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Abstract: Few-shot object detection aims at learning novel categories given only
a few example images. It is a basic skill for a robot that performs tasks in open
environments. Recent methods focus on finetuning strategies, with complicated
procedures that prohibit a wider application. In this paper, we introduce DE-ViT ,
a few-shot object detector without the need for finetuning. DE-ViT ’s novel ar-
chitecture is based on a new region-propagation mechanism for localization. The
propagated region masks are transformed into bounding boxes through a learn-
able spatial integral layer. Instead of training prototype classifiers, we propose to
use prototypes to project ViT features into a subspace that is robust to overfitting
on base classes. We evaluate DE-ViT on few-shot, and one-shot object detection
benchmarks with Pascal VOC, COCO, and LVIS. DE-ViT establishes new state-
of-the-art results on all benchmarks. Notably, for COCO, DE-ViT surpasses the
few-shot SOTA by 15 mAP on 10-shot and 7.2 mAP on 30-shot and one-shot
SoTA by 2.8 AP50. For LVIS, DE-ViT outperforms few-shot SoTA by 17 box
APr. Further, we evaluate DE-ViT with a real robot by building a pick-and-place
system for sorting novel objects based on example images. The videos of our
robot demonstrations, the source code and the models of DE-ViT can be found at
https://mlzxy.github.io/devit.
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1 Introduction

Object recognition and localization are two core skills of an autonomous robot operating in a new
unstructured environment. Few-shot object detection is a promising approach for training a robot to
detect novel categories based on a small set of support images [1]. However, most recent few-shot
detection methods rely on fine-funing on both base and novel classes [2], with complicated and te-
dious procedures that limit the practical use of these methods and that results in a large accuracy gap
between the base and the novel classes [3]. Pretrained vision transformers (ViTs) [4, 5] can be used
to overcome the limitations of fine-tuning. However, despite their rich semantical representations,
pretrained ViT features lack the coordinates information that is required to perform a bounding box
regression. As we show in Appendix C, naively applying a conventional regression on ViT features
yields poor localization results, while unfreezing the ViT backbone leads to an accuracy collapse on
novel classes, by completely overfitting the base classes.

To address these issues, we propose a novel localization architecture based on region-propagation.
In this architecture, object proposals are expanded by a fixed ratio. Objects are localized by per-
forming a mask prediction within the expanded proposals instead of a bounding-box regression.
To accurately derive bounding boxes from the propagated regions, we propose the spatial integral
layer, a learnable mask-to-box transformation. To further narrow the accuracy gap between base and
novel classes, we propose to construct prototypes not as classifier weights, as shown in Fig. 2(a),
but to project ViT features into a subspace that is used as network inputs. Our empirical studies
demonstrate that the projected features are more robust to overfitting on base classes.
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Figure 1: Demonstration of our method on YCB objects [6]. The model is trained on only the base categories
of LVIS. A few example images of YCB objects are provided as novel categories during inference only.

With these proposed techniques, we introduce DE-ViT , a few-shot detector that uses example im-
ages to detect novel objects without the need for any finetuning or further training. An example of the
results returned by DE-ViT is shown in Fig. 1. We evaluate DE-ViT on few-shot, and one-shot object
detection benchmarks with Pascal VOC [7], COCO [8] and LVIS [9] datasets. DE-ViT establishes
new state-of-the-art (SoTA) results on all benchmarks. For COCO, DE-VIiT surpasses the SoTA
LVC[10] by 15 mAP on 10-shot and by 7.2 mAP on 30-shot, and it also surpasses the one-shot SOTA
BHRL [11] by 2.8 AP50. For Pascal VOC, DE-VIiT surpasses the SOTA NIFF [12] by 2.0 nAP50.
For LVIS, which has been regarded as a highly challenging dataset [13], DE-ViT outperforms the
SoTA DiGeo [14] by 17 box APr. Notably, our method achieves a faster inference time while having
a better accuracy. Further, we evaluate DE-ViT with a real robot in our novel-object sorting system.

2 Method

2.1 Problem Formulation

We use C to denote the set of classes. In few-shot object detection (FSOD), C is composed of a
set of base classes, denoted by Cpqse, and a set of novel classes, denoted by C,ope;- Thus, C =
Chase U Crover and Cpgse N Crovet = . During training, a large number of examples are provided
for the base classes. During testing, only k labeled samples are provided for each novel class. The
samples for novel classes are referred to as support images. The goal is to leverage the training data
of Cpqase to learn a detector that can detect objects of Cy,oye; given the k-shot support images.
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Figure 2: Existing meta-learning-based FSOD methods can be divided into two categories. Methods in the
first category (a) build prototypes from novel class examples and use these prototypes as the classifier weights
of a detection network. Despite its simplicity, this strategy exhibits inferior accuracy [2]. Methods in the second
category (b) learn to match the proposal regions in the query image and novel examples through a matching
network. This strategy is computationally heavy due to dense feature interactions across multiple images and
usually requires finetuning to increase accuracy in novel classes [15, 16]. In contrast, our method (c) applies
a dot-product with the prototypes to project ViT features into a subspace that is robust to overfitting on base
classes, and then applies a region propagation network to refine the localization and derive the class score. Our
method does not employ any finetuning for base or novel classes. Details of related work are in Appendix B.
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Figure 3: Overview of the proposed method. Given a proposal box of a query image, we extract the initial
mask region (yellow) and expand the proposal by a constant ratio. Next, the region within the expanded
proposal is gradually propagated and refined to fit the object area through a sequence of propagation layers.
Each propagation layer accepts previous regions and features as input while returning updated features and
region as outputs. The final predicted region is transformed to bounding-box coordinates through a learnable
spatial integral layer, as detailed in Sec. 2.3. The predicted region also serves as spatial attention to average
features along height and width. The averaged features are then mapped to class scores. The projected features
are the dot products between the ViT features of a query image and class prototypes, as detailed in Sec. 2.4.

Despite having rich semantics information, pretrained ViT features lack the coordinates information
required for bounding box regression. As shown in Appendix C, naively applying a conventional
regression on ViT features yields poor localization results. A natural solution is to learn this local-
ization capability by finetuning the ViT backbone during the training of the detector with the base
classes. However, we observed that finetuning results in completely overfitting the base classes and
in an accuracy collapse on novel classes. This was observed when integrating DINOv2 ViT into the
framework of Meta RCNN [17], a standard prototype-based FSOD, as shown in Appendix C. This
suggests that harnessing the generalization power of strong ViT backbones for FSOD is non-trivial.
The question here is how to produce accurate localization with pretrained ViT features.

Given an object proposal, we use a region propagation network that gradually propagates the pro-
posal region to accurately cover and fit the object by refining an object mask. Unlike bounding-box
regression, mask prediction localizes objects without coordinate outputs. The propagated region
is then transformed into a bounding box through a learnable spatial integral layer. We use an off-
the-shelf region proposal network (RPN) to generate the initial region proposals, as class-agnostic
proposals are shown to generalize well to novel classes [18]. Each proposal is expanded by a fixed
ratio in order to delimit the propagation boundaries. The overall framework is shown in Fig. 3.

Propagation Layer. We propose the region Propagation Layer (PL), a new type of network module
designed for object detection. PL serves as the central building block of our method. An example is
shown in Fig. 5. The ¢-th PL block takes all previous regions r¢.;_; € R**® XX and the previous
PL block features h;,_; € R¥*K*K a5 input, where ¢ denotes the number of PL blocks, S denotes
the number of feature channels, and K denotes the feature spatial size. The ¢-th PL block outputs
the updated region r; € R K *K features h;, € RS*K*K bounding box b; € R%, and class score
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Figure 4: The max row sum and column
sum are used as the box width and height of
the triangular object.

¢: € R. Each PL block works as a small detection network and can be stacked to improve accuracy.
The update rule is explained in Eq. 1 and illustrated in the third part of Fig. 3.

<
I
-
-
I
—

he = fupdale,t (COHC&t(T‘OIt,h ht71)§ 9)» ht,region = fregion,t(ht; (9)
Tt = U(ht,region)a bt = fintegral,t(ht,region; 0) (1)
Ct = fclass,t (WeightedAngool(ht7 Tt); 0)

In Eq. 1, fupdate,+ denotes the conv-bn-relu block with S output channels that updates the hidden
features, and concat denotes channel-wise concatenation. fregion,: denotes the conv block with single
channel output that predicts the output region logits A region € RIXEXK 5 denotes the sigmoid
function. fisegral,+ denotes the spatial integral layer detailed in Sec. 2.3. h; is aggregated over spatial
dimensions to WeightedAvgPool (h¢, ;) € RS*1X1 with weights ;. fuass.¢ denotes the linear block
that maps WeightedAvgPool(h¢,7+) to class scores. 6 denotes network parameters. During training,
we use focal loss and L1 regression loss for the output class score ¢; and bounding box b;. For
the output region r;, we apply BCE loss and Dice loss [19]. The region labels during training are
generated by the ground-truth object region within the expanded proposals.

2.3 Learnable Spatial Integral

Converting masks to bounding boxes is a widely-used transformation in instance segmentation net-
works [20] as a post-processing step. The standard solution is to find the top-left and bottom-
right foreground pixels and use their positions as the bounding box coordinates [21]. However,
this approach has major limitations. Firstly, this mask-to-box conversion assumes the availability
of ground-truth instance masks, which are much more expensive to obtain than bounding boxes [8].
Moreover, this approach is non-differentiable and is also prone to outliers. Therefore, the question is
how to accurately derive bounding boxes from the region-based localization results using a learnable
and differentiable function.

Let 0°" = (¢, 9™, w®™, h°"") denote the output bounding box, where ¢\ € [0, W], w®™ € [0, W]
and ¢§" € [0, H], h®" € [0, H]. Instead of predicting b°"' directly, we propose to first predict a
relative bounding box b™ = (¢!, ¢!, w'™, p™) € [0,1]%, that can be transformed to b°"* according
to Eq. 2,

(u]om7 hout) _ (wexp wre]7 hexp hrel),

out out) __ / _ex ex exp ex rel = ex rel 7 ex
(cots ™) = (P — 0.5w™, ¢, — 0.5hP) + (cy, w™P, ¢ h™P),

2

where b = (¢iF, ¢, wP, h*P) denotes the expanded proposal. Thus, b is a normalized bound-

ing box relative to bP. Let hyegion € REXK denote the output region logits, where we skip the
notation of ¢-th block and the channel of 1 for simplicity. Our spatial integral layer fincgra €stimates
b with Eq. 3 and 4. An illustrative example is given in Fig. 4.

To motivate Eq. 3 and 4, consider the toy example of converting a binary triangle mask to a bounding
box in Fig. 4. A reasonable approach is to compute the mask center as the bounding box center and



Table 1: Results on COCO 2014 few-shot benchmark. Our method outperforms existing work in detecting
novel classes by a significant margin. Results surpassing the SoTA are indicated in bold.

Method | Requires | 10-shot 30-shot
| Finetune | bAP nAP nAP50 nAP75 | bAP nAP nAP50 nAP75

FSRW [22] X - 5.6 12.3 4.6 - 9.1 19 7.6
Meta R-CNN [17] X 52 6.1 19.1 6.6 7.1 9.9 25.3 10.8
TFA [13] v 33.9 10 19.2 9.2 34.5 13.5 24.9 13.2

Multi-Relation Det [23] X - 16.6 31.3 16.1 - - - -
FSCE [24] v - 11.9 - 10.5 - 16.4 - 16.2
Retentive RCNN [25] v 39.2 10.5 19.5 9.3 39.3 13.8 22.9 13.8
HeteroGraph [26] v - 11.6 23.9 9.8 - 16.5 31.9 15.5

FsDetView [27] v 6.4 7.6 - - 9.3 12 - -
Meta Faster RCNN [15] v - 12.7 25.7 10.8 - 16.6 31.8 15.8
LVC [10] v 28.7 19 34.1 19 34.8 26.8 45.8 27.5
CrossTransformer [16] v - 17.1 30.2 17 - 214 35.5 22.1

NIFF [12] v 39 18.8 - - 39 20.9 - -
DiGeo [14] v 39.2 10.3 18.7 9.9 39.4 14.2 26.2 14.8
DE-ViT V.iT-S/ 14 X 24 27.1 43.1 28.4 242 269 43.1 28.5
(Ours) ViT-B/14 X 28.3 33.2 514 35.5 28.5 334 514 35.7
) ViT-L/14 X 29.4 34.0 52.9 37.0 29.5 34.0 53.0 37.2
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Figure 5: Region propagation on class “fridge”. The proposal, expanded proposals, and final predicted boxes
are colored in transparent yellow, yellow, and green, respectively. The three propagated regions (from left to
right) are sampled from the output of the first three PL blocks in ascending order.

use the max row sum and column sum as width and height. Inspired by this insight, we compute the
expected position of the spatial distribution softmax(A,egion ) as the center of bl in Eq. 3. We com-
pute the row and column sums of the output region as E]K:l 0 (Rregion)ij and Zfil 0 (hregion)ij
in Eq. 4. Instead of picking the maximum, we apply a soft aggregation to average all row or column
sums in terms of magnitude rank. The aggregation is done by sorting the row and column sums, and
then computing the weighted average. This explains the use of order statistics notation (i) and ().
Parameters 0" € R % € RX are learnable aggregation weights.

2.4 Feature Subspace Projection

The main challenge of FSOD is to generalize to novel classes that are unseen during training. How-
ever, despite numerous attempts to solving this problem, by using margin-based regularization for
example [14], there persists a considerable accuracy gap between base and novel classes [1]. This
disparity indicates that a network trained with base classes would inevitably overfit on patterns that
are only present among the base classes. A classic technique to reduce overfitting consists in repre-
senting data in a low-rank subspace [28]. We explore in this work the construction of a subspace of
pre-trained ViT features that reduces the accuracy gap between base and novel classes.

Prototypes are class representatives built from support images. Given the support images of each
class, we compute the ViT features, crop the features with object bounding boxes and use the average
feature as the class prototype [17]. Let pc € RI€I*P denote the prototypes of classes from set
C, where D denotes the channel dimension. Let h,; € RP*HXW denote the ViT features of
the query image. We assume that both prototypes and features are normalized to unit length at
the channel dimension. Then p¢ - hy € RICXHXW can be interpreted as a subspace projection
with pc being the basis. However, this subspace construction has two limitations. Firstly, only
using prototypes of classes set C can be too limited to sufficiently capture the feature information.
Secondly, a permutation of C creates a different but equivalent subspace, yet designing permutation-
invariant networks is a highly challenging problem [29]. For the first limitation, we introduce a set
B of background classes, BNC = @, with pg € RIBIXP being the prototypes of B, to preserve more
information from h,;;. For the second limitation, we propose to build a separate subspace for each



Table 2: nAPS50 results on Pascal VOC few-shot benchmark. Results surpassing the SoTA are
indicated in bold. (*) denotes that implementation is not publicly available.

Method ‘ Novel Split 1 Novel Split 2 Novel Split 3 Avg
|1 2 3 5 10 | 1 2 3 5 10 | 1 2 3 5 10 |

TFA [13] 398 361 447 557 560 | 235 269 341 351 39.1 30.8 348 428 495 498 39.9
FsDetView 254 204 374  36.1 423 | 229 217 226 256 292 | 324 19 29.8 332 398 29.2
Multi-Relation Det [23] 378 436 516 565 586 | 225 306 407 431 47.6 31 379 437 513 498 | 43.1
Retentive RCNN [25] 424 458 459 537  56.1 217 278 352 370 403 302 376 43 49.7  50.1 41.1
Meta Faster R-CNN [15] 430 545 60.6  66.1 654 | 27.7 355 46.1 478 514 | 406 464 534 599 586 | 505
LVC[10] 545 532 588 632 657 | 328 292 507 498 506 | 484 527 55 59.6 596 | 523
CrossTransformer [16] 499  57.1 579 632 67.1 27.6 345 437 492 512 | 395 547 523 57 58.7 50.9
HeteroGraph [26] 424 519 557 626 634 | 259 378 466 489 511 352 429 478 548 535 | 480
DiGeo [14] 379 394 485 586 615 266 289 419 421 491 304 401 469 527 547 | 440
NIFF [12] (*) 628 672 68.0 703 688 | 384 429 540 564 54 564  62.1 61.2  64.1 63.9 | 594
DE-ViT YiT—S/14 475 645 570 685 673 | 431 341 497 567 608 | 525 62.1 60.7 614 645 | 56.7
(Ours) ViT-B/14 | 569 618 68.0 739 728 | 453 473 582 598 60.6 | 586 623 627 646 678 | 614
: ViT-L/14 | 554  56.1 681 709 719 | 43.0 393 581 61.6 63.1 58.2 64 613 642 673 | 60.2

class ¢ € C, and reorder other classes C \ ¢ to resolve permutation ambiguity. The feature subspace
projection is explained in Eq. 5 and illustrated in Fig. 3.

hsubspace,c = Concat(pc : hm’tv channel—reorder(pc\c : hvit)7p8 : hvit) (5)

In Bq. 5, hsubspace.e € RETXW denotes the subspace feature for class ¢, and function
channel-reorder sorts the |C| — 1 channels of input tensor pe\. - hyiy € RUCIZDXHXW by
magnitude at each spatial location, and then linearly interpolates the tensor to a pre-defined size
(S —1—|B|) x Hx W, where S is a constant hyperparameter. In practice, we use example im-
ages of non-object stuff classes, e.g., sky, road, floor, to construct B. As shown in Appendix C,
feature subspace projection significantly reduces the accuracy gap between base and novel classes.
On the other hand, creating a subspace for each class ¢ € C introduces costly per-class inference.
However, the per-class inference cost can be reduced by finding the top 7" most likely classes with
a lightweight prototype classifier [17] and only performing inference for these 7" classes. As shown
in Appendix C, our method achieves a faster inference speed and surpasses SOTA when T" = 3.

3 Experiments

We comprehensively evaluate our method on few-shot and one-shot benchmarks. Furthermore,
we compare the efficiency of our method against SOoTA solutions, study few-shot performance for
different numbers of shots, compare it to language-based detectors, and provide qualitative results.
We conduct ablations to study the contributions of the proposed components to the performance of
our method. Our source code and the pretrained models are included in the supplementary material
and will be publicly released upon acceptance.

Evaluation Metrics and Datasets. Few-shot and one-shot evaluations split classes into base and
novel classes. Base classes are seen during training and novel classes are unseen. The performance
on novel classes is more important. For COCO and Pascal VOC, nAP, nAP50, and nAP75 represent
mAP, AP50, and AP75 in novel classes. bAP and bAP50 represent mAP and AP50 in base classes.
One-shot evaluation conventionally divides 80 classes of COCO into four even partitions, and alter-
natively uses three as base classes and one partition as novel classes [30]. There are 4 base/novel
splits in total, named Split-1/2/3/4. For LVIS, APr, APc, and APf represent AP on rare, common,
and frequent categories. Rare categories are used as novel classes. Metrics on LVIS, such as box
APr and mask APr, are computed on bounding boxes and on instance segmentation masks sepa-
rately. We evaluate our method on Pascal VOC [7], COCO (8], and LVIS-v1 [9]. We follow the
conventional base/novel classes split and use the same support images of novel classes [13, 11].

Implementation Details. We adopt a standard two-stage object detection framework, similarly
to Mask R-CNN [31]. We use the same off-the-shelf RPN with existing work [32] to generate
object proposals. The RPN is trained separately for each dataset using only base classes. We use
DINOV2 [33] ViT as the backbone, and report results in ViT-S/B/L (small, base, large) model sizes.
The ViT backbones are kept frozen during detector training. We adopt the prototype extraction
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Figure 6: Qualitative visualization of our method DE-ViT on COCO (a) and LVIS (b), and compar-
ison to Meta-Faster RCNN [15]. Boxes of base and novel classes are colored in green and yellow.

procedure of Meta RCNN [17] using ViT features. During training, the model can access only the
prototypes of base classes. After training, the prototypes of novel classes are appended while the
remaining parameters are unchanged. During evaluation, the model is evaluated on images that
contain objects of both base and novel classes. Prototypes of background classes set B are extracted
from images of stuff (non-object) classes, e.g., sky, road, from COCOStuff [34] unless specified.
Similar to [17], the top T" most likely classes for each proposal are determined by the distances
between prototypes and the average proposal feature. We set 1" to 10 unless specified, where T is
the number of classes to create subspace features and perform inference as explained in Sec. 2.4. We
apply 3 PL blocks for experiments on Pascal VOC and COCO, and 5 PL blocks for those on LVIS.

3.1 Main Results

Tab. 1 shows our results on the few-shot COCO benchmark. Our method DE-ViT outperforms the
previous SoTA LVC [10] by a significant margin (+15 nAP on 10-shot, +7.2 nAP on 30-shot). It is
worth noting that LVC requires over ten stages for self-training and pseudo-labeling procedures on
novel classes [35], while our method DE-ViT is trained once on the base classes and used directly
on the novel classes. A pretrained model for LVC has never been released. We plot the nAP50 of
our method and the SoTAs with different numbers of shots in Fig. 7.

Table 3: Performance comparison with existing
FSOD methods on the LVIS dataset. We report
the box AP.
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Tab. 2 shows our results on the few-shot Pascal VOC benchmark. Our method DE-ViT outperforms
the previous SoTA NIFF [12] by +2.0 on averaged nAP50. It is worth noting that the implementation
of NIFF has not been released. LVIS has been regarded as a highly challenging benchmark for
FSOD [13] with 337 novel classes and only DiGeo [14] reports few-shot results on LVIS v1. Tab. 3
shows that our method outperforms DiGeo in all metrics and a significant boost in the accuracy of
detecting novel objects (+20 box APr).

Tab. 4 shows our results on the one-shot COCO benchmark. DE-ViT surpasses the previous SoTA
BHRL by 6 bAP50 and 2.8 nAP50. One-shot detection task follows a single-class detection setting.
Therefore, we adapt our method DE-ViT by detecting each class separately during evaluation. OWL-



Table 4: Results on COCO 2017 one-shot benchmark. DE-ViT outperforms existing work and is
not limited to single class detection and single support image as other one-shot methods.

bAP50 nAP50
Split-1 Split-2  Split-3  Split-4 ~ Avg  Split-1  Split-2  Split-3  Split-4  Avg

SiamMask [30] 389 37.1 37.8 36.6 37.6 15.3 17.6 17.4 17 16.8
CoAE [37] 422 40.2 39.9 413 40.9 23.4 23.6 20.5 20.4 22
AIT [38] 50.1 47.2 45.8 46.9 47.5 26 26.4 223 22.6 243
SaFT [3] 49.2 47.2 479 49 48.3 27.8 27.6 21 23 249
BHRL [11] 56 52.1 52.6 53.4 53.6 26.1 29 22.7 245 25.6

DE-ViT (Ours, ViT-L/14) 59.4 57.0 61.3 60.7 59.6 274 33.2 27.1 26.1 28.4

ViT [36] also reports one-shot results on COCO. However, OWL-ViT’s results are obtained with an
ensemble of language-based detection and one-shot pipelines without providing an implementation
or isolated measurements. Therefore, we exclude OWL-ViT from the one-shot comparison.

3.2 Real Robot Experiment
Table 5: Success rates of DE-

ViT on sorting novel objects.

) Object | Success

- DE-ViT (Ours) -+
!A_ 0o Overall (%) | 97%

ﬁ ﬁ Protoiypes ChlpS 8/10

A Tomato Can 9/10
ﬁ—— SAM Ball

Generate grasp pose Crackers
Example Image from point cloud Brick
Figure 8: Overview of the system for sorting novel objects built upon CupP 1 Bottl 10/10
our DE-ViT. Our system receives a few example images of novel Mustard Bottle
. . iy . Sugar Box

classes and instantly detects new objects within the same category with- Orange
out tuning or further learning. Cleanser Bottle

Setup. To evaluate our DE-VIiT in real-world robotic tasks, we develop a pick-and-place system for
sorting novel objects based on example images. The system is outlined in Fig. 8§ with an example
of sorting Rubik’s cubes. First, the front RGB camera takes images of the example objects, which
are then segmented with SAM [39] and built as class representative prototypes. Next, our DE-
ViT detects objects and generates instance segmentation masks from the RGB image of a side-
view RGBD camera. Then, the instance segmentation masks are combined with the depth image to
produce the point-cloud of each object instance. The grasp pose for each object is generated with a
heuristic-based pose generator [40]. We use a Kuka LBR iiwa robot. Note that our system receives
example images of novel classes and detects novel objects instantly as it does not require finetuning.

Results. Tab. 5 shows the success rates of our system in object sorting. We adopt ten YCB objects
such as crackers and mustard bottles. For each run, all objects are placed on the table, and we ask
the robot to pick and place objects based on a given order of the novel classes. We use our DE-ViT
with the ViT-L backbone. We use 3 example images for each object class, except the mustard bottle
and tomato soup can, for which we use 6 images to improve their detection accuracy. Our system
achieves an overall 97% success rate out of 100 independent picks for all objects. The layout of
all objects is randomized for each pick. Of the three failed cases, two involve mistaking chips for a
tomato can and vice versa. In the third case, the chips are detected correctly, but the instance mask
is not precise enough to enable a successful grasp. We believe this is because our DE-ViT model
is trained exclusively on the base categories of the LVIS dataset without using YCB images or any
datasets on retail products.

4 Final Remarks

We conducted extensive analyses and ablation studies on model efficiency, comparisons to DINOv2
in Meta RCNN, comparisons to language-based detectors [32], and the effects of the number of PL
layers and shots. Details of these studies and results are included in Appendix C due to space limit.
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A Appendix

A.1 Code and Pretrained Models

The source code of our method DE-VIiT is included in the supplementary folder Code. Please check
Code/README . md for instructions on installation, dataset setup, and downloading pretrained models
from an anonymous server.

B Related work

Few-shot Object Detection (FSOD) aims at detecting objects of novel classes by utilizing a few
support images from novel classes as training samples [2]. Existing approaches can be broadly
classified into finetuning-based [13, 25, 24, 27, 12] and meta-learning-based strategies [17, 22, 23].
Finetuning-based methods, despite their prevalence, suffer from a large accuracy gap between the
base and novel classes, as well as practical limitations due to redundant multi-stage procedures [3].
Meta-learning-based methods avoid finetuning through online adaptation. Early works on meta-
learning FSOD (Fig. 2.a) construct prototypes from novel class examples and use the prototypes as
input to a network that classifies query images [17, 22]. Recent methods (Fig. 2.b) design interaction
mechanisms of dense spatial features between query and support images [15, 16, 26]. In contrast,
our method (Fig. 2.c) computes dot-products with the prototypes to project their features into a
subspace, instead of using a prototype classifier, and applies a region-propagation network instead
of a dense feature matching network. One-shot Object Detection (OSOD) is an extreme case of
FSOD with only one example per novel class, it reduces the setting to single-class detection [11].
Prior approaches primarily focus on designing interaction mechanisms of dense spatial features
between support and target images [30, 37, 41]. However, the OSOD formulation restricts the use of
additional support and requires a separate inference per class [3, 38]. Compared with existing work,
our method does not use per-class inference and only utilizes class-level prototypes without dense
feature interactions.

Vision Transformer (ViT) is a recent architecture that demonstrates stronger performance and more
interpretable features than traditional convolutional architectures. There is a growing trend of apply-
ing self-supervised ViTs, such as DINO [42, 33], to unsupervised object discovery [43, 44, 45, 5].
TokenCut [46] applies graph-cut over DINO features to separate the primary foreground object.
DeepSpectral [4] predicts segmentation masks through unsupervised spectral clustering over DINO
features. OW-DETR [47] uses DINO ViT to discover unknown objects in an open-world setting.

Robotics Application of Few-shot Object Detection. FSOD has been increasingly deployed in
robotics applications [48]. AirInteraction [49] designs a robot exploration strategy based on human-
informed interestingness, leveraging the learning from examples ability of few-shot detectors. CI-
FSOD [50] designs a lightweight few-shot adaptor module that is suitable for robotics deployment
on edge devices. Fewsol [51] studies the existing few-shot detector performance in typical robotics
environments. TFOD [52] designs a mobile manipulator application purely based on the predictions
of a few-shot detector with online annotations.

C Analysis and Ablation Studies

Efficiency. We compare the inference time of DE-ViT with different values of 7" against recent
few-shot works in Tab. A1 in COCO 10-shots setting, where Swin denotes Swin Transformer [53],
RN101 denotes ResNet101 [54], MFRCNN denotes Meta Faster RCNN [15], and CrossT denotes
Cross Transformer [16]. T is the number of classes to create subspace features and perform in-
ference. Tab. Al shows that our method DE-ViT can achieve the smallest inference time while
having better accuracy. The inference times of all the compared methods are measured on the same
machine.
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Table Al: Ablation study on different values of
T and inference time comparison with existing
methods. N/A: The pretrained model is not pub-
licly available for evaluation.

Method | Backbone | T' | nAP50 | Secs/Img

COCO 2014 nAP50

. 1 49.6 0.22
D(g'u\r’g VITL/14 | 3 | 525 | 033 3
10 529 0.83 1 2 3 4 5
Number of PL blocks
LVC[10] Swin-S - 34.1 N/A . .
MFRCNN[15] | RN101 . 257 0.61 Figure Al: Ablation study of our method on
CrossT [16] Custom - 30.2 3 different numbers of PL blocks with ViT-S/14

backbone.

Table A2: Comparison to naively applying DINOv2 with Meta RCNN, and ablation studies on the
feature subspace projection.

Meta RCNN + Feature Subspace Projection Novel Base
DINOvV2 Backbone c B C\c | nAP5S0 nAP75 bAP50 bAP75
v 4.5 22 48.9 22.5
v 26.2 9.7 29.3 12
v v 38.4 23 434 26.8
4 v v 39.5 24.1 423 259

Feature subspace projection. We examine the component effects for feature subspace projection
in Tab. A2. The first column represents the integration of raw features of DINOv2 ViT into Meta
RCNN [17], a standard prototype-based few-shot detector. Tab. A2 shows that the model has an ac-
curacy collapse on novel classes with raw ViT feature inputs by completely overfitting base classes.
The ¢, B, and C \ ¢ represents different groups of prototypes used in feature projection, as in Eq. 5.
By projecting features to p., general detection ability emerges (nAP50: 4.5 — 26.2), then signifi-
cantly improves after adding background classes prototypes pg (nAP50: 26.2 — 38.4), and further
improves with p¢\ . (nNAP50: 38.4 — 39.5). Results in Tab. A2 and A3 are obtained on COCO 2017
with ViT-S/14.

Region propagation network. We study the impacts of region-propagation-based localization in
Tab. A3. The conventional regression network exhibits poor localization accuracy on novel classes
(nAP75: 14.6). Note that a set of learned 2d positional embeddings is added to the ViT features be-
fore feeding into the conventional regression network. When using our proposed region-propagation
network, the localization accuracy has a significant boost (nAP75: 14.6 — 24.1). Since our region-
propagation network expands proposals, the accuracy gain may come from the spatial features of
larger areas. Therefore, we ablate this by expanding proposals within the conventional regression
network. This results in even lower performance than the conventional regression network alone
(nAP75: 14.6 — 12.5). This shows our region propagation network is the main contributing fac-
tor to the performance boost. Note that the results in Tab. A3 are obtained by only changing the
localization architectures while keeping the feature subspace projection.

Number of propagation layers. We study the impacts of the number of PL blocks in Fig. Al,
which shows that stacking more PL blocks consistently improves accuracy. The accuracy saturates
around 5 blocks and there is still non-negligeble improvement from 3 — 4 blocks. Note that we use
3 blocks in our COCO and Pascal VOC experiments and 5 blocks in LVIS ones.

Comparison to language-based detectors. Tab. A4 compares our method DE-ViT against
language-based detectors on the COCO and LVIS-vl datasets. Language-based detection, also
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Table A3: Ablation studies on the region propagation-based localization.

Confieuration Novel Base
gura nAPS0  nAP75  bAP50  bAP75
Conventional regression network 37.7 14.6 46.5 239
Conventional regression network + expanded proposal 35.6 12.5 413 19.8

39.5 24.1 423 259

Region propagation network

known as open-vocabulary detection [55], does not assume access to support images on novel classes
but requires the knowledge of the novel class names. The class names are then used to discover
images of novel classes from a large collection of image-text pairs. Therefore, language-based de-
tectors have the following limitations. First, many objects lack clear names [56], e.g., objects that
are specific to certain contexts [57]. Second, the association between visual concepts and language
is evolving and not static [58]. In contrast, few-shot object detection (FSOD) does not assume any
knowledge of class names, and novel classes are described with support images only. FSOD’s setting
is therefore more general and arguably more challenging, and aims to emulate humans’ capability
to recognize objects by their consistent appearance.

Table A4: Comparison to language-based detectors on LVIS and COCO 2017. t: use customized

pretrained backbone instead of public ones. “-”: result that was not reported.
Use Extra LVIS COCO
Method \ Backbone Training Set | mask APr  box APr | nAP50
ViLD [18] EffNet-B7 X 26.3 27 27.6
RegionCLIP [32] RN50x4 v - 22 39.3
OV-DETR [59] ViT-B/32 X - 17.4 29.4
Detic [60] RN50 v 17.8 - 27.8
MM-OVOD [61] RN50 v 25.8 - -
MM-OVOD (10-shots) [61] RN50 v 27.3 - -
OWL-VIiT [36] ViT-L/141 X - 25.6 -
OWL-VIiT [36] ViT-L/14f v - 31.2 -
CORA* [62] RN50x4 v - 28.1 43.1
Ro-ViT [63] ViT-L/147 X 314 - 33
Co-Det [64] Swin-B v 29.4 - 30.6
F-VLM [63] RN50x64 X 32.8 - 28.0
ViT-S/14 20.6 19.6 28.3
5 shots ViT-B/14 26.4 25.0 36.1
ViT-L/14 28.5 27.9 38.3
. ViT-S/14 21.8 21.9 36.1
DE-VIT (Ours) | 10 ghots | ViT-B/14 X 29.9 28.1 | 424
ViT-L/14 324 31.9 46.2
ViT-S/14 24.2 23.4 39.5
30 shots | ViT-B/14 28.5 26.8 45.4
ViT-L/14 34.3 33.6 50

In COCO, our method DE-VIiT outperforms the previous SOoTA CORA™ by 6.9 AP50. Our method
only trains on COCO while CORA* uses ImageNet-21K [65] and COCO Captions [66] as additional
training data. In LVIS, DE-ViT outperforms the previous SoTA on mask APr (+1.5 over F-VLM)
and box APr (+2.4 over OWL-ViT). Note that we report the Co-Det [64] result with Swin-B back-
bone instead of EVA02-L backbone [67] because the latter includes the base and novel classes of
COCO in its training set. Moreover, we observe a high variance in the performance of language-
based detectors. F-VLM achieves a mask APr of 32.8 on LVIS but only has 28 nAP50 on COCO.
While CORA™ has 43.1 nAP50 on COCO but only a box APr of 28.1 on LVIS. In contrast, our DE-
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ViT outperforms existing solutions on both LVIS and COCO. MM-OVOD (10-shots) [10] denotes
the MM-OVOD language detector with 10 images per novel classes provided as examples.

Background classes set 5. We study the impacts of using different background classes sets B in
Tab. A6. The first and second rows represent using the stuff (non-object) classes, e.g., floor, sky, of
COCOstuff [34] and ADE20k [68] to construct 3. Note that COCOstuff has 53 stuff classes and
ADE20k has 35 stuff classes, which explains the minor accuracy drop from ADE20k. The third row
denotes using all classes of ADE20k as B. This indicates that adding thing (object) classes to B may
not be beneficial. Tab. A6 shows that changing B only results in small accuracy variations. This
suggests that our proposed feature subspace projection does not rely on specific prototypes.

Table A6: Ablation studies on the background

Table AS5: Ablation studies on annotation
classes set 5.

types used to build prototypes.

Support Images 2AP50 Background Classes B | nAP50  bAP50
Annotation 5-shot  10-shot  30-shot COCOstuff [34] 43.1 45.6
mask 431 431 43.1 ADE20k [68] 425 45.8
bbox 43 426 431 ADE20k (all) 42.1 44.7

More Shots. We study the model performance with different numbers of shots in Fig. 7 and Fig. A2,
on COCO 2014 and COCO 2017, correspondingly. For COCO 2014, the numbers of shots are set
from 1 to 10, 15, 20, and 30. To align with existing work, we use the same support images by
previous work [13] for shots 2,3,5,10,30. For other shots, we sample within the support images
mentioned above. For COCO 2017, we follow the conventional base/novel class splits of the one-
shot benchmark. To measure with more robustness, we randomly select support images within the
validation set of COCO 2017 for each query image, and compute nAP50 for all four novel class
splits. The reported nAP50 is the average among all splits and choices of support images. The
numbers of shots are set from 1 to 10, 15, 20, 30, 40, 50, 75, 100.

Table A7: Comparison of training epoch and param-

eter size to other detectors trained on LVIS. -

Total Trained

Params Params Epochs APr

30

COCO 2017 nAP50

OWL-VIT [36] 433M 433M 1800 31.2
F-VLM [69] 445M 25M 118 32.8
DE-ViT (Ours) 350M 23M 14.4 343 0 20 10 ) 80 100

. . Shots .
Figure A2: Detection accuretlcy under different num-
bers of shots in COCO 2017.

25
—o— Ours

Using Boxes or Masks to Build Prototypes. We study the effects of annotation types such as
bounding boxes or masks for prototype construction in Tab. A5. We observe that using bounding
boxes to build prototypes yields almost indistinguishable performance compared to using instance
masks at even 5-shot in COCO.

Training Epochs and Parameter Sizes. In Tab. A7, we compare the parameter sizes and training
epochs of detectors trained on the large-scale dataset LVIS. Tab. A7 shows that our method DE-ViT
only has 23M trainable parameters, and is trained orders of magnitude faster than F-VLM [69] and
OWL-VIT [36].

Hyperparameters. We report the hyperparameters used in our experiments in Tab. AS.
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Table A8: Hyperparameters used in our experiments.

Hyperparameter Value

Max image size 800 x 1333 x 3

Batch size 16

Learning rate 0.002

Optimizer SGD

Warmup steps 5000

Learning rate schedule stepwise decay

Learning rate decay steps 60000, 80000

Learning rate decay gamma 0.1

Training steps 90000

Evaluation frequency 5000 steps for COCO, 10000 steps for LVIS
Vision transformer size (layers, channel size) small (12, 384), base (12, 784), large (24, 1024)
Channels of propagation network 256

Channels of feature subspace projection (S) 256

Classes in feature subspace projection (7") 10

Number of PL layers 3 for COCO, 5 for LVIS

Preparation of YCB Objects. Fig. 1 shows the detection results of DE-ViT on YCB objects,
a standard set of objects widely used in robotic manipulation benchmark [6]. There are mis-
classifications and inaccurate boxes, e.g., the white skillet is mistaken as a can, all round-shape
fruits are recognized as orange, while the red one is an apple. However, we believe the over-
all result is encouraging. The specification of YCB objects at the time this paper is written
includes 72 categories. We use a total of 33 by selecting and merging certain categories. The
categories in use are apple, ball, banana, bowl, brick, can, cheez-it, chips, clamp,
cleanser bottle, coffee jar, comet pine, cups, drill, glass, lego, lemon, marker,
mug, mustard, orange, peach, pear, peg-hole, pitcher, plate, screwdriver, skillet,
spray bottle, sugar box, toy airplane box, utensil, wood blocks jar. The source image
in Fig. 1 is taken from the banner picture of ycbbenchmarks.com. For each category, we use
Google Image Search to collect a few sample images. Fewer than four images on average are
gathered per category. We annotate the corresponding objects by instance masks in each image
using the software provided by SimpleClick [70]. Similar to SAM, SimpleClick generates instance
masks automatically from user clicks, which significantly simplifies and accelerates the annotation
procedure. Our annotator feedback indicates that annotating masks with SimpleClick is even easier
and more accurate than drawing bounding boxes. An NVIDIA 3060 GPU is used for SimpleClick
software. Class prototypes for YCB objects are built from the annotated example images. During
DE-ViT inference, we replace prototypes of LVIS categories with those of YCB objects in order to
detect these new categories. During postprocessing, We apply class-agnostic NMS and filter small
bounding boxes. The data used for demonstration will be released upon acceptance.

D Limitations

In this work, we propose DE-ViT, a few-shot detector that uses example images to detect novel
classes without any finetuning. We demonstrate that DE-ViT establishes new state-of-the-art in few-
shot and one-shot benchmarks. One of the limitations is that our method DE-ViT uses a hybrid
architecture of ViT and RCNN. The region proposal network (RPN) of RCNN is trained with only
base classes and frozen during inference. This potentially limits the detection performance of novel
objects. To overcome this limitation, one solution is to implement the RPN with our proposed
framework as well. In doing so, the object proposals can be generated by conditioning on the
prototypes of novel objects. Another solution is to adopt a full transformer architecture such as
DETR [71] to eliminate the object proposal stage.
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Our method DE-ViT adopts prototype-feature interactions, instead of dense spatial feature interac-
tions that are computationally heavy. In doing so, our method DE-ViT archives greater accuracy
and efficiency. However, class representative prototypes can potentially carry stronger bias from
the pretrained ViTs such as DINOv2 than low-level spatial features. This would affect the model
performance on long-tailed domains where the existing feature extractors underperform. A promis-
ing future direction is to design a more adaptive and bias-aware architecture to balance the efficient
prototype-feature interactions and expensive spatial feature interactions.
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