degree parameter. The operation · denotes matrix
multiplication for the case ofM = SO(3) and outer product forM = S2. Spherical CNN (Cohen
et al., 2018) uses this formula in its convolution. Different with the existing models, we apply
convolution on the needlet coefficients of a spherical signal.

Using the framelet system described in Section 2.1, we take n = 2 and get three sets of needlets
coefficients {v̂1,`}

ΛJ0

`=1 , {ŵ1
1,`}

ΛJ1

`=1 and {ŵ2
1,`}

ΛJ1

`=1 . The Fourier coefficients of signal f of degree ` can

be reconstructed by the framelet coefficients, and we denote this relation as
[
v̂1,`, ŵ

1
1,`, ŵ

2
1,`

]> � f̂`,
where � means formal equivalence. Then the following relation holds:φ̂1`

φ̂2`

φ̂3`

� f̂` �
φ̂1`

φ̂2`

φ̂3`

�
 v̂1,`

ŵ1
1,`

ŵ2
1,`

 =


φ̂1` · f̂`α̂

(
λ`

2J0

)
φ̂2` · f̂`β̂1

(
λ`

2J0

)
φ̂3,` · f̂`β̂2

(
λ`

2J0

)
 =


[φ̂1 ? f ]`α̂

(
λ`

2J0

)
[φ̂2 ? f ]`β̂1

(
λ`

2J0

)
[φ̂3 ? f ]`β̂2

(
λ`

2J0

)
 � [φ̂ ? f ]`.

Here φ̂i` (i = 1, 2, 3) are three learnable filters defined in frequency domain,� denotes element-wise
multiplication. The above relation illustrates that we make a formally equivalent expression of
[φ̂ ? f ]` with multiresolution information and rotation equivariance.

2.3 SHRINKAGE AND POOLING

Shrinkage Function One potential drawback of Spherical CNNs is that the non-linear activation
in each layer involves redundant Fourier transforms and then a Fourier transform to draw the features
into the frequency domain, thus causing heavy computational cost. To preserve rotation-equivariance
to the best extent and also reduce computational complexity, we apply non-linear activation on
frequency domain directly, with an estimable and tolerable rotation-equivariance error. Similar to the
approach of UFGConv (Zheng et al., 2021), the high-pass coefficients in the frequency domain are
cut off by shrinkage thresholding

Shrinkage(x) = sgn(x)(|x| − λ)+ ∀x ∈ R,
where λ is the threshold value, which is taken as λ = σ

√
2log(N)/

√
N for N coefficients. The

hyperparameter σ is an analogue to the noise level of the denoising model. We only apply the
shrinkage on high-pass framelet coefficients and maintain rotation-equivariance in low-pass, which
mainly distills the approximate information of input data. Therefore, our model is approximately
rotation-equivariant. By the theory of needlets, the shrinkage mechanism introduces a controlable
rotaton-equivariance error. The proof of Theorem 2.1 is given in Appendix B.1.
Theorem 2.1. Let Ws

p(S2) with s ≥ 2/p and 1 ≤ p ≤ ∞ be a Sobelev space embedded in Lp(S2).
For f ∈ Ws

p(S2), φ is a fiter, then rotation-equivariance error brought by Shrinkage function is
defined as the maximum of the following Error over all R ∈ SO(3), which has the convergence order
2−(J0+1)s:

Error :=

B∑
`=0

∥∥∥∥Shr(L̂Rf ? φ)
(H)
` −D`(R)Shr(f̂ ? φ

(H)

` )

∥∥∥∥2

≤ C2−(J0+1)s, (3)

where B is the bandwidth, Shr(·) denotes Shrinkage function, superscript (H) denotes the high-pass
coefficients. J0 is the scale of the low pass, and C is a constant depending only on s and φ.

Pooling Operator To avoid repeated Fourier transform, we apply spectral pooling in the frequency
domain. Formally, if the spectral feature has the form that f̂ = [f̂0 · · · , f̂`−1, f̂`], spectral pooling
removes coefficients with degree larger than `/2. It is provable that spectral pooling operator is
rotation-equivariant (see Appendix B.2).
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3 EXPERIMENTS

Table 1: Classification results on spherical MNIST with
different scales. Both training and testing are performed
on the rotated data (R/R). The values in the first row
denote the shrinkage ratio.
Model 10% 30% 50% 70% 90%

SPHERICAL CNN 94.99 92.17 86.92 83.73 78.71
NES 97.84 97.30 96.74 95.21 92.66

Local MNIST Classification We use
a modified MNIST classification dataset
where the images are projected onto a
sphere to get the rotated training and testing
sets (R/R). In order to evaluate the ability
of the needlet convolutions to capture high-
frequency information, we downsample the
MNIST digits images into different resolu-
tions and then project them onto a scalable
area of the sphere. As shown in Table 1,
both models are rotation equivariant. However, the performance of Spherical CNN is declining as the
ratio increases. Our model consistently performs well as the shrinkage ratio increases.

Table 2: RMSE Comparisons on QM7. The
standard deviation is computed over 10 trials.
† indicates the method is rotation equivariant.
Baseline models are MLP (Montavon et al.,
2012), GCN (Kipf & Welling, 2017), Spher-
ical CNN (Cohen et al., 2018) and Clebsch-
Gordan Net (Kondor et al., 2018).

Method RMSE Params

MLP/RANDOM CM 5.96 -
GCN 7.32 ± 0.23 0.8M
SPHERICAL CNN† 8.47 1.4M
CLEBSCH–GORDAN† 7.97 ≥1.1M

NES† (Ours) 7.21 ± 0.46 0.9M

Table 3: Performance Comparisons in terms MAE
of forces in meV/Å on MD17 dataset. The full
names of the molecules from top to bottom are:
Aspirin, Ethanol, Malonaldehyde, Naphthalene,
Salicylic, Toluene, Uracil. NES achieves better
performance on four types of molecules.

Molecule sGDML SchNet DimeNet SphereNet NES
Asp. 29.5 58.5 21.6 18.6 15.2
Eth. 14.3 16.9 10.0 9.0 9.2
Mal. 17.8 28.6 16.6 14.7 13.6
Nap. 4.8 25.2 9.3 7.7 3.5
Sal. 12.1 36.9 16.2 15.6 14.2
Tol. 6.1 24.7 9.4 6.7 6.1
Ura. 10.4 24.3 13.1 11.6 10.8

Molecular Property Prediction We test our model’s performance on the molecular property
prediction task. Experiments are conducted over QM7 and MD17, as shown in Table 2 and Table 3.
In QM7 task, our model has about 0.9M parameters and achieves the lowest RMSE of 7.21± 0.46
among all rotation equivariant models. In MD17 task, the baseline models are sGDML (Chmiela
et al., 2018), SchNet (Schütt et al., 2017), DimeNet (Chmiela et al., 2018) and SphereNet (Liu et al.,
2021). Most of the previous models are 3D graph models with geometric information, highly relying
on human expertise and extra annotation. Instead, our model utilizes the adaptive learning of input
features and incorporates multiscale analysis to improve the representation ability.

Parameter Estimate for Gravitational Wave The existence of a stochastic Primordial Gravita-
tional Wave Background (PGWB), formed when microscopic quantum fluctuations of the metric
were stretched up to super-horizon scales by the sudden expansion of space-time that occurred during
inflation (Caprini & Figueroa, 2018) is a common prediction in the majority of inflationary models.
We utilize our NES to predict the tensor-to-scalar ratio (r) and compare mean square error (MSE)
between two kinds of model. The MSE is 0.0173 for ResNet and 0.0099 for NES. As the needlet
spherical neural network provides a multiscale learning framework, which captures high-frequency
contents in the needlet coefficients, our overall accuracy is considerably higher.

4 CONCLUSION

We develop a Needlet Approximate Equivariance Spherical Neural Network using multiscale rep-
resentation systems on the sphere and rotation group. The needlet convolution allows the rotation
equivariance for network feature extraction with trainable multiscale analyzer. Wavelet shrinkage is
used as a network activation to filter out the high-pass redundancy which helps improve the robustness
of the network. The shrinkage brings controllable equivariance error, which can be sufficiently small
when the scale is high. Empirical study shows the proposed needlet spherical neural network can
achieve excellent prediction performance on scientific problems.
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Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev,
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A NEEDLETS

A.1 GENERALIZED FOURIER TRANSFORM

LetM be the manifold S2 or SO(3). The basis functions are spherical harmonics {Y `m(R) : ` =
0, 1, . . . ,m = −`, . . . , `} and Wigner D-functions {D`

mn(R) : m,n = −`, . . . , `, ` = 0, 1, . . . } for
S2 and SO(3) respectively. Denote the basis functions as u`. We can write the generalized Fourier
transform of a function f :M→ R with quadrature rule sampling at scale j as

f̂` = 〈f, u`〉 =

∫
M
f(x)u`(x)dx

=

Nj∑
k=0

f(xj,k)
√
ωj,ku`(xj,k)

The inverse Fourier transforms on S2 and SO(3) are as follows.

f(R) = [F−1f̂ ](R) =
∞∑
`=0

(2`+ 1)
∑̀
m=−`

f̂ `mY
`
m(R)

f(R) = [F−1f̂ ](R) =

∞∑
`=0

(2`+ 1)
∑̀
m=−`

∑̀
n=−`

f̂ `mnD
`
mn(R).

Let (α, β) with α ∈ [0, 2π] and β ∈ [0, π] be the spherical polar coordinates for the point x ∈ S2.
The spherical harmonics can be explicitly written as

Y`,m(α, β) :=

√
2`+ 1

4π

(`−m)!

(`+m)!
P

(m)
` (cosβ)eimα

where P (m)
` (t) is the associated Legendre polynomial of degree ` and order m, m = −`, . . . , `, ` =

0, 1, . . .. We use the ZYZ Euler parameterization for SO(3). An element R ∈ SO(3) can be
parameterized by R(α, β, γ) with α ∈ [0, 2π], β ∈ [0, π] and γ ∈ [0, 2π]. Then, there exists a
general relationship between Wigner D-functions and spherical harmonics:

D`
ms(α, β,−γ) = (−1)s

√
4π

2`+ 1 s
Y m` (β, α)eisγ .
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A.2 NEEDLETS ON S2 AND SO(3)

Tight framelets on manifoldM is defined by a filter bank (a set of complex-valued filters) η :={
a; b1, . . . , br

}
⊂ l1(Z) :=

{
h = {hk}k∈Z ⊂ C :

∑
k∈Z |hk| <∞

}
and a set of associated scaling

functions, Ψ = {α;β1, · · · , βr} ⊂ L1(R), which is a set of complex-valued functions on the real
axis satisfying the following equations, for r = 1, . . . , n, ξ ∈ R,

α̂(2ξ) = â(ξ)α̂(ξ), β̂n(2ξ) = b̂n(ξ)α̂(ξ).

Here a(·) is called the low-pass filter and b(r)(·) are high-pass filters. Let {(u`, λ`)}` be the eigen-
value and eighenvector pairs for the Laplace-Beltrami operator on L2(M). The framelets at scale
level j = 1, · · · , J for manifoldM are generated with the above scaling functions and orthonormal
eigen-pairs by

ϕj,y(x) =

Λj∑
`=1

α̂

(
λ`
2j

)
u`(y)u`(x)

ψnj,y(x) =

Λj∑
`=1

β̂(n)

(
λ`
2j

)
u`(y)u`(x).

We call ϕj,y(x) and {ψnj,y(x)}rn=1 low-pass and high -pass framelets at scale j at point y ∈ M
respectively. The Λj is the bandwidth of scale level j and n = 1, · · · , r.

Needlets are a type of framelets on the sphere (Sd) associated with a quadrature rule and a specific
filter bank. This type of framelets can also be generalized to rotation group SO(3) with the same
filter bank. For simplicity, we consider the filter bank η = {a; b1, b2} with two high-pass filters. We
define the filter bank η = {a; b1, b2} by their Fourier series as follows.

â(ξ) :=


1, |ξ| < 1

8 ,

cos
(
π
2 ν(8|ξ| − 1)

)
, 1

8 6 |ξ| 6 1
4 ,

0, 1
4 < |ξ| 6

1
2 ,

b̂1(ξ) :=


0, |ξ| < 1

8 ,

sin
(
π
2 ν(8|ξ| − 1)

)
, 1

8 6 |ξ| 6 1
4 ,

cos
(
π
2 ν(4|ξ| − 1)

)
, 1

4 < |ξ| 6
1
2 ,

b̂2(ξ) :=

{
0, |ξ| < 1

4

sin
(
π
2 ν(4|ξ| − 1)

)
, 1

4 6 |ξ| 6 1
2 ,

(4)

where
ν(t) := χ3(t)2 = t4

(
35− 84t+ 70t2 − 20t3

)
, t ∈ R.

It can be verified that

|â(ξ)|2 +
∣∣∣b̂1(ξ)

∣∣∣2 +
∣∣∣b̂2(ξ)

∣∣∣2 = 1 ∀ξ ∈ [0, 1/2].

The associated needlet generators Ψ = {α;β1, β2} are explicitly given by

α̂(ξ) =

 1, |ξ| < 1
4 ,

cos
(
π
2 ν(4|ξ| − 1)

)
, 1

4 6 |ξ| 6 1
2 ,

0, else ,

β̂1(ξ) =


sin
(
π
2 ν(4|ξ| − 1)

)
, 1

4 6 |ξ| < 1
2 ,

cos2
(
π
2 ν(2|ξ| − 1)

)
, 1

2 6 |ξ| 6 1,

0, else ,

β̂2(ξ) =


0, |ξ| < 1

2
1
2 sin (πν(2|ξ| − 2)) , 1

2 6 |ξ| 6 1

0, else.

(5)
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The framelet coefficients vj,k represent low-pass coefficients, and wnj,k represent high-pass coeffi-
cients. They are defined as 〈ϕj,k, f〉 and 〈ψnj,k, f〉 respectively:

vj,k =

Λj∑
`=0

f̂`α̂

(
λ`
2j

)
√
ωj,ku` (xj,k) , wnj−1,k =

Λj∑
`=0

f̂`β̂n
(

λ`
2j−1

)
√
ωj,ku` (xj,k) . (6)

The coefficients of vj,k and wnj,k in the Fourier space are then given by

v̂j,` = f̂`α̂

(
λ`
2j

)
, ŵnj−1,` = f̂`β̂n

(
λ`

2j−1

)
(7)

Figure 2: Needlets on SO(3) centered at y0 = (α, β, γ) = (π, π/2, π) at scale j = 6. Left: ϕ6,y0 ;
Middle: ψ1

6,y0 ; Right: ψ2
6,y0

In the implementation of our model, we simply use the Fourier coefficients of {vj,k} and {wj,k}
which can be computed fast and conveniently to represent the framelet coefficients. The tightness of
framelets onM guarantees that the framelet representation of the signal is unique, and the signal can
be reconstructed by the coefficients with zero numerical error, no matter in the spatial or frequency
domain.

Needlets are a type of framelets on the sphere S2 associated with a quadrature rule and a specific filter
bank. We generalize this type of framelets to rotation group SO(3) with the same filter bank. In this
work, we use the needlet system of two levels (j = J0, J1) and 2 high-pass filters {b1, b2} (i.e., r = 2).
We use the ZYZ Euler parameterization for SO(3) and any element R ∈ SO(3) can be written as
R = R(α, β, σ), where α ∈ [0, 2π], β ∈ [0, π] and σ ∈ [0, 2π]. With the needlet filter bank, we can
obtain needlets on SO(3) group with the filtered expansion of the Fourier basis (Wigner D-functions).
In Figure 2, we show the needlets on SO(3) group at scale j = 6 at y = y(α, β, γ) ∈ SO(3), where
α = π, β = π/2, γ = π, where the left, and the middle and right illustrate the low-pass needlet and
two high-pass needlets respectively. We can observe that the low-pass needlet and high-pass needlets
extract information at different scales. They provide the approximate and detailed representation for
an SO(3) signal, as the counterparts of spherical needlets.

A.3 NEEDLET DECOMPOSTION AND RECONSTRUCTION

Algorithm 1 Decomposition of Multi-Level
Needlet Transform

Input: vJ – a (ΛJ , NJ)-sequence
Output: ({wnJ−1, w

n
J−2, . . . , w

n
J0
}rn=1, vJ0 )

vJ → v̂J
for j ← J to J0 + 1 do

v̂j−1 ←− v̂j,·â
(
2−jλ.

)
for n← 1 to r do

ŵnj−1 ←− v̂j,·b̂n
(
2−jλ.

)
wnj−1 ← ŵnj−1

vJ0 ← v̂J0

Algorithm 2 Reconstruction of Multi-Level
Needlet Transform

Input: ({wnJ−1, w
n
J−2, . . . , w

n
J0
}rn=1, vJ0 )

Output: vJ – a (ΛJ , NJ)-sequence
v̂J0 ← vJ0
for j ← J0 + 1 to J do

for n← 1 to r do
ŵnj−1 ←− wnj−1

v̂j ←− (v̂j−1,·) â
(
2−jλ.

)
+∑r

n=1 ŵn
j,·b̂

n
(
2−jλ.

)
vJ ← v̂J

8
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As Eq. (6), we have vj,k and wnj−1,k as (Λj , Nj) sequences. We have the following decomposition
relations:

vj−1,k =

Λj−1∑
`=0

f̂`α̂

(
λ`

2j−1

)
√
ωj−1,ku` (xj−1,k)

=

Λj−1∑
`=0

f̂`α̂

(
λ`
2j

)
â

(
λ`
2j

)
√
ωj−1,ku` (xj−1,k)

=

Λj∑
`=0

v̂j,`α̂

(
λ`
2j

)
√
ωj−1,ku` (xj−1,k)

= [(vj ∗j a?) ↓j ] (k),
where ↓ denotes the down-sampling operator. Similarly, for k = 0, . . . , Nj−1 and n = 1, . . . , r,

wnj−1,k =

Λj∑
`=0

f̂`β̂n
(

λ`
2j−1

)
√
ωj−1,ku` (xj−1,k)

=
(
vj ∗j (bn)

∗)
k
.

Therefore, we have the following identity for reconstruction.

ṽ := (vj−1 ↑j) ∗j a+

r∑
n=1

wnj−1 ∗j bn

= (((vj ∗j a?) ↓j) ↑j) ∗j a+

r∑
n=1

(
vj ∗j (bn)

?) ∗j bn
The multi-level decomposition and reconstruction algorithms are shown as Algorithms 1 and 2. As
plus the Fourier transforms in the algorithms can be implemented by FFT, the fast multi-level needlet
transform on S2 with N the size of the input data has the computational complextity O(N

√
logN).

With needlets fiters given, we can pre-compute the needlet coefficients and store data as signals in the
frequency domain. We can further make decomposition into a finer scale and reconstruction to obtain
lower-level approximation information, depending on the specific application scenario.

B ROTATION EQUIVARIANCE PROOF

B.1 ERROR BOUND OF ROTATION EQUIVARIANCE

In order to reduce the numerical error by the repeated forward and backward FFTs, and also to
decrease the model complexity, we apply non-linear shrinkage function on the high-pass coefficients
with an controllable parameter σ, which is an analogue to the noise level of the denoising model.
Since the low-pass coefficients provide approximate information of the input signal, our model has
approximate rotation-equivariance. According to the needlets theory, the rotation-equivariance error
in Eq. (3) due to the use of shrinkage on the high-passes has the convergence order 2−(J0+1)s.

Proof. Define

fJ = f
(L)
J0

+ f
(H),J
J0

= f
(L)
J0

+

J∑
j=J0

〈f, ψj〉ψj

as the spherical needlet approximation. By Wang et al. (2017, Theorem 3.12) , for f ∈ Ws
p(S2)

with s > 0 and J > 0, we have ‖f − fJ‖ 6 C12−Js and
∥∥∥f − f (L)

J0

∥∥∥ 6 C22−J0s, C1 and C2 are
constants that depends only on d, p, s, h, and fiter smoothness κ. Therefore,∥∥∥f (H),J

J0

∥∥∥2

=
∑
`62J

∥∥∥∥f̂ (H)
`

∥∥∥∥2

=
∥∥∥fJ − f (L)

J0

∥∥∥2

6 ‖f − fJ‖2 +
∥∥∥f − f (L)

J0

∥∥∥2

6 C12−Js + C22−J0s 6 C2−J0s,

(8)
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where C is a sufficiently large constant depending on d, p, s, h, κ, C1 and C2. The Eq. (8) holds for
all J . Then, Eq. (2.1) satisfies the following upper bound.

Error =

B∑
`=0

∥∥∥∥Shr(L̂Rf ? φ)
(H)
` −D`(R)Shr(f̂ ? φ

(H)

` )

∥∥∥∥2

=

B∑
`=0

∥∥∥Shr(D`(R)f̂
(H)
` φ̂`)−D`(R)Shr(f̂ (H)

` φ̂`)
∥∥∥2

6
B∑
`=0

[∥∥∥Shr(D`(R)f̂
(H)
` φ̂`)

∥∥∥2

+
∥∥∥D`(R)Shr(f̂ (H)

` φ̂`)
∥∥∥2
]

6
∥∥∥D`(R)f̂

(H)
` φ̂`

∥∥∥2

+
∥∥D`(R)

∥∥2
∥∥∥f̂ (H)
` φ̂`

∥∥∥2

6 2

B∑
`=0

∥∥∥f̂ (H)
` φ̂`

∥∥∥2

If the scale of the low-pass is J0, we would have

Error 6 2
∑

`>2J0+1

∥∥∥f̂ (H)
` φ̂`

∥∥∥2

6 Cφ
∑

`>2J0+1

∥∥∥f̂ (H)f
`

∥∥∥2

.

Here Cφ is a constant depending on the fiter φ. By Parseval’s identity and Eq. (8),

Error 6 Cφ
∑

`>2J0+1

∥∥∥f (H)
J0+1

∥∥∥2

6 C̃φ2−(J0+1)s,

thus completes the proof.

B.2 ROTATION EQUIVARIANCE OF SPECTRAL POOLING

Denote [D0(R), · · · , D`−1(R), D`(R)] as D(R), then

P(L̂Rf) = P([D0(R)f̂0, · · · , D`(R)f̂`])

= [D0(R)f̂0, · · · , D`/2(R)f̂`/2]

= P(f̂)� [D0(R), · · · , D`/2(R)]

= P(f̂)� P(D(R))

where � denotes element-wise multiplication, and P(·) denotes spectral pooling operator. Thus, the
spectral pooling operator is equivariant, due to the R-related operator P(D(R)).

C DETAILS OF EXPERIMENTS

C.1 SPHERICAL SIGNAL CONSTRUCTION OF MOLECULAR DATASETS

The QM7 dataset contains at total 7165 molecules and each molecule contains at most N = 23
atoms of T = 5 types (H, C, N, O, S), which is to regress over the atomic energy of molecules
given the corresponding position pi and charge zi of each atom i. Similar to Spherical CNN Cohen
et al. (2018), we generalize the Coulomb matrix (C ∈ RN×N ) proposed by Rupp et al. (2012) and
obtain 23 spherical signals for every molecule. We define a sphere Si centered at pi for each atom
i, and the potential function Uz(x) =

∑
j 6=i,zj=z

zi·z
‖x−pi‖ , where z is the charge of the atom, and x

is taken from S2, thus we produce N spherical signals of T channels for every molecule. We use
Gauss-Legendre rule to discretize the continuous functions on the sphere with L = 20, creating a
sparse N × T × (2L+ 1)× (L+ 1) tensor for each molecule.

10
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Figure 3: An illustration for computing the spheri-
cal signal of a molecule. We aggregate the infor-
mation of each atom in the molecule with relative
distance, polar angle and azimuthal angle.

To test model’s expressive ability for molecu-
lar dynamics simulations, we apply our model
to the MD17 dataset, which is to predict the
energies and forces at the atomic level for sev-
eral organic molecules with up to 21 atoms and
four chemical elements, using the molecular dy-
namics trajectories. To incorporate 3D infor-
mation, we create N spherical signals that are
centered at the positions of each atom for every
sample, where N is the number of the atoms in
the molecule. Considering the atom i, we define
a corresponding spherical signal Ui(x), where
x is taken from the sphere by Gauss-Legendre
sampling method. The MD17 dataset provides
the absolute Cartesian coordinates of atoms, thus
we can compute the relative position of each
atom relative to x. The spherical signal Ui is de-
fined by Ui(x) =

∑N
j=1N (dj , θj , ϕj), where

(dj , θj , ϕj) is the relative position of atom j rel-
ative to x, where dj , θj , ϕj denote the radial
distance, polar angle, and the azimuthal angle
respectively, as shown in Figure 3. Different
from the QM7 dataset, the MD17 contains no Coulomb matrix. To extract effective features with the
relative positions, N can be taken as a neural network function. We choose the approach of neural
networks in our implementation, since it provides an adaptive learning of features. We fine-tune each
individual hyperparameter for every type of molecules on validation sets with 1000 samplings for
both training and validation. The trained models are then applied to the test sets.

C.2 EXPERIMENTAL SETTING

Our models are trained on 24G NVIDIA GeForce RTX 3090 Ti GPUs. The hyperparemeters are
obtained by grid search. Adam (Kingma & Ba, 2014) is used as our optimizer.

For Local MNIST Classification task, we compare our model with Spherical CNNs. These two
models have a similar network architecture. The Spherical CNNs use the same architecture in Cohen
et al. (2018): S2conv-ReLU-SO(3)conv-ReLU-FC-softmax, bandwidth L = 30, 10, 6 and k = 20, 40,
10 channels. When it comes to our model, we just replace S2conv and SO(3)conv with S2-needlet
convolution and SO(3)-needlet convolution, with the same bandwidth L = 30, 10, 6 and k = 20, 40,
10 channels. The implementation uses the batch size of 64 and the learning rate 1e-3.

For QM7 task, we choose the batch size of 32 and learning rate 5e-4. For MD17 tasks, the batch size
is 32 and the learning rate is 2e-4. The bandwidth L is from 20, 20, 10, 10, 5, to 5 in the final bock
and the feature dimension is from 5, 5, 8, 16, 32, to 64. The hyperparameter σ is taken as 0.001 for
shrinkage. We run 10 epochs for QM7 task and 1000 epochs for MD17 task.

For Parameter Estimate for Gravitational Wave task, we transform the original sample rules from
HealPix to the Gauss-Legendre tensor product rule with bandwidth L = 128 by finding the nearest
HEALPix point given the Gauss-Legendre coordinates. The training dataset has 9000 spheres
(images), while the test dataset has 1000 spheres. We use 5 blocks containing needlet convolution
(S2 in the first blocks and SO(3) in the rest), shrinkage activation function and batch normalization
layers. The bandwidth is from 128, 64, 32, 32,16 to 8 in the final block and the feature is 16, 32, 64,
128, 256 respectively in each block, with batch size 16 and learning rate 5e-5.

C.3 ABLATION STUDY

Equivariance Error It can be proven that our S2-needlet convolution, SO(3)-needlet convolution
without shrinkage and spectral pooling are equivariant to SO(3) transforms for the continuous case.
In the implementation, we exploit the polynomial-exact quadrature rule to sample the sphere with
small numerical integration error. Table 4 shows the rotation-equivariance error of the modules in
our framework. Experimental results verify that the errors approximate the machine error of floating
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Table 4: Equivariance Error Results. Single denotes Single-precision floating-point format. Double
denotes Double-precision floating-point format. The values are calculated from the average of ten
trails. ReLU function in SO(3)+RELU is applied in the spatial domain, thus involving an FFT and
inverse FFT.

Operator Error (Single) Error (Double)

S2-CONV 2e-7 7e-16
SO(3)-CONV 1e-7 8e-16
SO(3)+RELU 1e-7 8e-16
SO(3)+SHRINKAGE 2e-4 5e-7
POOLING 0 0

points, except SO(3)-needlet convolution with the shrinkage mechanism which is governed by
approximate equivariance error. We observe that the equivariance errors introduced by the shrinkage
mechanism with a small value of σ (e.g., σ = 0.001) are 2e-4 and 5e-7 with Single and Double
floating-point format respectively, which are tolerable in the neural network learning.

Sensitivity Analysis As σ is a hyperparameter in the shrinkage activation function, it is critical
to know how does this value affect our model’s equivariance property. We take different values
of σ ranging from 1e-7 to 1 to study how the equivariant error changes and how much this signal
compresses. We use an SO(3) signal with the bandwidth L = 128 and send it to an SO(3)-needlet
convolutional layer with J = 7. As shown in Figure 4, when σ is greater than 0.1, the equivariance
error is around 0.1, which may affect the accuracy of our equivariant network model. When the σ
is smaller than 1e-6, the equivariance error is approaching to single-precision machine error. For
the compression rate, the shrinkage mechanism will cut off 20% signal when σ is about 0.1 and
approaching to 0 when σ is less than 1e-6.

Figure 4: Sensitivity analysis for σ. The equivariance error is near mechanism error when σ is less
than 1e-6. The shrinkage activation function will nearly compress 20% signal with σ = 0.1 and
become identity function as σ is close to 0.
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