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Abstract

Active Learning (AL) aims to optimize basic
learned model(s) iteratively by selecting and anno-
tating unlabeled data samples that are deemed to
best maximise the model performance with min-
imal required data. However, the learned model
is easy to overfit due to the biased distribution
(sampling bias and dataset shift) formed by non-
uniform sampling used in AL. Considering AL as
an iterative sequential optimization process, we
first provide a perspective on AL in terms of sta-
tistical properties, i.e., asymptotic unbiasedness,
consistency and asymptotic efficiency, with respect
to basic estimators when the sample size (size of
labeled set) becomes large, and in the limit as sam-
ple size tends to infinity. We then discuss how bi-
ases affect AL. Finally, we proposed a flexible
AL framework that aims to mitigate the impact of
bias in AL by minimizing generalization error and
importance-weighted training loss simultaneously.

1 INTRODUCTION

The main goal of AL is to iteratively optimize a basic
learning model with a finite set of data samples Dn =
{(xi, yi)}ni=1, where each data sample (xi, yi) is sequen-
tially selected from the unlabeled data pool and annotated.
AL iterates between data collection and model fitting by
repeatedly querying the labels of new data samples. Thus,
selection of both the basic learning model and selection
rule are of vital importance. From the perspective of data
collection, AL has two branches: 1) pool-based AL, which
selects new data sample(s) from a large unlabeled data pool
for annotation, and 2) stream-based AL, which receives one
data sample at a time and determines whether or not to label
the instance [Cheng et al., 2013].

Many existing AL works focus on how to design acquisition

functions based on fixed heuristics for data collection. For
instance, uncertainty-based sampling strategies aim to se-
lect unlabeled data samples with the lowest confidence (the
largest uncertainty) of being classified correctly by the basic
model [Lewis and Catlett, 1994]. Most uncertainty-based
methods belong to non-agnostic AL sampling strategies, that
is, when making selections, the active learners rely more
on the decision boundary estimated by the currently-trained
basic model [Pereira-Santos et al., 2019]. In contrast, ag-
nostic AL approaches make no assumption related to the
decision boundary learned by the basic classifier, ignoring
the information provided by the basic classifier (e.g., label
information) and only utilizing the information directly from
the unlabeled data pool [Pereira-Santos et al., 2019]. For
instance, many representativeness-based methods, which
select subsets that are most representative of the unlabeled
data pool, are agnostic AL. Combined strategies [Shen et al.,
2004, Ebert et al., 2012, Li and Guo, 2013, Ash et al., 2019]
integrate the advantages of aforementioned sampling strate-
gies, and are more adaptable to various data topologies
[Munro, 2020].

However, the whole AL process is changing constantly with
the labeled set and basic model updating in each stage, and
thus it is not enough to just collect data “actively” and treat
the model fitting stage in the same manner as passive learn-
ing. For passive learning, one key assumption is that the
training set comprises i.i.d. (independent and identically
distributed) samples from the unknown true data distribu-
tion P (x, y), Dn

i.i.d.∼ P . If we select data samples sequen-
tially by some fixed heuristics in AL (e.g., uncertainty-based
strategies), the labeled training set is not drawn i.i.d. from
P . That is, the labeled training set employed in AL is biased,
due to the recycled use of past samples at each stage and
the lack of independence between data samples [Fredlund
et al., 2010, Portier and Delyon, 2018, Farquhar et al., 2021].
In this paper, we denote the bias resulting from the fixed
heuristics during data collection as “sampling bias”, which
is inevitable during the whole AL processes.

Given a training set with sampling bias, an unbiased and
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consistent estimator of a basic model in passive learning
might no longer be unbiased (with respect to the original
dataset), even asymptotically, in AL [Sugiyama and Naka-
jima, 2009, Farquhar et al., 2021]. For instance, ordinary
least squares becomes biased due to the sampling bias prob-
lems [Sugiyama and Nakajima, 2009]. The combination of a
biased data collection procedure and biased model estimator
will result in a vicious cycle, where biased samples create
biased models, then create even more biased samples. Das-
gupta and Hsu [2008] provided a detailed explanation of this
phenomenon: many AL heuristics start by utilizing a small
initial labeled set to estimate a rough decision boundary, and
then querying points that are increasingly closer to their cur-
rent estimate of the boundary. During AL training, samples
are queried based on increasingly confident assessments of
their informativeness, e.g., the largest uncertainty, and the
labeled set will diverge farther away from the true underly-
ing data distribution. Moreover, if the basic learned model
itself is biased, the rate of divergence will be accelerated.

In this paper, we explore the relationship between data col-
lection and model fitting stages in AL, and discuss crucial
factors for designing AL approaches that help reduce the
negative effects of sampling bias. We then propose a flex-
ible AL framework that can be applied on top of existing
AL sampling schemes, through minimizing the combina-
tion of generalization error and re-weighted training loss in
each stage. In our work, we utilize existing AL sampling
schemes to generate sampling distribution. The sampling
distribution is then used to compute the importance weight
that represents the discrepancy between the underlying data
distribution and the AL sampling distribution – that is –
modeling the dataset shift. The importance weight is de-
signed for minimizing the generalization error, and is used
to re-weight the training loss for model learning in each
stage. The re-weighted training loss is an asymptotically un-
biased and consistent estimator of the true risk. Furthermore,
this risk estimator could achieve asymptotic efficiency by
optimizing its hyper-parameters.

2 RELATED WORK

One challenging and common problem in the research
fields of learning from insufficient data (e.g., AL, few-shot
learning, semi-supervised learning) is the overfitting of the
learned models due to the biased distribution formed by
limited training data. Bias appears in both stages of AL:
sampling bias, which is attributed to the AL heuristics in
data selection stage, and dataset shift, which is caused by
the sampling bias and influences the model fitting stage.

Sampling bias is a bias in which samples are collected in
a way that some samples of the intended population have
a lower or higher sampling probability than others. If sam-
pling bias is not accounted for, experiment results (e.g., per-
formance of the basic model in AL) might be erroneously

attributed to the phenomenon or the model selection under
study, rather than the method of sampling. On the one hand,
sampling bias has a negative impact on AL as discussed in
Section 1. Schütze et al. [2006] observed a “missed cluster
effect” of AL, where some important clusters in the feature
space are not represented in the AL sample set, and thus
this sample set is not sufficient for estimating a basic model
that is consistent with one learned from the true distribution.
Furthermore, AL sampling will ignore these clusters in the
data, and never query points from there, results in a local
minimum. On the other hand, sampling bias sometimes can
be helpful in AL. Mussmann and Liang [2018] proved that
the uncertainty sampling updates are preconditioned SGD
steps on the population 0/1 loss, and move in descent di-
rections for parameters that are not approximate stationary
points. Chang et al. [2017] confirmed that the proper bias
can be beneficial to generalization performance. They pro-
posed “active bias” that emphasizes uncertain points and
find that it increases the model performance, compared with
using a fully labeled set.

Dataset shift (aka covariate shift, dataset drifting) refers to
the discrepancy between the data distributions of the train-
ing and testing sets (or true underlying data distribution). It
causes a principal problem during the model fitting step in
AL, since some regions with large density in the unlabeled
data pool may not be well represented by the labeled data.
To reduce the impact of dataset shift, the labeled training
set could be re-sampled with respect to an appropriate distri-
bution, so as to minimize the statistical risk of the classifier
built on the re-sampled data [Zadrozny, 2004, Richards
et al., 2011]. Both sampling bias and dataset shift lead to
error/bias in learning the optimal hypothesis. In this paper,
we distinguish them to help explain why AL processes must
be biased: the AL sampling strategy itself brings sampling
bias, and this sampling bias creates the dataset shift.

To reduce bias problems in AL, Sener and Savarese [2017]
provided a representativeness-based model that utilizes core-
set approach (i.e., k-center) for pool-based AL, i.e. choosing
set of points such that a model learned over the selected sub-
set is competitive for the remaining data points. A rigorous
bound between the average loss over the given subset and
the remaining data points is derived by decomposing an
upper bound of the AL loss. Inspired by Sener and Savarese
[2017], we decompose the upper bound of the AL loss as
a combination of training error and generalization error,
but different from [Sener and Savarese, 2017], we focus on
modeling the discrepancy between the true underlying data
distribution and the AL sampling distribution.

Ganti and Gray [2012] and Imberg et al. [2020] pro-
posed unbiased pool-based AL sampling schemes with the
idea of “subroutine rejection-threshold” from [Beygelzimer
et al., 2009] and the Horvitz-Thompson unbiased estima-
tor [Horvitz and Thompson, 1952]. Ganti and Gray [2012]
formally proved that importance-weighted risk is an unbi-



ased estimator of the true risk. Imberg et al. [2020] derived
asymptotic Taylor expansions for the expected generalisa-
tion error and mean squared error of the predictions, and
consequently presented sampling schemes that optimise the
performance of AL approaches. Beygelzimer et al. [2009]
proposed an importance-weighted AL sampling scheme
based on the learner called a subroutine rejection-threshold,
which efficiently corrects the sampling bias. However, due
to the nature of the selected learner, their work is only appli-
cable to stream-based AL. Farquhar et al. [2021] constructed
an unbiased estimator of the empirical risk of the labeled
set via the risk of unlabeled data pool with weighted loss.
The aim is to remove the bias in AL, that is, they minimize
the difference between the two risks, not the train-test data
gap (dataset shift). In contrast, our work models the diver-
gence between the underlying distribution of the whole data
space and the AL sampling distribution, and we minimize
a more general “train-test” gap – the gap between labeled
data distribution and the true underlying data distribution.

3 METHODOLOGY

In this section, we firstly discuss crucial factors for design-
ing AL methods that reduces the aforementioned bias prob-
lems. Then we propose our AL framework that can be ap-
plied on top of existing AL strategies.

3.1 AL LOSS

Assume we have an AL strategy A for a K-class classifica-
tion task with feature space X , label space Y ∈ {1, ...,K},
classifier f and a loss function l(f(x; θ), y) : X × Y → R,
parameterized over the hypothesis θ. In general, passive
learning aims to minimize the risk:

R(θ) = E(x,y)∼P [l(f(x; θ), y)]

=

∫∫
l(f(x; θ), y)P (x, y)dxdy.

(1)

P is unknown in most practical situations, but we can obtain
sample data Dn, and thus approximate it with an empirical
distribution Pδ(x, y) =

1
n

∑n
i=1 δ(x = xi, y = yi), where

δ(·) is a Dirac mass centered at (xi, yi) [Zhang et al., 2017].
Then, the empirical risk is formulated as

Remp(θ) =

∫∫
l(f(x; θ), y)Pδ(x, y)dxdy

=
1

n

∑n

i=1
l(f(xi; θ), yi).

(2)

Generally, in statistical machine learning, there is an as-
sumption that the empirical risk will converge to the true
risk as the number of samples increases, i.e., the empirical
risk is an asymptotically unbiased estimate of the true risk,
as follows:

Lemma 1 The empirical risk Remp(θ) is an asymptotically
unbiased estimate of R(θ):

limn→∞ E[Remp(θ)−R(θ)] = 0. (3)

In AL, consider a large unlabeled data pool Du that is sam-
pled i.i.d. from P , where the label of each data is unob-
served, and an initial labeled data pool D0 = {(xi, yi)}n0

i=1

that is also sampled i.i.d. from P . Strategy A sequentially
selects an unlabeled subset from Du and queries their labels
from an oracle for building the training set. At stage t, we
collect and label new data samples Dnew

t from Du, where
|Dnew

t | = nt − nt−1 ≤ B and B is the batch size. We then
update the training set, obtaining Dt = {(xi, yi)}nt

i=1.

In most existing AL works, following multiple stages of a
myopic approach, where each stage is solved independently,
the goal of AL for a single stage is written as:

1. Select and label new samples: Dnew
t =

argminBx∈Du
a(x;A|Dt−1), where a(x;A) is the

acquisition function of AL strategy A (and parameters
within) [Gal et al., 2017], and update Dt = Dnew

t ∪Dt−1.
2. Calculate the empirical risk at stage t, denoted as
Remp

t (θ) [Sener and Savarese, 2017]:

Remp
t (θ) =

1

nt

∑nt

i=1
l(f(xi; θ), yi), (4)

and minimize it to obtain the estimated optimal hypothe-
sis at stage t: θ̂t = argminθ R

emp
t (θ).

However, as mentioned in Section 2, an AL sampling heuris-
tic will deliberately select a subset of unlabeled samples
for labeling. Thus the selected data set will be distributed
differently from the true distribution P (x, y). We denote the
data distribution induced by the AL algorithm as an instru-
mental distribution Q(x, y). Therefore, the risk estimation
during AL is actually biased since the labeled set is sampled
from Q instead of P . In this paper, we assume that AL will
not query non-existent or out-of-distribution (OOD) data
samples, and oracles/experts will not produce wrong/noisy
labels, that is, P (x, y) > 0 and Q(x, y) > 0.

Importance Weight Empirical Risk Minimization (IWERM)
is widely adopted to remove bias in AL [Shimodaira, 2000,
Sugiyama et al., 2007, Cortes et al., 2010, Vogel et al., 2020].
It is originally designed to solve dataset shift [Shimodaira,
2000, Sugiyama et al., 2007, Sugiyama and Nakajima, 2009,
Sawade et al., 2010, Vogel et al., 2020]. We denote im-
portance weight as β(x, y) = P (x,y)

Q(x,y) . After reweighing by
β, the weighted empirical risk at stage t under the Q
distribution (denote as Rw

t (θ)) is re-estimated:

Rw
t (θ) =

1
nt

∑nt

i=1
β(xi, yi)l(f(xi; θ), yi). (5)

Reweighing the empirical risk under the Q distribution



forms an unbiased estimator of the true risk:

E(X,y)∼Q

[
1
nt

∑nt

i=1
β(xi, yi)l(f(xi; θ), yi)

]
= 1

nt

∑nt

i=1
E(X,y)∼Q

[
β(xi, yi)l(f(xi; θ), yi)

]
= 1

nt

∑nt

i=1
E(xi,yi)∼Q

[
β(xi, yi)l(f(xi; θ), yi)

]
= 1

nt

∑nt

i=1

∫∫
Q(xi, yi)

P (xi,yi)
Q(xi,yi)

l(f(xi; θ), yi)dxidy

= 1
nt

∑nt

i=1

∫∫
P (xi, yi)l(f(xi; θ), yi)dxidy

= 1
nt

∑nt

i=1
R(θ) = R(θ),

where X = {x1, · · · ,xnt
} and y = {y1, · · · , ynt

}.

3.2 UPPER BOUND OF AL LOSS

From (4) and (5), we observe that AL will perform well if we
have: (i) larger labeled set, i.e., more budget; (ii) consistent
and unbiased estimator of the empirical risk; (iii) consider-
ing (5), correctly modeling the discrepancy between P and
Q, which also accelerates the convergence rate of AL. Based
on these considerations, to design a flexible AL approach,
inspired by Sener and Savarese [2017], we consider an upper
bound of the risk R(θ) using the triangle inequality:

R(θ) ≤
∣∣R(θ)−Rw

t (θ)
∣∣︸ ︷︷ ︸

1st term

+
∣∣Rw

t (θ)
∣∣︸ ︷︷ ︸

2nd term

,
(6)

The 1st term is the generalization error of the AL training
process, while the 2nd term is the training loss, as in (5). In
practice, the size of labeled set is finite and hence the loss
function is bounded. Hoeffding’s Inequality can quantify
how these factors (i.e., nt, β) affect the convergence of
the 1st term, yielding the following theorem (see proof in
supplementary materials).

Theorem 1 (Hoeffding Inequality with IWERM) Let
{(xi, yi)}nt

i=1 be nt instances that are sampled from the
instrumental distribution Q(x, y). Denote r.v. S = R(θ)−
Rw

t (θ) that takes over θ, and let b = supS, a = inf S,
E[S] = η. ∀ϵ > 0, we have

P
(∣∣R(θ)−Rw

t (θ)
∣∣ ≥ ϵ

)
≤ 2e

−2nt(ϵ−η)2

(b−a)2 . (7)

When nt → ∞, 2 exp(−2nt(ϵ−η)2

(b−a)2 ) → 0, and thus the risk
estimator Rw

t (θ) is also consistent. With ideal β, then η = 0
since Rw

t (θ) is an unbiased estimate of R(θ). Additionally,
for the vanilla risk case Remp

t (θ) (when β = 1 in Rw
t (θ)),

which is the case with most AL methods, under an AL
scenario with finite labeled set, P is not generally equal to
Q, and thus η ̸= 0 during the AL process. Thus, Remp

t (θ)

is not an unbiased and consistent estimate of the risk R(θ)
[Shimodaira, 2000]. This shows the superiority of IWERM.

For the 2nd term in (6), the empirical risk of the selected
samples are weighted appropriately to compensate for the
discrepancy between the instrumental and true distributions,
which leads to a consistent and asymptotically unbiased
estimate of the risk [Sawade et al., 2010]. Previous IWERM
works [Sugiyama et al., 2007, Sugiyama and Nakajima,
2009, Sawade et al., 2010, Vogel et al., 2020] assume that
the source data distribution for training is different with the
target data distribution for testing, but the difference only
comes from the input distributions P (x) and Q(x), while
the posterior distributions P (y|x) and Q(y|x) are assumed
to be identical. In our work, we relax this assumption and
consider that the full joint distributions P (x, y) and Q(x, y)
are different.

3.3 IMPORTANCE WEIGHT ESTIMATION

The estimation of IWERM is both unbiased and consistent
using ideal importance weight β(x, y). However, the ideal
β is not achievable in practice, and thus we approximate
β(x, y) by βt(x, y) in every stage t. The estimator based
on βt(x, y) is still consistent and asymptotically unbiased
under the following conditions:

βt(x, y) =
Pt(x,y)
Qt(x,y)

→ P (x,y)
Q(x,y) = β(x, y), as nt → ∞.

(8)
(8) holds by properly selecting the formulation of Pt and Qt,
which will be introduced in the next sections. Specifically,
if limnt→∞ βt(x, y) = 1 holds, then P (x, y) = Q(x, y) as
sample size tends to infinity. Thus, the estimator Rw

t (θ) is
asymptotically unbiased and consistent for AL sampling
strategies that converge to “non-informativeness”, which is
defined as follows:

Definition 1 (Non-informativeness) An acquisition func-
tion a(·; θ) is “non-informativeness” if the output is a con-
stant (denoted as ca) for arbitrary input x:

lim
nt→∞

a(x; θ) = ca,∀x ∈ X . (9)

We will explain the reason in Section 3.3.3.

3.3.1 P Distribution

Since P (x, y) is unknown in practice, in Bayesian inference,
a family of probability distributions Pt(x, y|ϕ) is specified
to approximate P (x, y) [Box and Tiao, 2011, Tran, 2017],
where ϕ is not known in advance and needs to be estimated
from observed data samples. At stage t, given labeled set
Dt = {(xi, yi)}nt

i=1 and a prior distribution p(ϕ), the poste-
rior distribution of the parameter ϕ is estimated as

Pt(ϕ|Dt) =
p(ϕ)

∏nt

i=1 Pt(xi, yi|ϕ)∫
p(ϕ)

∏nt

i=1 Pt(xi, yi|ϕ)dϕ
. (10)



The predictive distribution is

Pt(x, y|Dt) =

∫
Pt(x, y|ϕ)Pt(ϕ|Dt)dϕ. (11)

3.3.2 Q Distribution

Inspired by [Fredlund et al., 2010], rather than selecting a
particular datum to query, we model the query as a draw of a
sample from the distribution Q. We define the Q distribution
at stage t as follows:

Qt(x, y) = Qt(x, y; θ) =
qt(x;θ)Pt(x,y)∫∫
qt(x;θ)Pt(x,y)dxdy

. (12)

qt(x; θ) is an AL querying density function, where
qt(x; θ) > 0,∀x ∈ X and

∫
qt(x; θ)dx = 1. Note that Qt

is relative to the underlying distribution, i.e., specifies the
relative over-sampling or under-sampling w.r.t. P . Choos-
ing qt to be constant is equivalent to selecting instances
at random from the data pool (uniform sampling). In con-
trast, choosing qt to be narrow will focus AL on a particular
region, and in the limit, setting qt to a delta function will se-
lect a particular sample without reference to the underlying
distribution P [Fredlund et al., 2010].

In pool-based AL, we select instances based on
maximizing the acquisition function a(x;A): x∗ =
argmaxx∈Du

a(x;A), and thus the acquisition function
should be converted into a querying density. For example,
entropy-based uncertainty methods will select data sam-
ples with the largest entropy across all classes, and the cor-
responding acquisition function is: a(x) =

∑K
k=1 p̄(y =

k|x; θ) log p̄(y = k|x; θ), and p̄ is the predicted class prob-
ability of given x.

In our work, we convert the acquisition function to querying
density function qt by applying the softmax function

qt(xi; θ) =
exp(αta(xi;At))∑
j exp(αta(xj ;At))

, (13)

where αt is temperature hyperparameter (αt > 0), and
At is the AL strategy at stage t. Note that the softmax
does not change the ranking of the unlabeled samples for
AL sampling. We select the temperature hyperparameter
αt to preserve the asymptotic efficiency of the whole AL
processes (see Proposition 2 in Section 3.3.4).

Finally, we approximate Q(x, y) by Qt(x, y; θ, ϕ), w.r.t. qt
and Pt(x, y|ϕ), as follows:

Qt(x, y; θ, ϕ) =
qt(x; θ)Pt(x, y|ϕ)∫∫
qt(x; θ)Pt(x, y|ϕ)dxdy

. (14)

3.3.3 Importance Weight β

Next we represent the approximation of β(x, y) as
βt(x, y; θ, ϕ) at stage t as

βt(x, y; θ, ϕ) =
Pt(x,y|ϕ)

Qt(x,y;θ,ϕ)
=

∫∫
qt(x;θ)Pt(x,y|ϕ)dxdy

qt(x;θ)
.

(15)

We analyse the representation of βt when the sample size
tends to infinity. Supposing that Rw

t (θ) is an unbiased es-
timator of R(θ), which is based on a sufficiently strong
classifier (e.g., using CNN as a basic classifier). If an in-
finite number of samples are observed, the basic classifier
will have a very certain prediction given xi. Thus, AL sam-
pling strategies like entropy-based uncertainty sampling will
converge to “non-informativeness” as the sample size tends
to infinity, since all predictions are certain. Note that the
numerator in (15) is a constant w.r.t. (x, y). However, the
numerator is still required for numerical stability, as setting
it to 1 will yield large βt values that make the loss numeri-
cally unstable. Consider Assumption 1 below, in which case
the acquisition function will output a constant for any x as
the sample size increases.

Assumption 1 The existing AL strategy A adopted in AL
querying density function converge to “non-informative” as
the sample size increases.

Under Assumption 1, lim
nt→∞

q(xi; θ) = exp(αtca)
|Du| exp(αtca)

=

1
|Du| in (13), where |Du| is the size of unlabeled pool1.
Then, (15) becomes

lim
nt→∞

βt(x, y; θ, ϕ) =
∫∫

(1/|Du|)Pt(x,y|ϕ)dxdy
1/|Du| = 1, (16)

where
∫∫

Pt(x, y|ϕ)dxdy = 1 since Pt(x, y|ϕ) is a proba-
bility density function. Thus, the whole process is asymptot-
ically unbiased and consistent.

Note that (8) converges point-by-point based on our as-
sumption of “non-informativeness” and our designed Pt

and Qt. The reasons are as follows. First, in the ideal case,
as sample size tends to infinity, enough data is observed
and thus the underlying data distribution P is known. Thus,
the optimal sampling distribution should be the data dis-
tribution itself, i.e., Pi = Qi, and thus βi = Pi/Qi = 1.
Second, based on (13) and our “non-informativeness” re-
quirement, Qt would also be the same as Pt as sample size
tends to infinity, since qt converges to a constant, and thus
βi = Pi/Qi = 1. Regarding the convergence of βt in (15),
we can regard the numerator

∫∫
qt(x; θ)Pt(x, y|ϕ)dxdy as

a normalization constant. In the remaining part 1
qt(x;θ)

, qt is
the softmax function (see (13)), which tends to 0 if and only
if qt → +∞. However, this condition will never be satisfied
according to Section 4.2 in [Guo et al., 2017]. Thus, βt will
converge to a finite value.

We further explain why some AL methods can converge
to “non-informativeness” based on the assumptions in AL
sampling processes from two aspects, using entropy-based
uncertainty sampling as example. We assume that AL would
not query non-existing or out-of-distribution (OOD) data

1See more discussions and examples of “non-informativeness”
AL sampling strategies in supplementary materials.



samples and would not query wrong/noisy labels from or-
acles/experts, that is, P (x, y) > 0 and Q(x, y) > 0. Addi-
tionally, we could also obtain another vital information from
these assumptions: P (y = ytrue|xi) = 1 for all labeled sam-
ples. Firstly, after querying enough samples, any xi actually
appears in the labeled trained set, and thus we know the hard
label and are very certain about it, i.e., P (y = ytrue|xi) = 1,
thus the confidence is 1. Secondly, [de Cossio and de Cos-
sio Diaz, 2015] shows that the practice of using sample
average as surrogates of probability expectations is reliable
provided sample size is large. Equation (1) in [de Cossio
and de Cossio Diaz, 2015] shows that the entropy of model
parameters will converge to a certain value as sample size
increases. That is, after observing enough data, any given
xi will not change the basic model, and thus any xi is mean-
ingfulness to improve the basic model, which is consistent
with our proposed “non-informativeness” assumption. More
discussions are in Appendix.

3.3.4 Parameter Estimation of α

When calculating the Qt distribution, the temperature scal-
ing parameter αt in (13) needs to be estimated. We propose
a method for estimating αt by considering the asymptotic
efficiency of Rw

t (θ), i.e., the asymptotic variance of the
estimator (see proof of Proposition 1 in appendix).

Proposition 1 (Asymptotic Variance of Estimators) Let
Rw

t (θ) be defined in (5) and R(θ) be defined in (1), by
employing the “Delta Method”, we have

√
nt(R

w
t (θ)−R(θ))

nt→∞−→ N (0, σ2
Q), (17)

with σ2
Q =

∫∫
β(x, y)[l(f(x; θ), y)−R(θ)]2P (x, y)dxdy.

We next consider selecting the parameters αt so as to mini-
mize the variance of the estimator (see proof of Proposition 2
in Appendix).

Proposition 2 (Optimal Sampling Distribution) The opti-
mal instrumental sampling distribution that minimizes σ2

Q

is

Qopt
t (x, y) ∝

∣∣l(f(x; θ), y)−R(θ)
∣∣P (x, y). (18)

In practical use, we employ Pt to approximate P , and
thus, Qopt

t ≈
∣∣l(f(x; θ), y)−R(θ)

∣∣Pt(x, y). For each sam-
ple (xi, yi), define shorthand Qi(α) = Qt(xi, yi; θ, ϕ, αt),
P i = Pt(xi, yi, |ϕ), li = l(f(xi; θ), yi), and R = R(θ).
Based on (18), to obtain the optimal sampling distribution,
we set Qi(αt)

|li−R|P i = co for some constants co. Equivalently
taking the logarithm, logQi(αt)− log |li −R|P i = log co.

Algorithm 1 The proposed AL Framework.

Require: Initial labeled set D0, unlabeled data pool Du,
prior information of p(ϕ), AL method A, initial impor-
tance weight β0 = {1, 1, ...}, batch size B, oracle O.

1: Stage 0: Estimate initial model θ̂0 = minθ R0(θ) with
D0 and β0. Estimate ϕ̂0 from D0. Estimate q0(x; θ̂0).
Calculate Q0(x, y; θ̂0, ϕ̂0).

2: for stage t in 1, ..., T do
3: Update labeled set: Obtain B data samples from Du

with Qt−1, and query labels from O. Add the new
samples Dnew

t to Dt−1 to obtain Dt.
4: Update unlabeled set: update Du by removing Dnew

t .

5: Estimate Pt: Estimate ϕ̂t with Dt by (10). Calculate
Pt(x, y) by (11).

6: Estimate Qt: Update αt by (19). Calculate
qt(x; θ̂t−1) by (13) and Qt(x, y; θ̂t−1, ϕ̂t) by (14).

7: Importance weight: Calculate βt(x, y) by (15).
8: Re-train basic model(s): θ̂t = minθ R

w
t (θ) from (5).

9: end for

Thus, (α, co) can be estimated by minimizing the squared
error of the log-constant term, summed over all labeled
samples, at stage t, we have

α∗
t , c

∗
o = argmin

αt,co

∑
i
(logQi(αt)−log |li−R|P i−log co)

2.

(19)
Note that R(θ) is generally expected to be a very small value
close to zero for a well-trained model [Sener and Savarese,
2017]. In our experiments, we set R = 10−3. There is
no closed-form solution, and instead we use a numerical
optimization toolbox2 to solve for αt, co in each stage t.

3.4 PROPOSED AL FRAMEWORK

In summary, we propose a flexible AL framework on top
of existing AL strategies based on IWERM. The proposed
framework gives an asymptotically unbiased and consistent
estimate of the true risk if Assumption 1 holds, which can
be satisfied by proper selection of the AL strategy and the
basic model. Additionally, the hyperparameter αt is selected
to minimize the variance of the risk estimator, and thus
our framework is also asymptotically efficient. The whole
framework is described in Algorithm 1.

4 EXPERIMENT

To validate the effectiveness of our proposed AL framework,
we compare the performance between existing AL strategies

2E.g., minimize function in Scipy library.



(as baseline methods) and incorporated with our unbiased
AL framework (as the basic AL acquisition functions). We
also compare our model with other de-biased/less biased
AL sampling schemes.

4.1 EXPERIMENTAL SETTINGS

4.1.1 Datasets

We consider 8 datasets for classical ML tasks: 4 real-life
UCI datasets [Dua and Graff, 2017], including Clean1,
Splice, Tic-tac-toe, and Vehicle; 4 synthetic datasets, in-
cluding EX8a [Ng, 2008], Gaussian Cloud Unbalance
[Konyushkova et al., 2017], R15 and D31 [Veenman et al.,
2002]. The datasets can be categorized into: synthetic data
(EX8a, GCloudub, R15 and D31); real-life data (Clean1,
Splice, Tic-tac-toe and Vehicle); binary-class classification
tasks (EX8a, GCloudub, Clean1, Splice and Tic-tac-toe);
multi-class classification tasks (R15, D31, and Vehicle); im-
balanced data cases (GCloudub and Tic-tac-toe).

4.1.2 Baselines

We compare our model with 4 typical AL strategies [Settles,
2009], including entropy-based Uncertainty Sampling (US)
[Lewis and Catlett, 1994], Query-by-Committee (QBC) [Se-
ung et al., 1992], Expected Error Reduction (EER) [Roy
and McCallum, 2001] and Batch-mode Discriminative and
Representative AL (BMDR) [Wang and Ye, 2015]. US
finds unlabeled data samples with largest entropy of pre-
dicted probabilities. QBC minimizes the version space (set
of hypotheses that are consistent with labeled set). EER se-
lects data points with minimal expected future risk. BMDR
queries a batch of informative and representative examples
by minimizing the empirical risk bound of AL. We also
utilize these four AL strategies as basic AL methods in our
framework by using (13). We change the output of these
AL methods (the data samples to query, ranked by the cor-
responding acquisition function) to the querying density
(normalizing the actual output of the acquisition function
for unlabeled data samples).

We also compare our proposed method with 2 unbiased
AL sampling methods, which are based on importance
sampling/weighting techniques: Unbiased Pool-based AL
(UPAL) [Ganti and Gray, 2012] and Sampling-Weighted AL
(SWAL) [Imberg et al., 2020], which has 3 variants: SWAL-
cora (Corollary 1 (a) in Imberg et al. [2020]), SWAL-corb
(Corollary 1 (b) in Imberg et al. [2020]) and SWAL-prop
(Proposition 1 in Imberg et al. [2020]). The implementa-
tions of US, QBC, EER and BMDR are from ALiPy [Tang
et al., 2019]. UPAL and SWAL are re-implemented with
reference to the released code3.

3https://github.com/imbhe/OSiUAL

4.1.3 Implementation Details

We repeated each experiment 10 times with randomly split
training and testing sets, and reported the average testing
performance. We employed the same basic classifier for
the AL baselines and our methods under each dataset. To
evaluate average performance, we compute area under the
performance-budget curve (AUBC) [Zhan et al., 2021], by
evaluating the AL method for different fixed budgets (e.g.,
Accuracy vs. Budget in Figure 1). The area under the curve
is calculated by trapezoid method, with higher values reflect-
ing better performance of AL under varying budgets. More
details about experimental design are in the supplemental
materials, including how P is modeled (Section A3.3 and
Section A4.3 in supplemental materials) the description of
datasets, baselines and more implementation details (Sec-
tion A4.1-4.3 in supplemental materials).

4.2 EXPERIMENTAL RESULTS

Figure 1 presents the accuracy-budget curves with batch
size 10, with the AUBC values reported in the legend. Note
that in these experiments, the size of Du is set as the upper
bound of the AL budget. That is, the basic AL models, US,
QBC, EER and BMDR converge to the same accuracy at
the end of the AL process, since their basic classifier will be
trained on the whole training set with uniform importance
weight (the vanilla risk case).

We next analyze the experimental results w.r.t. different
dataset properties. More experimental results with different
batch size settings (B ∈ {1, 5, 20}) and for various evalua-
tion metrics (AUBC-AUC and AUBC-F1) are presented in
the supplementary materials (see Section A4.4).

4.2.1 Comparisons with Basic AL Methods

The purpose of this experiment is to observe if our proposed
approach can enhance existing AL models. Comparing with
basic AL sampling strategies, our approach significantly im-
proves the performance of the basic AL methods, by achiev-
ing faster convergence. Especially, on R15 (see Fig. 1c),
our approaches converge after querying 10 samples, while
the basic AL methods converge after 130 samples. On D31
(Fig. 1d), the improvements are more significant – our ap-
proaches converge after 40 samples, while the basic AL
methods gradually converge after 600 to 900 samples. Both
R15 and D31 have clear data/cluster distributions, but the
tasks are more difficult because there are more classes (R15
has 15 classes and D31 has 31 classes). The basic AL meth-
ods more easily fall into local optimum and make wrong
judgments of the decision boundary, while our methods
avoids this problem by correctly modeling the discrepancy
between the underlying data distribution and the current
sampling distribution, and thus achieves better performance.

https://github.com/imbhe/OSiUAL


Table 1: Comparison of our model (BMDR-based) against unbiased AL baselines. The table shows the mean and standard
deviation AUBC (acc) values, and the highest AUBC (acc) values are in bold. A paired t-test was conducted between our
method and the others, and *, **, *** indicate statistical significant differences at p < 0.05, p < 0.01, and p < 0.001,
respectively. This experiment uses 10 trials and B = 10.

Dataset SWAL-cora SWAL-corb SWAL-prop UPAL BMDR-ours
EX8a 0.825± 0.014** 0.819± 0.018** 0.832± 0.008** 0.841± 0.016 0.849 ± 0.014

GCloudub 0.945± 0.006* 0.943± 0.010* 0.946± 0.009 0.946± 0.008* 0.949 ± 0.007
R15 0.749 ± 0.053*** 0.733 ± 0.036*** 0.889 ± 0.023*** 0.881 ± 0.035*** 0.979 ± 0.006
D31 0.908 ± 0.013*** 0.908 ± 0.012*** 0.940 ± 0.005*** 0.933 ± 0.007*** 0.968 ± 0.004

Clean1 0.795 ± 0.017* 0.803 ± 0.019** 0.785 ± 0.034* 0.799 ± 0.025* 0.815 ± 0.022
Splice 0.785 ± 0.014* 0.786 ± 0.013* 0.788 ± 0.014 0.784 ± 0.013* 0.795 ± 0.013

Tic-tac-toe 0.763 ± 0.016 0.765 ± 0.017 0.762 ± 0.016 0.765 ± 0.018 0.768 ± 0.021
Vehicle 0.679 ± 0.012** 0.681 ± 0.010* 0.671 ± 0.017* 0.686 ± 0.015 0.692 ± 0.010

On GCloudub (Fig. 1b), our approaches converge after 80
samples, while for the basic AL methods, US, EER, and
BMDR converge after 100, 260, and 200 samples, respec-
tively. Besides faster convergence, our method also provides
more stable performance due to de-biasing the dataset shift.
These basic AL sampling strategies do not always perform
well on various data types, e.g., US and EER even show a
performance drop on Splice (Fig. 1d). This is caused by sam-
pling bias, the incorrect judgment of decision boundaries, as
mentioned in Section 1, while our method reduces the effect
of the sampling bias by correctly modeling the discrepancy
between the sampling distribution and the underlying data
distribution – the dataset shift. Our method improves the
AUBC(acc) performances of US from 0.711 to 0.793 and
EER from 0.716 to 0.794.

On datasets with class imbalance, the improvement from
our approach is more substantial, e.g., on GCloudub with
imbalance ratio (IR) 2.0, and on Tic-tac-toe with IR 6.8. For
instance, based on AUBC (acc), we improve BMDR from
0.923 to 0.949 on GCloudub, improve US from 0.714 to
0.772 and improve EER from 0.716 to 0.766 on Tic-tac-toe.
The better performance on imbalanced data is likely because
of the importance-weighting, which reduces bias caused by
under-sampling the larger class.

4.2.2 Comparison with Unbiased AL Methods

Comparing our approach with other unbiased AL sampling
strategies (3 variants of SWAL, and UPAL), we observe that
all these methods reduce the sampling bias problems during
the AL process. Our method achieve the best performance
on all of the 8 datasets, as shown in Fig. 2. We further
examine the differences in performance between our method
(we choose BMDR) and unbiased AL baselines (SWAL and
UPAL) by using a paired t-test on 10 repeated trials on each
dataset. The test results are shown in Table 1. Our method
outperforms the baselines at a statistically significant level
(p < 0.05) on 24 out of 32 (75%) of the experiments, while

performing similarly (p > 0.05) on 8 out of 32 (25%).
The t-test results indicate that, compared with the baseline
unbiased AL models, our model can achieve better or similar
results under various task scenarios.

Our model perform particularly well on R15 and D31, while
SWAL-cora and SWAL-corb have 10% performance drop
at the end of the accuracy curves on R15. Different from
SWAL-prop that determines the sampling probabilistic
scheme by label uncertainty alone, SWAL-cora&corb com-
pute the sampling probabilities by the location of data points
in the feature space and account for additional information
captured by the Hessian of the total loss and the gradients
of the individual losses and predictions. However, on R15,
the location information even hinders the judgement since
there are some clusters that are close to each other on R15
and hard to be classified. Similar trends are observed in D31.
There are no significant differences between our model and
baselines unbiased AL models on Tic-tac-toe – we think
this is because the result (0.76∼0.77) is already close to the
optimal performance that AL can achieve. Since this dataset
is fairly imbalanced, AL needs more data to determine the
actual decision boundary and overstep the local optimum.

In summary, our approach provides competitive experimen-
tal results for various data topologies, and our proposed
method effectively improves the basic AL models’ perfor-
mance, achieving more stable and faster convergence rate
than the baseline unbiased/de-biased AL methods.

5 CONCLUSION

In this paper, we discuss how the bias problems (i.e., sam-
pling bias, dataset shift) arise from the sample selection
and model fitting steps during the AL processes. We then
explore crucial statistical properties (i.e., asymptotically un-
biasedness, asymptotically efficiency and consistency) for
designing AL approaches that reduce the negative effects
of bias problems. Based on these considerations, we pro-
pose a flexible AL framework that operates on the top of
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Figure 1: Accuracy-budget curves for classical ML tasks
with B = 10, including the comparison between our frame-
work with basic AL methods (i.e., US, QBC, EER and
BMDR). The solid lines represent our methods and dashed
lines represent the corresponding baseline AL methods.

existing AL sampling schemes. It provides asymptotically
unbiased, efficient and consistent estimate of true risk by
utilizing sampling bias and well modeling dataset shift. The
experimental results show that the proposed framework im-
proves the generalization of various basic AL models and
also maintains a certain advantage on various data topolo-
gies, comparing with other unbiased/de-biased AL sampling
schemes.
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Figure 2: Accuracy-budget curves for classical ML tasks
with B = 10, including the comparison between our frame-
work (we select BMDR as basic AL for comparison) and
unbiased AL baselines, i.e., SWAL, UPAL.
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