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ABSTRACT

Flow models have demonstrated remarkable capabilities in generative modeling, yet a key
bottleneck is the expensive numerical integration of ODEs required for sampling. Rec-
tified Flow mitigates this by iteratively learning straighter trajectories through a reflow
mechanism, but repeated rounds of training incur heavy computation overhead and of-
ten degrade sample quality. More recently, Meanflow has shown strong one-step gener-
ation by directly modeling the average velocity across time, but training it from scratch
is costly, as it must learn from noisy signals induced by highly curved flows. To address
these limitations, we propose Re-Meanflow, which trains a Meanflow model on trajecto-
ries straightened once using a single reflow step. The key insight is that “reflow” alone
is too costly to achieve nearly straight paths for one-step sampling, while Meanflow can
tolerate less-straight trajectories but is prohibitively expensive to train from scratch. By
combining them, Re-Meanflow leverages their complementary strengths: a single reflow
step produces sufficiently straight trajectories, enabling efficient Meanflow training with-
out the performance degradation of repeated reflow processes. We evaluate Re-Meanflow
on ImageNet 642 and 2562, where it achieves competitive or superior one-step generation
compared to state-of-the-art methods while offering substantial training efficiency. In par-
ticular, on ImageNet 642, our method improves the FID of 2-rectified flow++ by 33.4%
while reducing training cost by 90%.

1 INTRODUCTION

Flow models (Lipman et al., 2022; Liu et al., 2022) and closely related diffusion models (Song & Ermon,
2019; Sohl-Dickstein et al., 2015) have become a central paradigm in generative modeling, enabling a wide
range of applications across various data domains (Ho et al., 2022; Rombach et al., 2022; Zhang et al.,
2025). Compared with earlier paradigms such as GANs (Goodfellow et al., 2020; Karras et al., 2019) and
Normalizing Flows (Rezende & Mohamed, 2015; Zhai et al., 2024), these models offer stable training and
superior fidelity, but at the cost of expensive sampling: high-quality generation typically requires dozens
of neural function evaluations (NFEs). This computational overhead remains a central barrier to deploying
flow-based generative models at scale.

The root cause of this inefficiency is the curvature of the generative trajectories induced by the prior and
data distributions. In practice, the velocity fields governing these flows bend sharply, making them difficult
to approximate with only a few discretization steps. Even if the instantaneous velocity is perfectly modeled,
a single Euler step cannot follow the curved path and instead collapses the predictions towards the mean
of plausible outcomes (Frans et al., 2024). Advanced ODE/SDE solvers (Song et al., 2020a; Karras et al.,
2022; Lu et al., 2022; Zhang & Chen, 2022) reduce the discretization error, but still require 10-20 steps to
achieve acceptable fidelity, leaving the generation of one step predictions out of reach.
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Several strategies have been proposed to reduce the sampling cost of flow-based generative models. Rectified
Flow (Liu et al., 2022; Lee et al., 2024) addresses this limitation by progressively straightening trajectories
through reflow, thereby reducing the number of sampling steps. However, it requires retraining and often
degrades quality. While Lee et al. (2024) claims that performing two rounds of rectification already yields
sufficiently straight trajectories, our theoretical analysis and toy examples demonstrate that noticeable cur-
vature remains even after double rectification, suggesting that further challenges may arise when building
upon such trajectories. In contrast, Meanflow (Geng et al., 2025) bypasses ODE integration by directly
modeling average displacements, achieving strong empirical results even with single-step sampling. How-
ever, training remains both expensive and unstable because the supervision signals are noisy when flows are
highly curved. Furthermore, when extended to classifier-free guidance (CFG), Meanflow must be trained
directly on the CFG-modified flow, which requires additional parameter tuning and further increases the
computational burden.

In this work, we propose Re-Meanflow, a conceptually simple yet computationally efficient two-stage ap-
proach that combines the strengths of Rectified Flow and Meanflow while addressing their respective weak-
nesses. In the first stage, we apply a single reflow step on a pretrained flow model to obtain trajectories
that are significantly straighter. In the second stage, we train a Meanflow model on these trajectories. This
combination yields clear benefits: rectification reduces the curvature that complicates numerical integration,
while Meanflow removes the need for integration altogether by directly learning average displacements. As
a result, Re-Meanflow learns from velocity fields that are already close to straight, providing a cleaner and
more stable training signal and substantially simplifying the learning problem compared to training Mean-
flow directly on unrectified flows.

We show that Re-Meanflow substantially improves both training efficiency and generation quality. On Im-
ageNet, we evaluate 642 resolution in pixel space initialized from EDM2 (Karras et al., 2024b) and 2562

resolution in latent space initialized from SiT (Ma et al., 2024). In both settings, Re-Meanflow achieves
competitive one-step generation quality while offering significant gains in efficiency. On ImageNet 642,
compared to 2-rectified flow++ (Lee et al., 2024), our method reduces FID by 33.4% while using only 10%
of the total computation. We further surpass recent state-of-the-art distillation approaches such as sCD (Lu
& Song, 2024) and AYS (Sabour et al., 2025), achieving both higher quality and lower cost. On ImageNet
2562, Re-Meanflow achieves comparable performance to Meanflow (Geng et al., 2025) trained from scratch,
but with significantly higher efficiency. In contrast, finetuning Meanflow from the same initialized model
yields only about 10 FID under the same compute budget.

2 RELATED WORKS

Flow and diffusion-based generative models. Diffusion-based generative models (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2020b) learn to reverse a gradual noising process,
where the reverse-time dynamics can be formulated either as a stochastic SDE or a deterministic probability-
flow ODE (Song et al., 2020b; Karras et al., 2022). Flow Matching methods (Lipman et al., 2022; Albergo
& Vanden-Eijnden, 2022; Liu et al., 2022) generalize this perspective by directly regressing velocity fields
that transport mass between source and target distributions, establishing close connections to continuous-
time normalizing flows (Rezende & Mohamed, 2015). Although these models achieve high fidelity, iterative
ODE/SDE integration remains computationally expensive. Recent work has accelerated sampling with im-
proved numerical solvers (Song et al., 2020a; Karras et al., 2022; Lu et al., 2022; Zhang & Chen, 2022),
yet the high curvature of generative paths still hinders few-step sampling. Rectified Flow methods (Liu
et al., 2022; Tong et al., 2023; Lee et al., 2024) alleviate this by explicitly learning straighter trajectories that
enable one-step or few-step sampling, but such straight-path construction itself incurs significant computa-
tional cost due to heavy training or repeated reflow procedures. In this work, we will address this tradeoff by
retaining the efficiency benefits of Rectified Flow while avoiding its expensive path-construction process.
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Accelerated Sampling. Reducing sampling steps has been central to making diffusion models practical.
Distillation approaches compress long diffusion chains into few-step models (Salimans & Ho, 2022; Geng
et al., 2025; Sauer et al., 2024), including score-based distillation methods (Luo et al., 2023; Yin et al., 2024;
Zhou et al., 2024). A distinct line eliminates distillation entirely: Consistency Models train networks to
produce invariant outputs across different timesteps, enabling direct few-step generation (Song et al., 2023;
Song & Dhariwal, 2023; Geng et al., 2024; Lu & Song, 2024; Yang et al., 2024). More recent work revisits
the formulation of time evolution itself-for example, Flow Maps (Boffi et al., 2024), Shortcut Models (Frans
et al., 2024), and Inductive Moment Matching (Zhou et al., 2025) - all of which target few-step efficiency
but often struggle with stability or high training cost. Also, training these models is challenging, as they
must learn flow maps along curved trajectories rather than follow smooth diffusion paths. Recent work has
addressed this by simplifying the consistency objective (Lu & Song, 2024) and introducing improved loss
functions and normalization strategies for latent consistency models (Dao et al., 2025). Our Re-Meanflow
builds on these insights, combining trajectory simplification with robust training process to achieve both
training efficiency and one step generation quality.

3 BACKGROUND

3.1 RECTIFIED FLOW AND REFLOW (LIU ET AL., 2022).

Given a prior distribution pz (taken to be N (0, I) in this work) and a data distribution px, Rectified Flow
formulates a generative model that transports pz to px through an ordinary differential equation (ODE) over
time t ∈ [0, 1]. For a data-noise coupling (x, z) ∼ pxz, where pxz denotes the joint distribution of x
and z, the flow path is defined as a linear interpolation zt = (1 − t)x + tz with the conditional velocity
vt = dzt/dt = z − x. The flow model vθ is trained to match the marginal velocity field v⋆t (zt, t) =
1
t (zt − E[x | xt = zt]) by regressing the conditional velocity of observed couplings:

LMF (θ) = Ex,z∼pxz, t∼pt
[||(z− x)− vθ(zt, t)||22]. (1)

Once vθ is learned, a new sample x can be generated by solving the ODE for z ∼ pz:

xθ(z) = z0 = z−
∫ 1

0

vθ(zτ , τ)dτ. (2)

Rectified Flow begins training with independently sampled x and z, i.e., p0xz(x, z) = px(x)pz(z), which we
refer to as independent coupling. Training on these independent couplings produces highly curved ODE
trajectories, since the flow paths of different data-noise pairs become interlaced and the model only learns the
marginal velocity. Such curved trajectories, in turn, require a large number of function evaluations (NFEs) to
accurately solve Eq. 2 with numerical ODE solvers. To mitigate this, Rectified Flow adopts a reflow process
that proceeds iteratively. Given a coupling pkxz, we first sample training pairs (x, z) from it and learn a new
vector field vθk+1 . This vector field is then used to solve Eq. 2 and construct the updated coupling pk+1

xz . For
clarity, we refer to the trained vector field vθk+1 as the (k+1)-rectified flow. For example, starting from the
independent coupling p0xz, the first trained vector field - though typically still highly curved - is what we call
the 1-rectified flow. Liu et al. (2022); Lee et al. (2024) show that 2-rectified flow is significantly straighter,
allowing the velocity model trained on this flow path to sample with few steps.

3.2 MEANFLOW (GENG ET AL., 2025).

Compared to Rectified Flow (Liu et al., 2022), which models the instantaneous velocity and requires solving
the numerical ODE in Eq. 2 during sampling, Meanflow enables one-step sampling by modeling a new field
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representing the average velocity u:

u(zt, r, t) ≜
1

t− r

∫ t

r

v(zτ , τ)dτ. (3)

The objective is to approximate this average velocity with a neural network uθ(xt, r, t), so that the entire
flow path can be reconstructed from a single evaluation uθ(z, 0, 1), directly replacing the integral term in
Eq. 2. The key idea of Meanflow is to transform the intractable integral into a learnable target by taking the
time derivative of both sides of Eq. 3:

u(zt, r, t)︸ ︷︷ ︸
average vel.

= v(zt, t)︸ ︷︷ ︸
instant. vel

− (t− r)
d

dt
u(zt, r, t)︸ ︷︷ ︸

time derivative

. (4)

This identity allows Meanflow to bypass direct integral computation and exploit the right-hand side as the
implicit training signal for uθ. Specifically, the training objective is:

LMF (θ) = Ex,z,r,t||uθ(zt, r, t)− sg(utgt)||22 (5)

utgt = v(zt, t)− (t− r)
d

dt
uθ(zt, r, t). (6)

Here, sg(·) denotes the stop-gradient operator, and the derivative d
dtu(zt, r, t) can be decomposed as

v(zt, t) ∂zu+∂tu, which can be computed using the Jacobian-vector product (JVP) interface in frameworks
such as PyTorch or JAX. Meanflow also naturally extends to classifier-free guidance (CFG) by replacing the
velocity field v in Eq. 6 with the CFG-enhanced velocity vcfg:

vcfg(zt, t | c) ≜ ω v(zt, t | c) + (1− ω) v(zt, t). (7)

4 METHOD

4.1 MOTIVATION

Rectified Flow and Meanflow both aim to reduce the high sampling cost caused by curved ODE trajectories,
but they do so in different ways and face complementary challenges. Importantly, combining them yields a
synergistic effect rather than a simple sum of benefits.

Rectified Flow. By explicitly straightening the trajectories, Rectified Flow enables few-step sampling. Lee
et al. (2024) argue that intersections between two flow paths (x′, z′) and (x′′, z′′) are exceedingly rare.
Their reasoning is that if two paths intersect at time t, then z′′ = z′ + 1−t

t (x′ − x′′), which would place
z′′ far outside the true noise distribution unless x′ and x′′ are extremely close. Hence, they conclude that
intersections almost never occur, and the resulting marginal velocity field should already be sufficiently
straight. They further acknowledge that intersections are likely to occur when t is close to 1, since in this
regime 1−t

t becomes vanishingly small and z′′ remains close to z′ regardless of ∥x′ − x′′∥. To justify
straightness in this edge case, Lee et al. (2024) assumes that the 1-rectified flow is L-Lipschitz, which
would imply that x′ and x′′ are themselves close and that linear interpolation between them should remain
near the data manifold. However, this assumption is overly strong. In practice, x′ and x′′ can still be
separated in high-dimensional space, and real data often lie on thin, non-convex manifolds. As a result, their
average or any straight-line interpolation between them does not necessarily remain on the data manifold.
Consistent with our analysis, a toy example (Fig. 2) confirms that flows indeed bend near t = 1, causing
single-step Euler sampling to drift into invalid regions and generate outlier samples. This highlights the
need for alternative strategies to address residual curvature in flow paths, rather than assuming that double
rectification is sufficient.
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2-rectified flow
1-rectified flow

1 step Euler sample 
on 2-rectified flow

r t r t

u(xt, r, t) u(xt, r, t)

(a) Rectified Flow (b) MeanFlow (average velocity 
field on 1-rectified flow      ) 

(c) Re-Meanflow (average velocity 
field on 2-rectified flow      )

Figure 1: Illustration of the motivation in Sec. 4. (a) 1-rectified flow ( ) follows highly curved trajecto-
ries, requiring many ODE steps. Applying two rounds of rectification ( ) straightens the paths and reduces
the NFEs, but one-step sampling ( ) still fails unless trajectories are nearly perfectly straight. (b) The
average velocity field from the 1-rectified flow: Meanflow models u(zt, r, t) over all intervals (r, t), which
in principle bypasses the need for perfectly straight paths. However, when the underlying velocity field is
curvy, the induced averages are complex and lead to slow convergence. (c) The average velocity field from
the 2-rectified flow: training Meanflow on such reflowed trajectories yields a much cleaner and smoother
field, making estimation easier and enabling faster convergence with improved one-step generation.

Meanflow. Training Meanflow directly on curved flows suffers from noisy and unstable supervision sig-
nals, which is a well-known cause of slow convergence in machine learning. Concretely, in the training
objective of Eq. 6, the marginal velocity field is not directly available and must be approximated from con-
ditional velocities. Because the couplings are sampled independently, these conditional velocities exhibit
high variance. Moreover, the derivative term (t − r) d

dtu(zt, r, t) relies on Jacobian-vector products of the
model output without explicit supervision, introducing additional noise that compounds the variance. Fi-
nally, when trajectories are highly curved, the corresponding average velocity field becomes irregular and
difficult to approximate (Fig. 1b).

Synergy. Although Rectified Flow straightens trajectories, a single round of rectification is not sufficient:
residual curvature near t = 1 still undermines reliable single-step sampling. By coupling Rectified Flow
with Meanflow, we address this limitation, as Meanflow learns average velocities on already-straightened
paths. This combination further mitigates the main challenges of training Meanflow directly: 1) In straighter
flows, path intersections are greatly reduced, so conditional velocities provide a closer approximation to
the marginal velocity field; 2) Since instantaneous velocities are closer to their averages, the discrepancy
between u(zt, r, t) and v(zt, t) in Eq. 5 is reduced, leading to more stable Jacobian-vector product estimates;
3) Rectified trajectories yield average velocity fields that are easier to approximate (Fig. 1c). Together, these
effects demonstrate the complementary strengths of Rectified Flow and Meanflow.

4.2 RE-MEANFLOW

Given a pretrained flow model vθ trained on the original independent couplings pxz(x, z) = px(x)pz(z),
we construct a new coupling distribution p1xz using its learned velocity field. Couplings can be obtained in
two ways: (i) by sampling a noise vector z and solving Eq. 2 forward to obtain the corresponding x, or (ii)
by sampling a data point x and integrating the flow backward to its corresponding z. The flow induced by
p1xz yields trajectories that are noticeably straighter, with reduced curvature.

5
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(a) Linear interplolation of 
independent couplings (b) 1-rectified flow

(d) 2-rectified flow
(e) 1 step Euler sampling 
on 2-rectified Flow (f) Re-Meanflow

(c) Meanflow 

1 0
t

Figure 2: Toy experiment on a 2D Gaussian mixture task with fixed training budget. (a) Linear interpo-
lation of independent couplings. (b) 1-rectified flow, the learned flow after training on linear interpolations of
independent couplings, exhibiting high curvature, which requires high NFE to simulate. (c) 2-rectified flow
obtained after a reflow step on (b), which reduces but does not fully remove curvature. (d) One-step Euler
sampling on the 2-rectified flow produces many outliers because the trajectories are not perfectly straight.
(e) Meanflow trained directly on independent couplings fails to capture the flow within the limited training
budget. (f) Meanflow trained on a 1-rectified flow achieves accurate one-step generation with minimal out-
liers.

We finetune the pretrained flow model into a Meanflow model uθ under the Meanflow objective (Eq. 5).
Because Meanflow does not require strictly straight trajectories, training on p1xz converges faster and more
stably than training a conventional flow model. However, some (x, z) pairs are obtained by solving Eq. 2
starting from real images x, in which case the resulting z may deviate from the true Gaussian prior. To miti-
gate this misalignment and to avoid z collapsing onto discrete points, we inject small Gaussian perturbations
into z during finetuning. Specifically, to better preserve the Gaussian prior, each z is updated as a convex
combination of the original noise and fresh Gaussian noise:

z′ =
√

1− ρ z +
√
ρ ϵ, ϵ ∼ N (0, I), (8)

where ρ ∈ [0, 1] denotes the noise ratio.

To incorporate classifier-free guidance (CFG) (Ho & Salimans, 2022), we avoid directly training on the CFG
velocity field vcfg (Eq. 7), which tends to be unstable and prone to collapse. Instead, we adopt a two-stage
strategy: first train uθ on the unconditional flow, and then perform a brief finetuning stage on the CFG-
modified flow. Empirically, allocating 80% of training iterations to the unconditional flow and the remaining
20% to CFG yields stable convergence and allows flexible tuning. Once trained on the unconditional flow,
CFG weights can be adjusted efficiently at inference time.

6
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Table 1: Class-conditional generation on ImageNet 642 (left) and 2562 (right). All results are reported
with classifier-free guidance (CFG) for methods that support it. “×2” denotes that CFG doubles the NFE
per step. For distillation-based methods, we also report training compute in estimated exaFLOPs (Eflops) as
a standardized measure of efficiency.
METHOD NFE (↓) FID (↓) Train + (Sample) Eflops (↓)
Diffusion models
ADM (Dhariwal & Nichol, 2021) 250×2 2.07
EDM (Karras et al., 2022) 63×2 2.30
EDM2-S (Karras et al., 2024b) 63×2 1.58
Score distillation
DMD (Yin et al., 2024) 1 2.62
EMD (Xie et al., 2024) 1 2.20
Diffusion distillation
CD (Song et al., 2023) 1 6.20 811
2-rectified flow++ † (Lee et al., 2024) 1 4.31 473 + (35)
sCD (Lu & Song, 2024) 1 2.97 501
AYF (Sabour et al., 2025) 1 2.98 63
Re-Meanflow (ours)* 1 2.87 4 + (49)

METHOD NFE (↓) FID (↓) EFlops (↓)
Diffusion models
ADM (Dhariwal & Nichol, 2021) 250×2 10.94
DiT-XL (Peebles & Xie, 2023) 250×2 2.27
SiT-XL (Ma et al., 2024) 250×2 2.06
Few Step Models
iCT (Song & Dhariwal, 2023) 1 34.6
Shortcut Model (Frans et al., 2024) 1 10.6
iMM (Zhou et al., 2025) 1×2 7.77
Meanflow (Geng et al., 2025) 1 3.43
Re-Meanflow (ours) 1 3.48 3+(194)

Finally, to illustrate the benefits of Re-Meanflow, we conduct a controlled 2D experiment with source and
target distributions both given by mixtures of two Gaussians. The velocity and Meanflow models are param-
eterized by small MLPs, and the training budget is fixed at 20k iterations (batch size 1024, Adam optimizer,
learning rate 10−3). We compare the one-step generation quality under three settings: (1) 2-rectified flow,
where two reflow steps are applied to independent couplings, each trained for 10k iterations; (2) Meanflow,
trained for 20k iterations directly on independent couplings; (3) Re-Meanflow (ours), where a velocity
model is trained for 10k iterations to obtain a 1-rectified flow, followed by another 10k iterations of Mean-
flow on the resulting couplings. As shown in Fig. 2, 2-rectified flow still produces outliers under one-step
Euler sampling on imperfectly straight trajectories (panel d), while Meanflow alone fails to converge within
budget on curved flows (panel e). In contrast, Re-Meanflow eliminates most outliers and achieves accurate
one-step generation (panel f). This example illustrates the synergy between the two components: recti-
fication reduces curvature enough to stabilize Meanflow, while Meanflow avoids the heavy cost of fully
straightening trajectories.

5 EXPERIMENTS

We conduct experiments on ImageNet (Deng et al., 2009) at 642 resolution in pixel space and 2562 resolution
in latent space. In both settings, we initialize Re-Meanflow from a pretrained flow or diffusion model and
generate 5M couplings for the reflow process. For ImageNet-642, we initialize Re-Meanflow from the
pretrained EDM2-S (Karras et al., 2024b) and reparameterize it from the original VE diffusion formulation
into the flow-matching setting following Lee et al. (2024); Sabour et al. (2025). For ImageNet-2562, we
initialize Re-Meanflow from the pretrained SiT-XL (Ma et al., 2024). In both cases, couplings are generated
using the default sampling method described in the corresponding papers. All efficient training runs are
performed on 8 A100 GPUs with a global batch size of 128 for 70k iterations (50k in the first stage and 20k
in the second), using an EMA decay rate of 0.9999.

5.1 ONE STEP GENERATION QUALITY

For both experiments, we evaluate image quality using the Fréchet Inception Distance (FID) (Heusel et al.,
2017) and measure training efficiency in terms of the total floating-point operations (FLOPs). Re-Meanflow
outperforms or is competitive with state-of-the-art baselines in one-step generation while offering substantial
efficiency gains, demonstrating that our method achieves both strong sample quality and practical scalability.
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Figure 3: Qualitative for one step sampling on on ImageNet 642 (Left) and 2562 (Right).

On ImageNet 642, Re-Meanflow achieves an FID of 2.87 in one step, outperforming 2-rectified flow++ (Lee
et al., 2024) by 1.3 FID (a 33.4% reduction). Compared to recent state-of-the-art diffusion- or flow-based
methods such as AYF (Sabour et al., 2025) and sCD (Lu & Song, 2024), all initialized from EDM2 (Karras
et al., 2024b), we further improve FID by ∼0.1. We also close the gap against score distillation approaches,
showing that one-step generation is attainable without additional distillation stages. This demonstrates that
training Meanflow on a single reflowed trajectory provides a clear advantage over repeated rectification. On
ImageNet 2562, Re-Meanflow achieves an FID of 3.48, matching the performance of Meanflow (Geng et al.,
2023). Qualitative results are shown in Fig. 3.

5.2 TRAINING EFFICIENCY

10 20 30 4050 500
Training Iteration (K)

10
25

60

140

FI
D

Re-Meanflow
Meanflow
Distilled Meanflow

Figure 4: Convergence behavior comparison
between Meanflow and Re-Meanflow.

As shown by Lee et al. (2024), distillation methods involv-
ing reflow can still be more efficient than alternative dis-
tillation approaches, despite requiring additional coupling
generation. We follow a similar analysis by approximat-
ing the total training cost in FLOPs (Table 1), and we also
examine the convergence behavior by tracking FID against
training iterations (Fig. 4).

On ImageNet 642, Re-Meanflow requires only 10% of the
training cost of 2-rectified flow++ Lee et al. (2024), and
82% of the cost of the second-most efficient method, AYF
Sabour et al. (2025). Moreover, after generating the cou-
plings (a one-time cost), training itself accounts for just 6%
of the total, leaving more compute available for hyperpa-
rameter exploration (e.g., noise schedule, CFG strength).

On ImageNet 2562, vanilla Meanflow fails to converge, plateauing at FID ∼25 with a batch size of 64
(the maximum supported by our 8 GPUs). We therefore introduce Distilled Meanflow, which replaces the

8
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conditional velocity in Eq. 6 with a pretrained marginal velocity, yielding more stable training and aligning
with our intuition in Sec. 4. Nevertheless, Re-Meanflow converges both faster and to a higher final quality
than either Meanflow or Distilled Meanflow, even under the same training budget (Fig. 4).

5.3 ABLATIONS

Table 2: Ablation on coupling
configurations (ImageNet 2562).

Couplings FID (↓)

2.4M real pairs 4.35
2.4M sync pairs 4.89
2.6M sync + 2.4M real pairs 3.48
5M sync pairs 3.55

Effect of coupling configurations. We study the effect of different
coupling configurations (Table 2) by comparing four setups: (i) real
pairs, formed by real images and their corresponding noise vectors
recovered by solving Eq. 2 backward from x; (ii) sync pairs, where
Gaussian noise is paired with synthetic data generated by solving Eq. 2
forward from z; (iii) a mixture of 2.6M sync pairs and 2.4M real pairs;
and (iv) 5M sync pairs.

With the same number of pairs, we observe that including real pairs
yields a better FID, suggesting that synthetic couplings may deviate
from the true data distribution and thus reduce quality. We also observe that increasing the total number of
pairs appears to improve performance, which could indicate that the benefit of broader coverage outweighs
the potential degradation from lower-quality synthetic couplings.

Table 3: Ablation on noise injec-
tion (ImageNet 2562).

Noise ratio ρ FID (↓)

ρ = 0 3.74
ρ = 0.1 3.48
ρ = 0.7 3.96
ρ ∼ Uniform[0, 1] 4.34

Effect of noise injection. Having introduced noise injection in Eq. 8,
we now evaluate its impact in different settings (Table 3). As defined
in Eq. 8, each noise vector is perturbed by mixing it with fresh Gaus-
sian noise in a variance-preserving manner. A small noise ratio of
0.1 yields the best FID, indicating that mild perturbations enlarge the
support while maintaining correspondence between noisy and clean
samples. In contrast, larger ratios (e.g., 0.7) or uniformly sampled
noise break this correspondence and thus degrade image quality.

6 CONCLUSION

We presented Re-Meanflow, a simple and efficient framework that combines the complementary strengths
of Rectified Flow and Meanflow. By training Meanflow on trajectories straightened once through reflow, our
method both avoids the heavy retraining cost and quality degradation of iterative rectification and enables
more stable training by providing cleaner signals than directly learning from curved flows.

Empirically, Re-Meanflow achieves substantial gains in both efficiency and generation quality. On ImageNet
642, it delivers a 33.4% FID reduction over 2-rectified flow++ while requiring only 10% computation, and
it surpasses recent state-of-the-art distillation methods such as sCD (Lu & Song, 2024) and AYS (Sabour
et al., 2025) in both quality and cost. On ImageNet 2562, it matches the performance of Meanflow trained
from scratch with great efficiency.

Nonetheless, Re-Meanflow inherits certain limitations. Because reflow generates synthetic couplings, the
final performance is bounded by their quality, which may restrict further improvements. Moreover, while
effective, our method remains behind score distillation approaches such as DMD (Yin et al., 2024) and EMD
(Xie et al., 2024). Looking ahead, we believe that leveraging straighter trajectories is a broadly applicable
principle, and extending this idea to other few-step paradigms, such as consistency models (Song et al.,
2023) or shortcut diffusion (Frans et al., 2024).
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REPRODUCIBILITY STATEMENT

The models and datasets adopted in this study are described in Sec. 5. The complete training procedure
together with all hyperparameter settings are reported in Appendix A. We will release all the code for data
preprocessing and experimental evaluation upon publication of the paper. The code will be made available
under a license that permits free use for research purposes.

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. arXiv
preprint arXiv:2209.15571, 2022.

Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. Flow map matching. arXiv preprint
arXiv:2406.07507, 2, 2024.

Quan Dao, Khanh Doan, Di Liu, Trung Le, and Dimitris Metaxas. Improved training technique for latent
consistency models. arXiv preprint arXiv:2502.01441, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in
Neural Information Processing Systems, 34, 2021.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut models.
arXiv preprint arXiv:2410.12557, 2024.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equilibrium
models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models made
easy. arXiv preprint arXiv:2406.14548, 2024.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for one-step
generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. Advances in neural information processing systems, 35:8633–8646, 2022.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577, 2022.

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine. Guiding
a diffusion model with a bad version of itself. Advances in Neural Information Processing Systems, 37:
52996–53021, 2024a.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and
improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24174–24184, 2024b.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the training of rectified flows. Advances in neural
information processing systems, 37:63082–63109, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models. arXiv
preprint arXiv:2410.11081, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps. Advances in neural information processing
systems, 35:5775–5787, 2022.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-instruct:
A universal approach for transferring knowledge from pre-trained diffusion models. Advances in Neural
Information Processing Systems, 36:76525–76546, 2023.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie.
Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. In
European Conference on Computer Vision, pp. 23–40. Springer, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pp. 1530–1538. PMLR, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time flow map
distillation. arXiv preprint arXiv:2506.14603, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

11



517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation.
In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265.
pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv preprint
arXiv:2310.14189, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. Ad-
vances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Sirui Xie, Zhisheng Xiao, Diederik Kingma, Tingbo Hou, Ying Nian Wu, Kevin P Murphy, Tim Salimans,
Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. Advances in Neural Information
Processing Systems, 37:45073–45104, 2024.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin Meng, Ste-
fano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with velocity consistency.
arXiv preprint arXiv:2407.02398, 2024.
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A TRAINING PROCEDURES AND HYPERPARAMETER SETTINGS

ImageNet-642. We initialize Re-Meanflow from the pretrained EDM2-S model (Karras et al., 2024b).
Following Lee et al. (2024), we convert the original VE diffusion parameterization into the flow-matching
setting, where the noise level is defined as σt = t

1−t . To adapt the pretrained time embeddings, we fol-
low AYS (Sabour et al., 2025) to replace the original embedding embedm(log σt) with a new embedding
embednew(t), which is trained for 10,000 iterations (a few minutes of fine-tuning) to reproduce the outputs
of the original module at the corresponding noise levels. For the Meanflow extension, we introduce an addi-
tional r embedding, which is zero-initialized so that the initial behavior of the model matches the pretrained
baseline.

The couplings are constructed by simulating the ODE with the EDM2 Heun sampler (32 steps), and auto-
guidance (Karras et al., 2024a) is applied to generate high-quality synthetic images. During training, we set
p = 0.5 in the Meanflow loss, which has a similar effect to Pseudo-Huber regularization. In the second stage
of training for the CFG flows, the guidance strength is sampled uniformly from [1, 4]. The ImageNet dataset
contains 1.2M images; to construct 2.4M “real” (x, z) pairs, we reverse noise from clean images using the
default EDM2 sampling procedure without applying CFG. The time schedule follows the original EDM2
setting but is consistently converted to the σt parameterization.

ImageNet-2562. We initialize Re-Meanflow from the pretrained SiT-XL model (Ma et al., 2024), which
is a flow-based model, so only the additional r embedding needs to be introduced. The couplings are
generated using the default Heun method with 250 steps, and the synthetic couplings are produced with
CFG strength 1.5. In the second stage of training for the CFG flows, the guidance strength is sampled
uniformly from [1, 2.5]. To apply CFG, we adopt the improved trick proposed in Karras et al. (2024a),
including the corresponding re-weighting equation, and set w = 1.0 to determine the effective wπ scaling.

All training is conducted on 8 NVIDIA A100 GPUs, and convergence typically requires 12-15 hours.

B COMPUTATION ESTIMATION OF EACH METHOD

In Tables 1, we report the efficiency in terms of estimated exaFLOPs (Eflops). To ensure comparability, we
estimate total training and sampling compute for each method based on their reported FLOPs per forward
pass. Specifically, we use the following assumptions:

• The FLOPs of a forward pass are reported by prior works (e.g., EDMKarras et al. (2022): 100
GFLOPs, EDM2-SKarras et al. (2024b): 102 GFLOPs, SiT-XL(Ma et al., 2024): 118.64 GFLOPs).

• The FLOPs of a backward pass are measured empirically and are approximately 2× the cost of a
forward pass.

• For training, the total compute is computed as:

Total Train FLOPs = (#iters)× (batch size)× (forward + backward)× (GFLOPs per fwd).

• For sampling, the total compute is computed as:

Total Sample FLOPs = (#samples)× (#steps)× (forward passes per step)× (GFLOPs per fwd).
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Example: Our Method on ImageNet-642. For sampling, we require two phases:

2.4× 106︸ ︷︷ ︸
#samples

× 63︸︷︷︸
steps

× 1︸︷︷︸
fwd/step

× 102︸︷︷︸
GFLOPs/fwd

+ 2.6× 106︸ ︷︷ ︸
#samples

× 63︸︷︷︸
steps

× 2︸︷︷︸
fwd/step (auto-guidance)

× 102︸︷︷︸
GFLOPs/fwd

≈ 4.88× 1010 GFLOPs ≈ 49 Eflops.

For training, we have two stages:

50,000︸ ︷︷ ︸
iters

× 128︸︷︷︸
batch

× (1 + 2)︸ ︷︷ ︸
fwd+back

× 102︸︷︷︸
GFLOPs/fwd

+ 20,000︸ ︷︷ ︸
iters

× 128︸︷︷︸
batch

× (3 + 2)︸ ︷︷ ︸
fwd+back

× 102︸︷︷︸
GFLOPs/fwd

≈ 3.26× 108 GFLOPs ≈ 3.2 Eflops.

Example: AYS. AYS does not require sampling, so only training compute is considered:

50,000︸ ︷︷ ︸
iters

× 2048︸︷︷︸
batch

× (3 + 2)︸ ︷︷ ︸
fwd+back

× 102︸︷︷︸
GFLOPs/fwd

≈ 6.26× 1010 GFLOPs ≈ 62.6 Eflops.

Rounding. For consistency, all reported Eflops are rounded to the nearest integer in the main tables.

C USE OF LANGUAGE MODELS

We note that large language models (LLMs) were employed solely to polish the writing of this paper. They
were not used in any part of the research process, including the development of methods, design of experi-
ments, or analysis of results. Their role was limited to improving the readability and clarity of exposition,
without contributing any substantive content.
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