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ABSTRACT

Current video mirror detection models demonstrate satisfactory performance by
analyzing different attributes of mirrors and incorporating temporal information.
However, these models still struggle to detect mirrors in complex and dynamic
scenarios. A simple yet critical visual cue is that objects reflected in a mirror appear
to be farther away than the mirror itself. Motivated by this observation, we propose
to explicitly analyze the Depth of Mirror (DOM) within a video to effectively
localize mirrors - DOM refers to distinct perceived distances that make mirror
regions appear farther away from their surroundings. Specifically, we devise a novel
framework called FTM-Net, which contains two main contributions: a Pattern-
Compensated DOM estimation strategy and a Dual-Granularity Affinity module.
The Pattern-Compensated DOM estimation strategy uses multiple visual mirror
patterns to refine the DOM, enhancing the accuracy of mirror localization in a single
image. Furthermore, the Dual-Granularity Affinity module can effectively detect
mirrors in video sequences by tracking and integrating DOM changes across frames.
Experimental results on a benchmark dataset show that our model significantly
outperforms 18 state-of-the-art methods in the video mirror detection task.

1 INTRODUCTION

Mirrors are commonly found in our daily lives; however, their presence can have a significant negative
impact on various applications, such as drone tracking (Chen et al., 2017b), robot navigation (Gul
et al., 2019), and so on. Accurate mirror detection is crucial for avoiding potential safety issues in
these applications. Therefore, the development of mirror detection models is essential to precisely
detect mirrors and to provide critical mirror information for other tasks. As shown in Figure 1 and
according to optical principles (Born & Wolf, 2013; Mei et al., 2021), objects reflected in a mirror
appear to be farther away than the mirror itself. Motivated by this observation, we introduce a new
concept, the Depth of Mirror (DOM), which identifies areas of the image that appear farther away
from their surroundings and are likely to be mirrors. We argue that accurately analyzing DOM is
crucial for effective mirror detection.

While the existing literature has primarily focused on single-image mirror detection by exploring
the attributes of mirrors themselves (Lin et al., 2023; Liu et al., 2023c; Yang et al., 2019), these
methods struggle with video mirror detection tasks due to the absence of temporal information across
video frames. Recently, VMD-Net (Lin et al., 2023) achieved promising video mirror detection
results by utilizing both intra-frame and inter-frame correspondences to model temporal information.
However, merely modeling temporal information without considering mirror information proves
to be insufficient, as mirrors reflect actual objects, complicating the localization of mirror areas in
dynamic scenes. This limitation underscores the necessity for a comprehensive approach that not
only models temporal dynamics but also integrates these with DOM changes to thoroughly address
the challenges of video mirror detection.

To this end, we introduce a novel method named FTM-Net (Farther Than Mirror), which features a
Pattern-Compensated DOM estimation strategy and a Dual-granularity Affinity module for video
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Figure 1: Visual Clue: objects reflected in the mirror appear farther than the mirror itself. Case 1:
objects behind the camera. Case 2: objects between the camera and the mirror. Both Case 1& 2’s
reflections appear farther away than the mirror. Case 3: objects behind the mirror, which also appear
far, but must be excluded from the Depth of Mirror (DOM) analysis to ensure accuracy.

mirror detection tasks. The Pattern-Compensated DOM estimation strategy firstly generates a DOM
from a depth estimation network to identify regions of the image that are farther away from their
surroundings and likely to be mirrors, as shown in Cases 1 & 2 in Figure 1. Considering a scenario
illustrated in Case 3 of Figure 1, where non-mirror objects are physically farther than mirrors and
might be incorrectly included in the DOM, we further refine and compensate the DOM using multiple
mirror patterns. This refinement produces a more precise pattern-compensated DOM. To further
enhance the detection and analysis in dynamic mirror interactions, we design a Dual-Granularity
Affinity module that integrates both pixel and pattern changes of DOM-related video features into the
current frame feature. Our main contributions are summarized as follows:

• We present a novel model named FTM-Net to address video mirror detection tasks, in which
we highlight:

– A novel Pattern-Compensated DOM estimation strategy that integrates DOM with
multiple mirror patterns to more accurately detect mirrors in single frames.

– A Dual-Granularity Affinity module integrates both pixel and pattern changes of video
features into the current frame feature, enhancing the temporal representation related
to mirror detection.

• Extensive experimental results on a benchmark dataset demonstrate that our FTM-Net
outperforms 18 leading state-of-the-art methods for video mirror detection.

2 RELATED WORK

Image Mirror Detection. Detecting mirrors in an image often works as the first step in various
computer vision applications, including drone tracking and robot navigation. Numerous methods
have been developed for mirror segmentation tasks. For example, MirrorNet (Yang et al., 2019)
introduced the first mirror detection dataset and network, utilizing contextual contrasted information
for accurate detection. PMDNet (Lin et al., 2020) presents a more challenging benchmark for mirror
detection tasks by leveraging multi-scale mirror edge features to enhance perception. More recently,
VCNet (Tan et al., 2022) has further improved mirror detection performance by exploiting chirality
cues and implicit correspondences. Mei et al. (Mei et al., 2021) propose the first RGB-D mirror
segmentation dataset and utilize depth information to assist in mirror detection. However, this method
requires additional devices to simultaneously capture the RGB image and depth map. Furthermore,
these methods still fall short when applied to video mirror detection, as they do not consider the
temporal relationships between adjacent frames.

Video Shadow/Saliency/Mirror Detection. Many video-based methods have been proposed to
explore temporal information. Video shadow detection task has been extensively studied in recent
years. For instance, Scotch-Soda (Liu et al., 2023c) presents a new type of trajectory attention
and employs a contrastive loss to help the model learn more robust representations of shadows.
Additionally, Li et al. (Li et al., 2019) propose a motion-guided attention mechanism by incorporating
optical flow to enhance appearance features for video saliency detection. Despite these advancements
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Figure 2: The overview of our FTM-Net. First, the video input is fed into the DepthAnything
encoder to extract DOM video features. Then, the DepthAnything and Mirror Pattern decoders are
employed to generate a pattern-compensated DOM. The pattern-compensated DOM is integrated into
a segmentation encoder with the input frame xt and the Dual-Granularity Affinity module is used
to merge the combined feature F I+D

t with the DOM video feature. Finally, the fused feature F̃ I is
processed through a segmentation decoder to generate the final mirror detection map.

in video shadow/saliency detection, the challenge of video mirror detection has only recently begun
to be addressed. VMD-Net (Lin et al., 2023) introduces the first video mirror detection dataset and
utilizes both intra-frame and inter-frame correspondences to capture temporal information. However,
while its performance is promising, relying solely on temporal information proves insufficient
due to the complex reflective attributes of mirrors, which complicate the accurate localization and
identification of mirrored surfaces in dynamic scenes.

Depth Estimation Networks. Depth estimation is crucial in computer vision for the perception
and understanding of real scenes. Eigen et al.(Eigen et al., 2014) introduced the first multi-scale
fusion network based on deep learning to predict depth maps. Subsequently, numerous studies have
enhanced depth estimation accuracy by incorporating additional priors(Li et al., 2015; Shao et al.,
2023; Liu et al., 2023b) or optimizing objective functions (Yin et al., 2019; Xian et al., 2020; Liu
et al., 2023a). However, these methods are often limited by data scalability and struggle to generalize
well to unseen domains. To address these challenges, recent innovations inspired by the Segment
Anything model (SAM) have emerged. Notably, DepthAnything (Yang et al., 2024) designed a
foundation model that can generate accurate depth annotations for images across various scenarios in
a zero-shot manner.

Affinity Mechanism for Video Processing. The affinity mechanism has been proven to be an
efficient and effective way to capture video features by modeling the relationship between the features
of the current frame and contextual frames, where contextual frames refer to those previous to the
current one (Cheng et al., 2021b). In this mechanism, the negative squared Euclidean distance is
employed as the similarity function to capture the relationship between features:

Si,j = −
∥∥∥kM

i − kQ
j

∥∥∥2
2
= 2 · kM

i · kQ
j −

∥∥kM
i

∥∥2
2
−
∥∥∥kQ

j

∥∥∥2
2
, (1)

where kM
i represents the memory key of the current frame and kQ

j is the query key of the contextual
frames, and the latter expression offers a more efficient way to compute the similarity matrix.
Although useful, this affinity module computes only the pixel relationship, overlooking the unique
visual patterns of objects represented in the features level (Chu et al., 2016; Wu et al., 2023). To
address this limitation, we design a Dual-Granularity Affinity module, which consists of both point-
wise and pattern-wise affinity mechanisms. This design improves the temporal representation of
objects, such as mirrors or shadows, by better capturing the complex patterns that distinguish them.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHOD

In this section, we first introduce a novel Pattern-Compensated Depth of Mirror (DOM) estimation
strategy. Next, we provide a detailed explanation of our novel Dual-Granularity Affinity module.
Finally, we describe the overall workflow of our FTM-Net.

3.1 PATTERN-COMPENSATED DOM ESTIMATION

DepthAnything for DOM Estimation. To capture the DOM, which identifies areas of the image that
are far from the viewer and likely to contain mirrors, we use DepthAnything as the DOM estimation
network. DepthAnything, including an encoder and a decoder, is used without any training process.
The parameters of DepthAnything are frozen and used to generate the DOM in a zero-shot manner.

Pattern Decoder for Enhanced DOM. Since DepthAnything is used with a frozen state during the
training stage, the output DOM may inadvertently include some non-mirror regions that are also
physically farther than the mirror itself; as shown in Case 3 of Figure 1. Therefore, relying solely on
DepthAnything to estimate DOM is inadequate for accurately detecting mirrors. To overcome this
limitation, we introduce a mirror-pattern decoder that outputs multiple potential patterns specifically
for mirrors. This decoder shares a similar architecture with the DepthAnything decoder but differs
in two key aspects. First, instead of outputting a single channel as the DepthAnything decoder,
the mirror-pattern decoder outputs multiple channels, each representing a different mirror pattern.
Second, unlike the frozen state of the DepthAnything model, this decoder is actively trained to learn
these mirror patterns. The output mirror patterns are then concatenated with the initial DOM map to
produce a refined DOM, enhancing mirror detection accuracy.

3.2 DUAL-GRANULARITY AFFINITY (DGA)

The affinity mechanism is widely used to extract temporal features by computing relationships
between pixels in the current frame and contextual frames, where contextual frames refer to those
previous to the current one. By providing a temporal context, this mechanism has proven to be
powerful in understanding motion and changes over time. However, this method often overlooks
the unique visual patterns of objects (Wu et al., 2023; Chu et al., 2016). To address this limitation,
we have designed a Dual-Granularity Affinity (DGA) module, which includes both point-wise and
pattern-wise affinity. This module enhances the representation of temporal relationships by capturing
not only pixel relationships but also the broader visual patterns that define object behavior in video
sequences, as depicted in Figure 2.

Point-wise Affinity. The point-wise affinity begins with two features: the current frame Image
and DOM combined feature F I+D

t and the Video-level DOM-related feature FV . The point-wise
similarity matrix is then calculated as follows:

SPo
i,j = 2 · (FV )Ti · (F I+D

t )j −
∥∥(FV )Ti

∥∥2
2
−

∥∥(F I+D
t )j

∥∥2
2
, (2)

where FV ∈ RC× k×H×W
16×16 and F I+D

t ∈ RC×H×W
16×16 . T denotes matrix transpose operator. After

computing the point-wise similarity matrix SPo
i,j , the normalized affinity matrix WPo is derived.

Then, the final output feature FPo, which incorporates contextual information from previous frames,
is defined as follows:

FPo
t = FV · WPo, where WPo =

exp
(
SPo
i,j

)∑
x exp

(
SPo
x,j

) ∈ R
k×H×W
16×16 ×H×W

16×16 . (3)

Pattern-wise Affinity. Pattern-wise affinity also begins with two features: the current frame Image
and DOM conbined feature F I+D

t and the video-level DOM-related feature FV . Instead of capturing
pixel relationships, this approach aims to capture the relationship between the object in the current
frame and the different visual patterns of objects in previous frames. Hence, a temporal pooling
operator ψ is employed to maintain spatial dimensions. The pattern-wise similarity matrix Spa is
defined as follows:

SPa
i,j = 2 · ψ(FV )i · (F I+D

t )Tj −
∥∥ψ(FV )i

∥∥2
2
−
∥∥(F I+D

t )Tj
∥∥2
2
. (4)
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After computing the pattern-wise similarity matrix SPa
i,j , the normalized similarity matrix WPa is

derived. Subsequently, the final output for the pattern-wise integrated feature FPa, which incorporates
contextual pattern information from previous frames, is defined as follows:

FPa
t = ψ(FV )T · WPa, where WPa =

exp
(
SPa
i,j

)∑
x exp

(
SPa
x,j

) ∈ RC×C . (5)

The final output of our DGA module F̃t is derived from the concatenation of FPo
t and FPa

t .

3.3 OVERALL WORKFLOW

Figure 2 demonstrates the overall workflow of the FTM-Net. Overall, our method takes one current
frame xt, and its k − 1 before video sequence V : {xt−k−1, ..., xt−1, xt} ∈ Rk×3×H×W as inputs;
and output a mirror detection result. Our two inputs are mainly used in two stages: (i) The DOM
estimation stage and (ii) the DOM temporal information integration stage.

DOM Estimation Stage. In the DOM estimation stage, the video input V is fed into the
DepthAnything encoder to extract DOM video features from different frames, denoted as FV =

{FV
t−k−1, ..., F

V
t−1, F

V
t } ∈ Rk×C× H

16×
W
16 , where C is feature dimension. We further fuse the

video feature FV using our DGA module to get an image-level feature F̃V
t . Then, two decoders

(DepthAnything Decoder and Mirror Pattern Decoder) are employed to predict the DOM and mir-
ror patterns, respectively. The outputs DOM and mirror patterns are concatenated to generate a
pattern-compensated DOM.

DOM Temporal Change Integration Stage. The second stage utilizes three inputs: the current
frame xt, DOM video features FV and the pattern-compensated DOM from the first stage. First, the
pattern-compensated DOM is integrated into a segmentation encoder via a simple patch embedding
layer with the input frame xt to generate the DOM-aware image feature F I+D

t , where I denotes
Image and D represents DOM. Then, we utilize the Dual-Granularity Affinity module to merge the
image and DOM combined feature F I+D

t with the DOM-related video feature FV , aiming to achieve
a better perception of mirrors. Finally, the fused feature F̃ I is processed through a segmentation
decoder to generate the final mirror detection map for the current frame xt.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate our method on the VMD-D dataset, which is the first large-scale video
mirror detection dataset consisting of 269 videos in 14,988 image frames with corresponding precise
annotations from diverse scenes. We follow the same data splitting setting of (Lin et al., 2023) to
divide the entire VMD-D dataset into a training set with 143 videos (7835 images) and a testing set
with 126 videos (7152 images). The frame rate is 30 FPS for all videos and the images in each video
are with a high resolution of 1920 × 1080.

Evaluation Metrics. Following previous works (Lin et al., 2023; Tan et al., 2022; Lin et al., 2020), we
adopt intersection over union (IoU), pixel accuracy (Accuracy), F-measure (Fβ), and mean absolute
error (MAE) to evaluate our method.

Implementation Details. Our model is implemented in PyTorch 2.0.1-cuda11.7 and trained on four
NVIDIA 4090 GPUs (24G memory for each one) with a batch size of 8. The segmentation model
used in our method is SegFormer (Xie et al., 2021), which is initialized using the weights from the
Mit-B2 model pre-trained on the ADE20K dataset (Zhou et al., 2017; 2019). We use pre-trained
DepthAnything-S (Yang et al., 2024) as our depth estimation network. The remaining parameters
are initialized using the Xavier (Glorot & Bengio, 2010) method. During training, we resize all
video frames to 512 × 512 and use a random horizontal flip for data augmentation. We use an
Adam (Loshchilov & Hutter, 2017) optimizer along with a poly learning rate scheduler (an initial
learning rate of 1e-3 and a weight decay of 3e-5) and run a total of 15 epochs for all experiments and
ablation studies. For inference, we do not apply any post-processing techniques and only resize the
resolution of input frames to 512 × 512.
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METHODS EVALUATION METRICS

Tasks Techniques Type IoU ↑ Accuracy ↑ Fβ ↑ MAE ↓

SOD
GateNet (Zhao et al., 2020) Image 0.429 0.851 0.665 0.153
MINet (Pang et al., 2020) Image 0.412 0.854 0.676 0.148

IOS

DeepLabV3 (Chen et al., 2017a) Image 0.481 0.846 0.681 0.157
PSPNet (Zhao et al., 2017) Image 0.464 0.850 0.665 0.152
OCRNet (Yuan et al., 2020) Image 0.394 0.786 0.640 0.175

Mask2Former (Cheng et al., 2021a) Image 0.547 0.862 0.691 0.137

VSD

TVSD (Chen et al., 2021) Video 0.480 0.875 0.746 0.125
STICT (Lu et al., 2022) Video 0.164 0.809 0.530 0.198

Sc-Cor (Ding et al., 2022) Video 0.512 0.863 0.696 0.137
Scotch-Soda (Liu et al., 2023c) Video 0.587 0.878 0.749 0.121

VOS
HFAN (Pei et al., 2022) Video 0.459 0.876 0.706 0.124

STCN (Cheng et al., 2021b) Video 0.445 0.859 0.670 0.140

IMD

GlassNet (Lin et al., 2021) Image 0.552 0.864 0.718 0.137
MirrorNet (Yang et al., 2019) Image 0.505 0.855 0.681 0.145

PMDNet (Lin et al., 2020) Image 0.532 0.872 0.749 0.128
VCNet (Tan et al., 2022) Image 0.539 0.877 0.749 0.123
HetNet (He et al., 2023) Image 0.531 0.868 0.748 0.131

VMD
VMD-Net (Lin et al., 2023) Video 0.567 0.895 0.787 0.105

Ours Video 0.649 0.913 0.833 0.083

Table 1: Quantitative comparison between the proposed FTM-Net and 18 state-of-the-art methods
from relevant fields on the VMD-D dataset. The ↑ denotes the higher the value is the better the
performance is, whilst the ↓ means the opposite.

Ours HetNetMask2former SC-Cor SCOTCH	and	SODAVCNet VMD-NetImage Ground	Truth

Figure 3: Visual comparisons of video mirror detection results predicted by our FTM-Net and
compared methods. Apparently, our network can obtain more accurate mirror detection results than
all compared methods. and our results are more consistent with the ground truths. Video results can
be found in supplementary material.

4.2 COMPARISON AGAINST STATE-OF-THE-ART METHODS

Compared Methods. Following the same setting of the recent VMD-Net, we first compare our
network with 14 state-of-the-art methods, including GateNet and MINet for salient object detection;
DeepLabV3, PSPNet, and OCRNet for semantic segmentation; TVSD, STICT, Sc-Cor, and Scotch-
Soda for video shadow detection; HFAN for video object segmentation; GlassNet for glass surface
detection; as well as MirrorNet, PMDNet, and VCNet for single-image mirror detection. Moreover,
we add four new methods for comparisons: Mask2Former for semantic segmentation, Scotch-Soda

6
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Figure 4: Parameter scale and inference efficiency comparisons. FTM-Net achieves the best perfor-
mance with fewer parameters.

for video shadow detection, HetNet for single-image mirror detection, and STCN for video object
segmentation. We obtain the results on VMD-D dataset by downloading the results from VMD-Net
official repository and re-train other methods with unified training parameters to keep fairness.

C 2 4 6 8 10

IoU ↑ 0.629 0.632 0.631 0.631 0.628
Accuracy ↑ 0.903 0.905 0.908 0.908 0.906
Fβ ↑ 0.818 0.820 0.825 0.821 0.818

MAE ↓ 0.093 0.088 0.089 0.090 0.090

Table 2: Abl. of pattern map dimensions.

Quantitative Comparisons. As shown in Ta-
ble 1, Scotch-Soda has the best IoU performance
of 0.587, while VMD-Net has the best Accu-
racy performance of 0.895, the best Fβ perfor-
mance of 0.787, and the best MAE score of
0.105 among the 18 compared methods. Com-
pared to VMD-Net, our network outperforms
VMD-Net in terms of all four metrics. Specifi-
cally, our network improves the IoU score from
0.567 to 0.649, the Accuracy score from 0.895 to 0.913, and the Fβ score from 0.787 to 0.833, and
reduces the MAE score from 0.105 to 0.083.

Qualitative Comparisons. Figure 3 visually compares mirror detection results produced by our
network and state-of-the-art methods on different input video frames. For these small mirrors in the
first three rows, our method can detect more details of these small mirrors. For big mirror objects at
the fourth and fifth rows, all compared methods tend to neglect parts of mirror regions, while our
method achieves a more complete result. Moreover, for these input video frames at the last two lines,
compared methods tend to wrongly identify non-mirror objects as the mirror areas, while our method
has a more accurate mirror detection result since our model can learn the mirror-related knowledge
from the training dataset.

k 3 5 7 9 11

IoU ↑ 0.631 0.635 0.642 0.649 0.645
Accuracy ↑ 0.908 0.909 0.910 0.913 0.912
Fβ ↑ 0.825 0.826 0.830 0.833 0.829

MAE ↓ 0.089 0.085 0.083 0.083 0.084

Table 3: Abl. of video frame number.

Parameter Scale and Inference Efficiency
Comparisons. FTM-Net is an efficient method
with fewer parameters and a faster inference
speed. Figure 4 (a) presents the Fβ , IoU scores,
along with the corresponding parameter scale
of our FTM-Net and VMD-Net. Specifically,
our FTM-Net achieves an 0.833 Fβ and a 0.649
IoU score but it has only 57.41M parameters
and 35.35M trainable parameters. Furthermore,
we compare our FTM-Net against state-of-the-art methods in terms of frames per second (FPS).
Figure 4 (b) and (c) demonstrate the IoU score, the Fβ score, and the FPS of our network and five
state-of-the-art methods. Apparently, we can find that our network has higher IoU, Fβ , and FPS
scores than all five compared methods. These results underline the effectiveness of our design for the
video mirror detection task.

4.3 ABLATION STUDY

The Dimension of Pattern Map. We use the hyper-parameter C to control the dimension of the
pattern map. We fix the number of video frames k as 3 to discuss C. As shown in Table 2, when the C
is 6, our network achieves the best performance in terms of Fβ and IoU. Hence, we empirically set
the dimension of pattern map C to be 6 for all our experiments.
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Index
PC-DOM DGA

IoU↑ Accuracy↑ Fβ↑ MAE↓
DOM PC Point Pattern

M1 0.552 0.866 0.758 0.114
M2 ✓ 0.592 0.897 0.804 0.102
M3 ✓ ✓ 0.617 0.905 0.815 0.094

M4 ✓ ✓ ✓ 0.625 0.905 0.827 0.089
M5 ✓ ✓ ✓ 0.627 0.907 0.829 0.085

Ours ✓ ✓ ✓ ✓ 0.649 0.913 0.833 0.083

Table 4: Ablation study on different components of our proposed method on the VMD-D dataset.

MODULE IoU↑ Accuracy↑ Fβ ↑ MAE↓

Single Frame 0.617 0.905 0.815 0.094
Pooling (Boureau et al., 2010) 0.622 0.905 0.819 0.089

Memory (Oh et al., 2019) 0.619 0.903 0.822 0.086
PATrans (Wu et al., 2023) 0.625 0.907 0.822 0.086

DGA (ours) 0.649 0.913 0.833 0.083

Table 5: Abl. of temporal fusion modules.

The Number of Input Video Frames. Then,
we fix the dimension of pattern map C as 6 to
evaluate the hyper-parameter k, which denotes
the number of input video frames. Table 3 shows
the results of Fβ , IoU, and the FPS (frames per
second) when k is increased from 3 to 11 gradu-
ally. We can observe that when the video frame
number k = 9, our method achieves the highest
IoU and Fβ . Hence, we confirm k = 9 as our
default setting.

The Effectiveness of Major Modules in FTM-Net. We conduct ablation studies to evaluate the
effectiveness of two major components (i.e., PC-DOM and DGA) of our network. As shown in
Table 4, M1 utilizes the original image-based SegFormer (Xie et al., 2021). However, M1 cannot
effectively address the video mirror detection task, as it fails to capture the temporal information
between different frames and does not consider depth information as a prior cue. Regarding M2,
we incorporate DOM prediction based on M1 to offer depth as prior information, which achieves
improvements on all four metrics compared to M1. Then, for M3, we integrate pattern-compensated
DOM to further enhance the depth information. M3 achieves scores of 0.617, 0.905, 0.819, and
0.094 for IoU, Accuracy, Fβ , and MAE, respectively. Moreover, we use our proposed DGA as the
temporal fusion module and confirm the effectiveness of point-wise affinity (M4) and pattern-wise
affinity (M5) separately. Finally, our FTM-Net, built upon the PC-DOM and DGA modules, achieves
state-of-the-art results on all four metrics.

The Temporal Fusion Modules. To validate the effectiveness of our proposed DGA module
compared to other temporal information fusion modules, we chose average pooling (Boureau et al.,
2010), memory mechanisms (Oh et al., 2019), and PATrans (Wu et al., 2023) as comparison modules.
As shown in Table 5, our DGA module achieves superior performance on all four metrics since it not
only considers the relationships among different points but also accommodates visual patterns.

BACKONES #Para IoU↑ Accuracy↑ Fβ ↑ MAE↓

Res101 (He et al., 2016) 69.28M 0.643 0.912 0.821 0.088
Swin-S (Liu et al., 2021) 92.32M 0.648 0.912 0.828 0.085
CA-M (Yu et al., 2024) 98.65M 0.651 0.917 0.838 0.082

Seg-B3 (Xie et al., 2021) 73.01M 0.654 0.915 0.833 0.079

Seg-B2 (ours) 57.41M 0.649 0.913 0.833 0.083

Table 6: Abl. of different backbones.

The Effect of Different Backbones. Our FTM-
Net is a versatile approach that can adapt to
various backbones. As shown in Table 6, we
choose ResNet101 (He et al., 2016) (Res101),
SwinTransformer-Small (Liu et al., 2021) (Swin-
S), CaFormer-Medium (Yu et al., 2024) (CA-M),
SegFormer-B3 (Xie et al., 2021) (Seg-B3), and
SegFormer-B2 (Xie et al., 2021) (Seg-B2) to an-
alyze their performance and the corresponding
parameter scale. Seg-B2 achieves performance
comparable to that of the other backbones but with fewer parameters, only 57.41M. Therefore, we
choose Seg-B2 as default setting.

The Label Efficiency of FTM-Net. Our FTM-Net can achieve comparable video mirror detection
performance with fewer labeled data, as it utilizes the pattern-compensated depth map as prior
information. As shown in Figure 5, our FTM-Net outperforms other methods in terms of IoU score
with only 40% labeled training data. Meanwhile, for the Fβ score, FTM-Net achieves a comparable
performance with only 54% labeled training data.

Visualization for Pattern-compensated Depth of Mirror. Our proposed pattern-compensated
decoder outputs multiple potential pattern maps to refine the original depth map. As shown in Figure

8
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𝐹!

(a)	Comparison	on	Different	Training	Data	Scale	(IoU)

Io
U

Percentage	of	training	data	(%)Percentage	of	training	data	(%)
(b)	Comparison	on	Different	Training	Data	Scale	(𝐹!)

Save	60%	data
Save	46%	data

FTM-Net	(ours)
Scotch-Soda
VMD-Net

FTM-Net	(ours)
Scotch-Soda
VMD-Net

Figure 5: Visualization of data efficiency for our FTM-Net.

1
Current Frame DOM Pattern Map Reference Frame Affinity MatrixCurrent Frame

(a) The compensation capability of pattern maps. (b) Visualization for the Dual-Granularity Affinity.

Compensation Relationship

=

=

PC-DOM

Figure 6: Visualization of the predictions made by the Pattern-Compensated decoder and the Dual-
Granularity Affinity module.

6 (a), in some cases objects outside mirrors might have significant depth. Hence, the corresponding
pattern maps can offer the compensation information for more accurate mirror localization.

Visualization for Dual-granularity Affinity. The dual-granularity affinity module can effectively
model the relationship between different video frames. As illustrated in Figure 6 (b), the dual-
granularity affinity module allows for the detection of similar objects between the current and
reference frames. The corresponding active regions are prominent, showcasing the contextual
information integration capability of our method.

5 BROADER IMPACTS AND LIMITATIONS

As a research work in video mirror detection, we believe this paper will not negatively impact society.

Broader Impacts. Our method can improve visual perception and safety for automated applications.
Accurate mirror detection is crucial for applications such as drone tracking and robot navigation. It
helps in avoiding potential safety issues by providing additional reference information.

Limitations. Like other methods, our method can detect mirrors well by introducing temporal DOM
as guidance, but it might struggle with the complete details of the mirrors in some complex scenes.).

6 CONCLUSION

In this work, we introduce FTM-Net, a novel framework for effective mirror localization in videos.
Inspired by a simple visual clue, we designed a Pattern-Compensated DOM estimation strategy
to enhance mirror detection accuracy in single images and a Dual-Granularity Affinity module to
track and integrate DOM changes across video frames. Empirical results demonstrate that FTM-Net
significantly outperforms 18 leading state-of-the-art methods in video mirror detection.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Max Born and Emil Wolf. Principles of optics: electromagnetic theory of propagation, interference
and diffraction of light. Elsevier, 2013.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 111–118, 2010.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017a.

Peng Chen, Yuanjie Dang, Ronghua Liang, Wei Zhu, and Xiaofei He. Real-time object tracking on a
drone with multi-inertial sensing data. IEEE Transactions on Intelligent Transportation Systems,
19(1):131–139, 2017b.

Zhihao Chen, Liang Wan, Lei Zhu, Jia Shen, Huazhu Fu, Wennan Liu, and Jing Qin. Triple-
cooperative video shadow detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2715–2724, 2021.

Bowen Cheng, Anwesa Choudhuri, Ishan Misra, Alexander Kirillov, Rohit Girdhar, and Alexander G
Schwing. Mask2former for video instance segmentation. arXiv preprint arXiv:2112.10764, 2021a.

Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethinking space-time networks with improved
memory coverage for efficient video object segmentation. Advances in Neural Information
Processing Systems, 34:11781–11794, 2021b.

Xiao Chu, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. Structured feature learning for pose
estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4715–4723, 2016.

Xinpeng Ding, Jingwen Yang, Xiaowei Hu, and Xiaomeng Li. Learning shadow correspondence
for video shadow detection. In European Conference on Computer Vision, pp. 705–722. Springer,
2022.

David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image using a
multi-scale deep network. Advances in neural information processing systems, 27, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Faiza Gul, Wan Rahiman, and Syed Sahal Nazli Alhady. A comprehensive study for robot navigation
techniques. Cogent Engineering, 6(1):1632046, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Ruozhen He, Jiaying Lin, and Rynson WH Lau. Efficient mirror detection via multi-level heteroge-
neous learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
790–798, 2023.

Bo Li, Chunhua Shen, Yuchao Dai, Anton Van Den Hengel, and Mingyi He. Depth and surface
normal estimation from monocular images using regression on deep features and hierarchical crfs.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1119–1127,
2015.

Haofeng Li, Guanqi Chen, Guanbin Li, and Yizhou Yu. Motion guided attention for video salient
object detection. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 7274–7283, 2019.

Jiaying Lin, Guodong Wang, and Rynson WH Lau. Progressive mirror detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3697–3705, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jiaying Lin, Zebang He, and Rynson WH Lau. Rich context aggregation with reflection prior for
glass surface detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13415–13424, 2021.

Jiaying Lin, Xin Tan, and Rynson WH Lau. Learning to detect mirrors from videos via dual
correspondences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9109–9118, 2023.

Lihao Liu, Angelica I Aviles-Rivero, and Carola-Bibiane Schönlieb. Contrastive registration for
unsupervised medical image segmentation. IEEE Transactions on Neural Networks and Learning
Systems, 2023a.

Lihao Liu, Yanqi Cheng, Dongdong Chen, Jing He, Pietro Liò, Carola-Bibiane Schönlieb, and
Angelica I Aviles-Rivero. Traffic video object detection using motion prior. arXiv preprint
arXiv:2311.10092, 2023b.

Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, and
Angelica I Aviles-Rivero. Scotch and soda: A transformer video shadow detection framework.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10449–10458, 2023c.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Xiao Lu, Yihong Cao, Sheng Liu, Chengjiang Long, Zipei Chen, Xuanyu Zhou, Yimin Yang, and
Chunxia Xiao. Video shadow detection via spatio-temporal interpolation consistency training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3116–3125, 2022.

Haiyang Mei, Bo Dong, Wen Dong, Pieter Peers, Xin Yang, Qiang Zhang, and Xiaopeng Wei.
Depth-aware mirror segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3044–3053, 2021.

Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation using
space-time memory networks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9226–9235, 2019.

Youwei Pang, Xiaoqi Zhao, Lihe Zhang, and Huchuan Lu. Multi-scale interactive network for salient
object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9413–9422, 2020.

Gensheng Pei, Fumin Shen, Yazhou Yao, Guo-Sen Xie, Zhenmin Tang, and Jinhui Tang. Hierarchical
feature alignment network for unsupervised video object segmentation. In European Conference
on Computer Vision, pp. 596–613. Springer, 2022.

Shuwei Shao, Zhongcai Pei, Weihai Chen, Xingming Wu, and Zhengguo Li. Nddepth: Normal-
distance assisted monocular depth estimation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7931–7940, 2023.

Xin Tan, Jiaying Lin, Ke Xu, Pan Chen, Lizhuang Ma, and Rynson WH Lau. Mirror detection with
the visual chirality cue. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):
3492–3504, 2022.

Lingyun Wu, Xiang Gao, Zhiqiang Hu, and Shaoting Zhang. Pattern-aware transformer: Hierarchical
pattern propagation in sequential medical images. IEEE Transactions on Medical Imaging, 2023.

Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin, and Zhiguo Cao. Structure-guided
ranking loss for single image depth prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 611–620, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
Simple and efficient design for semantic segmentation with transformers. Advances in Neural
Information Processing Systems, 34:12077–12090, 2021.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. arXiv preprint arXiv:2401.10891,
2024.

Xin Yang, Haiyang Mei, Ke Xu, Xiaopeng Wei, Baocai Yin, and Rynson WH Lau. Where is my
mirror? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
8809–8818, 2019.

Wei Yin, Yifan Liu, Chunhua Shen, and Youliang Yan. Enforcing geometric constraints of virtual
normal for depth prediction. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 5684–5693, 2019.

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xinchao
Wang. Metaformer baselines for vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46(2):896–912, 2024. doi: 10.1109/TPAMI.2023.3329173.

Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual representations for semantic
segmentation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VI 16, pp. 173–190. Springer, 2020.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

Xiaoqi Zhao, Youwei Pang, Lihe Zhang, Huchuan Lu, and Lei Zhang. Suppress and balance: A
simple gated network for salient object detection. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 35–51. Springer,
2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127:302–321, 2019.

A PYTORCH CODE

In this section, we will show the core Pytorch code of our Dual-Granularity Affinity module and the
corresponding methodology analysis.

Algorithm 1: Point-wise Affinity

def point(F_I_D, F_V):
"""F_I_D: (C, HW), F_V: (C, kHW)"""
F_V_l2 = F_V.pow(2).sum(dim=0).unsquzzez(dim=1) # (kHW, 1)
matrix = F_V.transpose().matmul(F_I_D) # (kHW, HW)
S_Po = 2 * matrix - F_V_l2
W_Po = torch.exp(S_Po) / torch.exp(S_Po.sum(dim=1))
F_Po = F_V.matmul(W_Po) # (C, HW)
return F_Po
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Algorithm 2: Pattern-wise Affinity

def pattern(F_I_D, F_V):
"""F_I_D: (C, HW), F_V: (C, kHW)"""
F_V_l2 = F_V.transpose().pow(2).sum(dim=0).unsquzzez(dim=1) # (C, 1)
F_V_temporal = F_V.reshape(C, HW, k).mean(dim=-1) # (C, HW)
matrix = F_V_temporal.matmul(F_I_D.transpose()) # (C, C)
S_Pa = 2 * matrix - F_V_l2
W_Pa = torch.exp(S_Pa) / torch.exp(S_Pa.sum(dim=1))
F_Pa = F_V_temporal.transpose().matmul(W_Pa) # (C, HW)
return F_Pa

Drawing inspiration from STCN Cheng et al. (2021b), we have simplified the computation of SPo

and SPa on the above code. The proof is shown as follows:
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B FUTURE WORK

In the future, we plan to explore the data scaling law in the context of video mirror detection tasks
for zero-shot scenarios and further enhance the aggregation of temporal information by considering
longer sequences of frames within a video. Lastly, we aim to develop an algorithm that is more
efficient for a variety of applications.

C MORE VISUAL COMPARISONS

This section provides more visual comparisons between our FTM-Net and the only video mirror
detection method: VMD-Net. As shown in Figure 9, 10, 8, our method can accurately detect
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the location of mirrors through the pattern-compensated DOM feature. In addition, our FTM-Net
can segment more complete mirror areas since it considers the temporal changes of the pattern-
compensated DOM from both point and pattern perspectives, facilitated by the proposed Dual-
Granularity Affinity module.

Ours

VMD-Net

Image

Ground	
Truth

Figure 7: More visual comparisons against the VMD-Net.

Ours

VMD-Net

Image

Ground	
Truth

Figure 8: More visual comparisons against the VMD-Net.
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Ours

VMD-Net

Image

Ground	
Truth

Figure 9: More visual comparisons against the VMD-Net.

Image GT Pred

Figure 10: Failure cases in some complex scenes.
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