
VerMCTS: Synthesizing Multi-Step Programs using
a Verifier, a Large Language Model, and Tree Search

David Brandfonbrener∗ Simon Henniger† Sibi Raja‡ Tarun Prasad‡

Chloe Loughridge‡ Federico Cassano§ Sabrina Ruixin Hu‡ Jianang Yang¶

William E. Byrd∥ Robert Zinkov†† Nada Amin‡

Abstract

Large Language Models (LLMs) can generate useful code, but often the code
they generate cannot be trusted to be sound. In this paper, we present VerMCTS,
an approach to begin to resolve this issue by generating verified programs in
Dafny and Coq. VerMCTS uses a logical verifier in concert with an LLM to
guide a modified Monte Carlo Tree Search (MCTS). This approach leverages the
verifier to gain intermediate feedback inside the search algorithm by checking
partial programs at each step to estimate an upper bound on the value function.
To measure the performance of VerMCTS, we develop a new suite of multi-step
verified programming problems in Dafny and Coq. In terms of pass@T , a new
metric which computes the pass rate given a budget of T tokens sampled from the
LLM, VerMCTS leads to more than a 30% absolute increase in average pass@5000
across the suite over repeated sampling from the base language model.

1 Introduction

Large Language Models (LLMs) are increasingly used for generating code, but the code needs to be
inspected and possibly re-generated if it doesn’t satisfy the user [Zhong and Wang, 2023]. We propose
to partially shift the burden of checking code, from the user to the LLM, by generating code in a
verification-aware programming language like Dafny or Coq, prompting for specifications and proofs
of correctness in addition to code that can then be formally verified. In such a system, the user can
focus their attention on the specifications, and less on the code and proofs with the assurance that the
generated output has passed the verifier. Our approach couples imprecise generative reasoning from
an LLM with logical reasoning from a program verifier. The LLM contributes fruitful suggestions
and the verifier ensures soundness.

As a motivating example, consider this prompt: In Dafny, write an ADT for arithmetic expressions
comprising constants, variables, and binary additions. Then write an evaluator taking an expression
and an environment (a function that takes a variable name and returns a number) and returning the
number resulting from evaluation. Then write an optimizer taking an expression and returning an
expression with all additions by 0 removed. Then prove that the optimizer preserves the semantics as
defined by the evaluation function.

To aid a language model to tackle this task, we introduce VerMCTS, an algorithm that combines a
verifier and tree search with a language model to synthesize verified programs. An overview of the

∗Kempner Institute at Harvard University, ‡ Harvard University, † TU München, § Northeastern University,
¶ Million.js, ∥ University of Alabama at Birmingham, †† University of Oxford
Correspondence to namin@seas.harvard.edu

MATH-AI Workshop at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

w

ww

root

(a) Select

w

ww

root

(b) Evaluate and maybe expand

w

ww

root

(c) Backpropagate

-1

Figure 1: Overview of VerMCTS. The search tree is visualized with “widen” nodes marked with
w. (a) A leaf node is selected as in standard MCTS. (b) The selected node is evaluated and maybe
expanded. If the selected node is a widen node, then it’s parent is selected and maybe expanded (i.e.
made wider). See Figure 2 for a detailed description. (c) Once we have a value from the evaluate and
maybe expand algorithm, we backpropagate that value up the tree. This figure illustrates the special
case where we observed a failure, so no node is added and the score is -1.

algorithm is described in Figure 1 and Figure 2 and the details are presented in Section 2. VerMCTS
creates a search tree with progressive widening so it is capable of handling large action spaces defined
by lines of code. Within this search tree both expansion and evaluation are guided by the verifier
which acts as a computationally cheap (relative to the LLM) upper bound on the value function in the
code synthesis MDP, as we show in Section 2.

LLM Verifier

Prefix Expansion

Not
scorable

Fail

Pass

Incomplete Complete

Add to tree
score = 1 Success!Do not add,

score = -1

Figure 2: Evaluate and maybe expand.
Given a prefix, we query the LLM for
expansions until the verifier is able to
return a score. If that score is a failure,
we do not add the node to the tree, but
update the parent with a value of -1. If
the score is pass, then we check if the
program is complete. If incomplete, we
add the expansion to the tree with a score
of 1. If complete, we have found a suc-
cessful program to return.

To evaluate VerMCTS we introduce a suite of 15 challenge
problems (9 in Dafny and 6 in Coq). This suite probes
essential skills needed for general verified programming
like constructing algebraic data types, defining functions,
and writing inductive proofs.

On this suite of problems we compare VerMCTS with
several baselines including repeated sampling of full pro-
grams from the base model, an advanced prompting tech-
nique that uses access to the error messages generated by
the verifier called Reflexion [Shinn et al., 2023], and a
traditional version of MCTS. We quantify performance
in terms of pass@T , the pass rate within a budget of T
tokens. VerMCTS outperforms the baselines substantially,
leading to a 30% absolute average performance improve-
ment over repeated sampling from the base model. Note
this repeated sampling is a strong baseline, similar to a
pass@k evaluation often used as a skyline in program gen-
eration. Moreover, for several problems VerMCTS solves
problems that are not solved at all by other methods within
the given budget.

2 Method: VerMCTS

Our main contribution is to define a search algorithm inspired by MCTS that leverages a verifier and
LLM to search for verified programs. We call this method VerMCTS. In this section, we first present
the Markov Decision Process that we consider as the environment for verified program synthesis and
then present VerMCTS in detail. VerMCTS is a variant of traditional MCTS that incorporates the
LLM as a prior to generate candidates and the verifier as a heuristic to evaluate partial programs.

2.1 MDP for verified program synthesis

We formulate our multi-step verified synthesis problem as a Markov Decision Process (MDP)
M := (S,A, T, r,H) defined by the LLM and the verifier. Here, S refers to the state space, A
refers to the action space, T : S × A → S refers to the (deterministic) transition dynamics of the
environment, r : S → R refers to the reward function, and H is the finite horizon (i.e. a limit on
the number of transitions). Defining the MDP just consists of defining these four objects. The state,
action, transition dynamics, and reward are defined as follows:

2

• Each state s ∈ S is a string consisting of the initial user prompt and a partial program.

• Actions a ∈ A are strings that represent a unit of a program. In Dafny each line is an action.
In Coq each “command” (ending with a dot ‘.’) is an action. We also limit the number of
tokens in an action.

• The transition dynamics are just defined by string concatentation: T (s, a) = s+ a.

• The reward function r is defined by the verifier for a given verified programming language
and is only defined on complete programs. This terminal reward is 1 if the complete program
is accepted and -1 if it is rejected. The reward is 0 for incomplete programs.

With this simple MDP in place, we can define our search algorithm for finding verified programs.

2.2 VerMCTS

Given this MDP with finite actions and deterministic dynamics, it would be possible to run standard
MCTS to learn a stochastic policy, but the action space is much too large for this to be practical.
Instead, we build a search algorithm inspired by MCTS that can leverage the LLM as a prior for
program synthesis and the verifier to evaluate partial programs. Both components are key for a
successful search in this large space.

Algorithm 1 Evaluate and (maybe) expand
1: Input: string s, depth limit L

LLM: string→ completion
Verifier: string→ {−1, 0,+1}

2: Output: value v(s), (optional) child
node

3: score← 0
4: depth← 0
5: a← ""
6: while score = 0 and depth < L do
7: a← a+ LLM(s+ a)
8: score← Verifier (s+ a)
9: depth← depth+ 1

10: end while
11: if score = −1 or depth = L then
12: return −1, None
13: else
14: return +1, s+ a
15: end if

Standard MCTS consists of four steps: select, ex-
pand, evaluate, and backpropagate. Our algorithm
leaves the select and backpropagate steps essentially
unchanged. We modify and combine the expand and
evaluate steps to leverage the power of the LLM and
the verifier in tandem. Our full algorithm is illus-
trated in Figure 1. In this section we first discuss
progressive widening and then go through each step
of VerMCTS in turn.

Progressive widening. To allow for potentially in-
finite width while still efficiently conducting deep
searches, we adapt an idea from classical work
on MCTS to progressivly widen nodes in the tree
[Chaslot et al., 2008, Couëtoux et al., 2011]. In that
work, the number of children available at a given
node scales explicitly with the number of visits. In
our setting since adding a child node requires an ex-
pensive call to the LLM, we instead opt to add a
“widen” child to each node that is assigned 0 value and can be selected via the selection procedure
described below. This allows the scoring mechanism to prioritize when to expand a node by essen-
tially setting a prior that unexplored branches have 0 value. When the widen node w with parent s is
selected, instead of adding a child to w, we add a child to s (i.e. add a sibling to w). In this way, the
tree can grow wider over the search process.

Selection: priors and UCT. We use a standard MCTS selection step, but we set a prior for the
UCT (upper confidence bound for trees) bonus as in PUCT [Rosin, 2011, Silver et al., 2016]. We
choose to let the prior p = 1.0 for standard nodes and let p = pwiden < 1.0 for widen nodes be a
hyperparameter that we tune. This basic heuristic gives the model a preference to select the standard
nodes which encourages deeper search trees while still allowing for potentially infinite width if
needed. With this choice, the score of a node s is:

score(s) = ps · cUCT

√
logNparent

Ns
+

∑N
i=1 vi
Ns

(1)

where ps is the prior at this node, cUCT is a global exploration coefficient, Nparent is the number of
visits at the parent node, Ns is the number of visits at this node, and vi is the estimated value at the
ith visit to s. Note that this selection procedure has two hyperparameters: cUCT and pwiden that
encourage selecting more rarely visited nodes and widen nodes respectively.

3

(a) Dafny (b) Coq

Figure 3: Average results for pass@T vs. T (the number of tokens) for various baseline methods on
our suite of programming problems in Dafny and Coq.

Combining expansion and evaluation. Traditionally, MCTS will first expand a node into children
and evaluate it either by simulated rollouts [Chaslot et al., 2008, Zhang et al., 2023a] or a learned
value function [Silver et al., 2016]. Neither of these methods is a good fit for our problem because
generating rollouts requires many expensive calls to the LLM and learning a value requires large
amounts of training data. Moreover, both methods give noisy signal, but in our setting we have access
to the ground truth verifier.

Beyond being noiseless, the verifier has one more important property: if a partial program fails the
verifier, no subsequent completion can yield success. So, we want to make sure that we never add to
the tree any expansion that is a guaranteed failure. Doing this require explicitly linking expansion to
evaluation where we evaluate the node and maybe expand it, as formalized in Algorithm 1.

In addition to only adding nodes with potential to the tree, we want to leverage the verifier to cheaply
evaluate partial programs without extra calls to the LLM. Explicitly, from a node containing the string
s we continue to extend a with the LLM until the verifier is able to return a valid score. At this point,
we can return the estimated value v(s) of s as follows:

v(s) = Verifier(s+ a) =

{
+1 verified, but may be incomplete.
−1 verified as a failure.

(2)

If v(s) = +1, we also add s+ a as a child in the tree, while if v(s) = −1, we do not add s+ a since
it is a verified failure. Appendix H gives explicit examples of scoring partial programs.

Backpropagation. The last step of an iteration of MCTS is to backpropagate the observed value
from leaf back up to root. We do this in the standard way so that signal is propagated up the tree. The
algorithm terminates when it finds a complete solution that verifies or when it exceeds some token
limit or time limit.

Appendix A presents theory that VerMCTS optimizes an upper bound on the value function.

3 Results

A full description of the problem suite can be found in Appendix B and experimental methods in
Appendix C respectively. Here we present the main results.

We run VerMCTS and our three baselines across our full suite of problems. The aggregate results
are illustrated in Figure 3. In both programming languages VerMCTS convincingly outperforms the
baselines. Generally, MCTS rollout is second best, followed by whole sampling and then Reflexion.
As previewed in the introduction, we see about a 30% absolute improvement in pass@5000 for
VerMCTS relative to whole sampling. Note that Coq is substantially more challenging since the
verifier is less automated.

Examining the performance of the baselines more closely, we see that MCTS rollout does outperform
whole sampling, even though the verifier is not used to guide the search at intermediate steps. But,
using the verifier in VerMCTS provides even better performance. Looking at Reflexion, we see that
performance is poor on these tasks. This could be due to many reasons including: (1) the base model
is not good at responding to errors in low resource languages like Dafny and Coq, (2) the base model
does not do well integrating the long contexts created by the Reflexion prompts, and (3) Reflexion
does not make it as easy to backtrack.

Due to space constraints, extended results are in Appendix D, extended related work in Appendix E,
and further discussion in Appendix F.

4

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,

Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis,
and Armando Solar-Lezama. Top-down synthesis for library learning. Proc. ACM Program. Lang.,
7(POPL), jan 2023. doi: 10.1145/3571234. URL https://doi.org/10.1145/3571234.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. MultiPL-E: A Scalable and Polyglot Approach to
Benchmarking Neural Code Generation. IEEE Transactions on Software Engineering (TSE), 49
(7):3675–3691, 2023a.

Federico Cassano, Ming-Ho Yee, Noah Shinn, Arjun Guha, and Steven Holtzen. Type prediction
with program decomposition and fill-in-the-type training, 2023b.

Guillaume Chaslot, Mark H. M. Winands, H Jaap Van Den Herik, Jos Uiterwijk, and Bruno Bouzy.
Progressive strategies for monte-carlo tree search. New Mathematics and Natural Computation,
04:343–357, 2008. URL https://api.semanticscholar.org/CorpusID:1719063.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas Bonnard.
Continuous upper confidence trees. In Learning and Intelligent Optimization, 2011. URL https:
//api.semanticscholar.org/CorpusID:13463524.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, Sailesh
R, and Subhajit Roy. Program synthesis using natural language. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, page 345–356, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450339001. doi: 10.1145/2884781.
2884786. URL https://doi.org/10.1145/2884781.2884786.

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023, page 1229–1241, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400703270. doi: 10.1145/3611643.3616243. URL https://doi.org/10.1145/
3611643.3616243.

Michael Glass, Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Ankita Naik, Pengshan Cai, and
Alfio Gliozzo. Re2G: Retrieve, rerank, generate. In Marine Carpuat, Marie-Catherine de Marneffe,
and Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
2701–2715, Seattle, United States, July 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.naacl-main.194. URL https://aclanthology.org/2022.naacl-main.
194.

Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X. Olausson, Muxin Liu, Joshua B. Tenenbaum,
and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting code,
2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof artifact co-
training for theorem proving with language models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=rpxJc9j04U.

5

https://doi.org/10.1145/3571234
https://api.semanticscholar.org/CorpusID:1719063
https://api.semanticscholar.org/CorpusID:13463524
https://api.semanticscholar.org/CorpusID:13463524
https://doi.org/10.1145/2884781.2884786
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
https://aclanthology.org/2022.naacl-main.194
https://aclanthology.org/2022.naacl-main.194
https://openreview.net/forum?id=rpxJc9j04U

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

ImparaAI. Monte carlo tree search. https://github.com/ImparaAI/
monte-carlo-tree-search, 2024.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Guillaume Lample, Timothee Lacroix, Marie anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=J4pX8Q8cxHH.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen-tau Yih, Sida I Wang, and Xi Victoria
Lin. Lever: Learning to verify language-to-code generation with execution. In Proceedings of the
40th International Conference on Machine Learning (ICML’23), 2023.

Phind. Beating gpt-4 on humaneval with a fine-tuned codellama-34b. https://www.phind.com/
blog/code-llama-beats-gpt4, 2023.

Christopher D. Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61:203–230, 2011. URL https://api.semanticscholar.org/CorpusID:
207081359.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Atsushi Shirafuji, Yusuke Oda, Jun Suzuki, Makoto Morishita, and Yutaka Watanobe. Refactoring
programs using large language models with few-shot examples, 2023.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, L. Sifre, George van den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529:484–489, 2016. URL https://api.
semanticscholar.org/CorpusID:515925.

Amitayush Thakur, Yeming Wen, and Swarat Chaudhuri. A language-agent approach to formal
theorem-proving, 2023.

Edwin Bidwell Wilson. Probable inference, the law of succession, and statistical inference.
Journal of the American Statistical Association, 22:209–212, 1927. URL https://api.
semanticscholar.org/CorpusID:121572396.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language
models. In Neural Information Processing Systems (NeurIPS), 2023.

6

https://github.com/ImparaAI/monte-carlo-tree-search
https://github.com/ImparaAI/monte-carlo-tree-search
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=J4pX8Q8cxHH
https://openreview.net/forum?id=J4pX8Q8cxHH
https://www.phind.com/blog/code-llama-beats-gpt4
https://www.phind.com/blog/code-llama-beats-gpt4
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:207081359
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:121572396
https://api.semanticscholar.org/CorpusID:121572396
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Optimal neural program synthesis from multi-
modal specifications. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih, editors, Findings of the Association for Computational Linguistics: EMNLP 2021, pages
1691–1704, Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-emnlp.146. URL https://aclanthology.org/
2021.findings-emnlp.146.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=Lr8cOOtYbfL.

Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and Sida I.
Wang. Coder reviewer reranking for code generation. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023b.

Li Zhong and Zilong Wang. A study on robustness and reliability of large language model code
generation. arXiv preprint arXiv:2308.10335, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023.

7

https://aclanthology.org/2021.findings-emnlp.146
https://aclanthology.org/2021.findings-emnlp.146
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

A Connecting the partial program score to the MDP

Importantly, while the verifier gives us ground truth information about whether the program verifies
so far, it does not give an unbiased estimate of the true value of a state in the MDP defined above.
Instead, we can view our use of the verifier as a heuristic that quickly returns an upper bound on
the value function of a potential child. Recall that the value function V ∗ of the optimal policy
in a deterministic MDP with state-based rewards like ours is defined by the Bellman equation
V ∗(s) = maxa r(s) + V ∗(s + a). With this definition, we can formally describe the optimism
property of our estimates values as follows:

Lemma A.1. The value v(s) returned by Algorithm 1 satisfies the following:

v(s) ≥ Ea∼LLM+Verifier|s[V
∗(s+ a)] (3)

This is fairly straightforward to prove. If v(s) = −1, then we know that the sampled completion a
is a failure no matter what happens afterwards, so v(s) = V ∗(s+ a) = −1. On the other hand, if
v(s) = 1 then we are assigning the maximal possible value in this MDP, so v(s) ≥ V ∗(s+ a).

In this way, our value estimate is explicitly an optimistic estimate of the value. This is even beyond
the UCT score computed by MCTS. We hypothesize that this encourages deeper exploration of the
search trees which can be beneficial in the multi-step problems we consider.

B A problem suite for multi-step verified programming

B.1 Defining the problems

We are not aware of any existing collections of problems that are designed for multi-step program
synthesis and checked using verifiers. That is why we have created our own problem suite of
nine problems. The problems represent meaningful scenarios in verified programming. They
require creating Algebraic Data Types (ADTs), defining functions on them using pattern matching,
and proving properties using induction. Compared to prior benchmarks, the problems require
more intricate multi-step reasoning and test capabilities that are specifically important for verified
programming. The problems are defined as follows:

Factorial asks to define the factorial function and to prove that it is always strictly positive.

Opt0 asks to define an ADT for arithmetic expressions, an optimizer, and to prove that the optimizer
preserves semantics.

Opt0 Opt asks to define an ADT for arithmetic expressions, an optimizer, an optimal predicate, and
to prove that the optimizer is optimal.

BST asks to define a tree, the binary search tree (BST) property, insertion, and to prove two properties
of insertions (membership and BST preservation).

Repeat asks to define a function returning a list with a given element repeated a given number of
times, and to prove two properties related to length and membership.

Lights asks to define an ADT for traffic lights, then write a function ensuring that red and green
lights are always separated by yellow lights, and then to prove its correctness.

Food asks to define an ADT that represents different foods with toppings, and a predicate about the
amount of toppings, and to prove a property of this predicate.

Days asks to define an ADT that represents days of the week, two functions that iterate through
business days, and then to prove a property of weekdays.

Reverse asks to define a function that reverses a list, and prove two properties of list reversals
(permutation and involution).

All problems are implemented in Dafny, and all but the last three are implemented in Coq, giving a
total of 15 problems. Since the Coq verifier has substantially less automation than Dafny which leads
to longer proofs and since the model is not always very consistent at Coq syntax, just for Coq we
provide some syntax hints in the prompt. The full prompts can be found in Appendix G.

8

B.2 Criteria for Success

In order to be considered successful, a program must first pass the verifier and some syntactic checks
(e.g. the presence of a proof marker and a problem-specific minimum number of lines of code). These
initial checks are meant to ensure the model has made a successful attempt to prove a lemma.

A second check ensures that the model has proven the correct lemma: In order to check whether a
model has proven a property, we inject a second lemma with it, and prove it by referring to the lemma
we asked the model to write. If the model has proven this lemma as directed, this new code including
check lemma will verify successfully. If the model has proven an incorrect lemma, a verifier error
will be produced. Note that the check lemma is only injected into the verifier input. The model does
not get to see it, so this check does not provide additional hints to the model.

A full description of each problem including the prompts and lemmas used for checking success can
be found in Appendix G.

C Experimental setup

C.1 Pass@T evaluation metric

We report all of our results in terms of pass@T , which is, to our knowledge, a novel metric inspired
by pass@k that is often used in code generation benchmarks [Chen et al., 2021]. While pass@k
computes the probability of generating a success when we sample k programs, pass@T computes the
probability of success if we allow the model to sample T tokens. Pass@T has several benefits:

1. Pass@T fairly compares methods. One run of MCTS can be much more expensive than
sampling one program from a model, so using pass@k is not fair. In contrast pass@T really
estimates the dominant cost of generation, namely how many tokens need to be generated to
yield success.

2. Pass@T controls for hardware and implementation variability. Compared to using wall-
clock time, using pass@T does not depend on the underlying hardware and system-level
optimizations.

To estimate pass@T , we generate n runs per problem of up to Tmax tokens per run (where if the run
terminates successfully before Tmax we stop the run). Then for each T ≤ Tmax, we have n binary
trials indicating whether that run terminated successfully in ≤ T tokens. In the results, we report the
mean of these n binary variables and also 95% Wilson intervals [Wilson, 1927].

C.2 Base model

VerMCTS is compatible with any base model and only requires sampling from the model (no training
is needed). We opt to use an open-weights model as the base language model and then compare
different sampling procedures on top of this base model. Specifically, we use Phind-CodeLLama-34B-
v2 [Phind, 2023, Roziere et al., 2023]. This model has been trained explicitly for code generation, but
the verified programming languages we use are relatively “low resource” languages, so the models
will perform worse than at high-resource languages [Cassano et al., 2023a].

C.3 Baselines

We consider a variety of baseline methods to illustrate the benefits of leveraging the verifier inside of
VerMCTS.

• Whole sampling. The most naive baseline just samples entire programs from the base
model. To compute pass@T we just continue generating new samples until success or until
the token limit is reached.

• Rollout MCTS. Related work on MCTS uses rollouts to evaluate a node [Chaslot et al.,
2008, Zhang et al., 2023a]. We ablate the importance of using the verifier by replacing the
“evaluate and maybe expand” step with separate expand and evaluate steps. We expand by
sampling a fixed number of actions k from the LLM and evaluate by rolling out with the
LLM to a terminal node before querying the reward function.

9

Figure 4: Hyperparameter ablations for VerMCTS on opt0 in Dafny. We find that performance is
generally fairly stable to hyperparameter choices.

• Reflexion. Finally, to show how VerMCTS is efficient at incorporating information from the
verifier we also compare to a Reflexion [Shinn et al., 2023] baseline where the LLM gets to
view the errors produced by the verifier on failed attempts.

C.4 Hyperparamters

When sampling from the LLM, we always use nucleus sampling [Holtzman et al., 2019] with
p = 0.95 following Roziere et al. [2023]. For every method, we sweep over temperature on
one representative problem and use that temperature for the rest. Our VerMCTS algorithm also
introduces two hyperparameters that govern exploration: cUCT and pwiden which we found fairly
straightforward to set. We tune hyperparameters on one particular problem (opt0) in Dafny, but only
checking for verification and not additionally checking for correctness. Each method has slightly
different hyperparameters, but we generally tune temperature of the LLM, the MCTS exploration
coefficient, and the MCTS prior for widen nodes. Hyperaparameters are then fixed for all other
experiments. Each algorithm’s parameters are described below.

VerMCTS. We sweep over temperature in [0.6, 0.8, 1.0, 1.0, 1.4] and find 1.0 to be best, exploration
coefficient in [1, 3, 10, 30] and find 3 to be best, and the “widen policy value”, i.e. the prior value of
the widen nodes in [0.1, 0.2, 0.5] and find 0.1 to be best. See Figure 4.

MCTS rollout. We also sweep over temperature in [0.6, 0.8, 1.0, 1.0, 1.4] and find 0.8 to be best
and exploration coefficient in [1, 3, 10, 30] and find 1 to be best. Note, instead of widen nodes, each
node has a fixed number of children (3 in our experiments).

Reflexion. We sweep over temperature in [0.2, 0.4, 0.6, 0.8, 1.0] and find 0.4 to be best.

Whole sampling. We sweep over temperature in [0.2, 0.4, 0.6, 0.8, 1.0] and find 0.6 to be best.

We use the Transformers library Wolf et al. [2020] to query the LLMs. For the MCTS, we adapt a
generic open-source library ImparaAI [2024].

D Extended results

D.1 Per-problem results

In Figures Figure 5 and Figure 6, we present the per-problem results on our problem suite. There
is substantial variation across problems, but across all problems VerMCTS is the best approach or
within the margin of error, often exceeding the baselines by a large margin and sometimes solving
problems that no baseline solves at all. That said, some problems are clearly challenging: on one
problem in Dafny and three in Coq, none of the algorithms find a solution within 5000 tokens.

D.2 Examining the VerMCTS search trees

In Figure 7 we provide an experiment to probe for a mechanistic understanding of how VerMCTS
works in Dafny. We consider the number of nodes (excluding widen nodes), the depth and the width
of the search trees as the number of tokens generated increases. Note that since we do not add

10

Figure 5: Pass@T results for all algorithms on our suite of problems in Dafny.

Figure 6: Pass@T results for all algorithms on our suite of problems in Coq.

failed expansions to the tree, sometimes more tokens are generated without adding nodes to the tree.
Generally, we observe that the more challenging problems (with lower pass rates) tend to lead to
larger search trees, indicating that the algorithm is successfull. We also notice that while the number
of nodes grows fairly linearly across time for most problems, the depth grows earlier and then flattens
out. This suggests that the VerMCTS search is closer to “depth first“, first pushing an expansion
branch to a terminal node before going back and widening the tree.

E Related Work

Neural Program Synthesis with Large Language Models Austin et al. [2021] and Chen et al.
[2021] demonstrated that Large Language Models (LLMs) can generate correct Python programs
from natural language descriptions. These studies introduced the MBPP and HumanEval datasets,
respectively, which are widely used for evaluating LLMs in program synthesis tasks. Cassano
et al. [2023a] extended this concept by showing that LLMs can also generate programs in over 20
languages other than Python. This was achieved by translating the MBPP and HumanEval datasets
using their system, MultiPL-E. Their findings indicate that generating accurate programs in lower
resource languages is more challenging compared to higher resource languages, such as Python.
In our experiments, for proof synthesis, we have another dimension of challenge: some languages
(Coq) are inherently more challenging than others (Dafny), depending on how much automation the
verifiers provide. However, none of these works explored the generation of programs that are correct
by construction.

Symbolic Algorithms for Neural Program Synthesis Grand et al. [2023] integrated a classic
symbolic top-down synthesis algorithm for library learning Bowers et al. [2023] with LLMs. Cassano
et al. [2023b] employed program decomposition and a bottom-up tree-search algorithm to infer
missing TypeScript types. Zhou et al. [2023] used Monte Carlo Tree Search (MCTS) to create
single-function programs in Python. Zhang et al. [2023a] applied a tree-based planning algorithm
for decoding LLM token sequences, which were then evaluated for correctness using a test suite.
Lample et al. [2022] adapted MCTS for neural theorem proving by employing a tree-based search

11

Figure 7: Average number of nodes, depth, and width of the VerMCTS search tree as the number of
tokens increases across the full suite of Dafny problems. Recall that failed expansions are not added
to the tree. Harder problems tend to lead to larger trees.

algorithm to generate proof trees in Lean. Different from these closely related works, we (1) focus
on verified program synthesis in Dafny and Coq, and (2) leverage the verifier inside the loop of the
search algorithm to efficiently guide the search.

Theorem Proving with Large Language Models Han et al. [2022] demonstrated that LLMs can
be trained to generate proofs in Lean through self-supervision. Yang et al. [2023] presented that
Retrieval-Augmented Generation (RAG) Glass et al. [2022] models significantly enhance LLMs’
performance in theorem proving tasks. First et al. [2023] employed a methodology akin to that of Han
et al. [2022] to generate and repair complete proofs in Isabelle/HOL. Jiang et al. [2023] introduced
methods to first map natural language proofs to formal proof sketches in Isabelle and then fill in the
gaps using an automated prover. These studies predominantly used LLMs to iteratively generate
individual proof steps, which were then verified using a theorem prover. Thakur et al. [2023] propose
a language-agent approach to formal theorem-proving, alternating selection and execution steps. In
contrast, we focus on verified program synthesis and developing a method that effectively integrates
a verifier and LLM without any additional training.

Scoring Partial Programs Desai et al. [2016], one of the first to effectively tackle the problem of
program synthesis using natural language, used a scoring function to rank candidate partial programs.
Cassano et al. [2023b] similarly used a scoring function to rank candidate partial programs based on
their types in order to aid the tree search process, and provided multiple solutions to the user ranked
by their score. Ye et al. [2021] used abstract interpretation to rule out partial programs that do not
satisfy some constraints, typically on input/output examples. Chen et al. [2022] used LLM-generated
unit tests suites and their pass rates to score candidate programs, and provided the user with the top-
scoring program. Ni et al. [2023] further utilized execution information to rank candidate programs.
Shirafuji et al. [2023] used a scoring function to rank example refactoring programs generated by an
LLM before applying them to the given code. Zhang et al. [2023b] studies using scoring functions
to rank candidate partial programs in-depth, and proposes the use of a reviewer model to score
candidate programs based on how closely they match the given instruction. Most of these works have
scored partial programs specified as grammatical programs with holes as opposed to our left-to-right
generation of partial programs, and have not considered verified programming languages.

F Discussion

We have demonstrated that relatively weak language models can reliably produce verified code
by guiding a search process that verifies partial programs at each step. Our technique shines on
multi-step problems, made of dependent sub-problems. Our technique can be adapted to a setting
where the interfaces and specifications are given, and the code is verified at each step by additional
code containing assertions or proofs.

Limitations. A key aspect of our approach resides in the scoring of partial programs. However, the
scoring is limited by coarse granularity and lack of lookahead in the scoring function. The granularity

12

of the verification step is a whole unit, e.g. a function in Dafny and a command in Coq. For Dafny, the
coarse granularity means we have to wait multiple lines to get feedback. For Coq, the fine granularity
doesn’t help much with bigger proofs, which require planning.

Future work. What we find most interesting and promising about our approach is that so much is
possible by a “blind” search that only uses scalar reward signal. In future work, it would be fruitful
to find ways of allowing the search to rely on richer feedback while maintaining the efficiency of
leveraging the verifier to avoid doing costly rollouts or reflection steps. Moreover, it will be interesting
to see if the basic idea of VerMCTS, using a cheap and provable upper bound on the value function to
guide search, can be applied beyond the verified programming setting.

13

G Prompts

G.1 Repeat Prompt

Coq. In Coq: (1) Write a function ‘repeat‘ that takes an integer ‘x‘ and a natural number ‘n‘ as inputs,
and returns a list of length ‘n‘ in which every element is ‘x‘. (2) Then write a lemma ‘repeat_correct‘
that checks that for any ‘x‘ and ‘n‘, ‘repeat‘ returns a list of length ‘n‘ and that every element of the
list is ‘x‘.

Dafny. In Dafny: (1) Write a function ‘repeat‘ that takes an integer ‘x‘ and a natural number ‘n‘
as inputs, and returns a list of length ‘n‘ in which every element is ‘x‘. (2) Then write a lemma

‘repeat_correct‘ that checks that for any ‘x‘ and ‘n‘, ‘repeat‘ returns a list of length ‘n‘ and that every
element of the list is ‘x‘.

Hints for Coq.
Hint: Start with ‘Require Import List. Import ListNotations.‘

Check lemma for Coq.
Lemma CHECK_repeat_correct: ∀ (x: i n t) (n: nat) ,

l eng th (repeat x n) = n / ∀ i , 0 ≤ i −> i < n −> nth (repeat x n) i = x .
Proof .

i n t r o s .
eapply repea t_co r rec t ; eauto .

Qed .

Check lemma for Dafny.
lemma CHECK_repeat_correct (x: int , n: nat)

ensures | repeat (x , n) | = n
ensures ∀ i • 0 ≤ i < n =⇒ repeat (x , n) [i] = x

{
repea t_co r rec t (x , n) ;

}

G.2 Opt0 Opt Prompt

Coq. In Coq, write an ADT ‘Expr‘ for arithmetic expressions comprising constants, variables and
binary addition. Then write a predicate ‘optimal‘ that holds on an expression if it has no additions
by 0. Then write an optimizer ‘optimize‘ that removes all additions by 0. Then write a lemma

‘OptimizerOptimal‘ that ensures ‘optimal(optimize(e))‘ for all expressions ‘e‘.

Dafny. In Dafny, write an ADT ‘Expr‘ for arithmetic expressions comprising constants, variables and
binary addition. Then write a predicate ‘optimal‘ that holds on an expression if it has no additions
by 0. Then write an optimizer ‘optimize‘ that removes all additions by 0. Then write a lemma

‘OptimizerOptimal‘ that ensures ‘optimal(optimize(e))‘ for all expressions ‘e‘.

Hints for Coq.
Hint: In the addition case, the ‘optimize‘ function should recursively optimize the sub-expressions
and then match on the optimized sub-expressions.
Hint: You can import the ‘string‘ datatype with the line ‘Require Import Coq.Strings.String.‘
Hint: Use Fixpoint instead of Definition for recursive functions.
Hint: If you do induction on ‘e‘ with sub-expressions ‘e1‘ and ‘e2‘, the two inductive hypotheses
are called ‘IHe1‘ and ‘IHe2‘.

Check lemma for Coq.
lemma CHECK_OptimizerOptimal (e: Expr) ensures opt ima l (op t im ize (e)) { Opt imizerOpt imal (e) ; }

Check lemma for Dafny.
lemma CHECK_OptimizerOptimal (e: Expr) ensures opt ima l (op t im ize (e)) { Opt imizerOpt imal (e) ; }

14

G.3 Lights Prompt

Coq. In Coq: (1) Write a datatype ‘light‘ for traffic lights with cases ‘Red‘, ‘Yellow‘, ‘Green‘. (2)
Write a function ‘activation‘ which takes two lights, source and target, and returns a list of lights,
the first element being the source and the last element being the target. If the source and target are
not yellow and are distinct, then the returned list has a middle element of yellow. (3) Write a helper

‘adjacent_ok‘ that takes two lights, and checks that they are not one red and the other green. (4)
Write a helper ‘all_adjacent_ok‘ that takes a list of lights, and checks that all adjacent elements are
‘adjacent_ok‘. (5) Write a lemma ‘check_activation‘ to prove that forall source and target lights, a
returned list never has adjacent elements that are distinct and red or green. The proposition should
be ‘all_adjacent_ok (activation source target)‘.

Dafny. In Dafny: (1) Write a datatype ‘light‘ for traffic lights with cases ‘Red‘, ‘Yellow‘, ‘Green‘. (2)
Write a function ‘activation‘ which takes two lights, source and target, and returns a list of lights,
the first element being the source and the last element being the target. If the source and target are
not yellow and are distinct, then the returned list has a middle element of yellow. (3) Write a helper

‘adjacent_ok‘ that takes two lights, and checks that they are not one red and the other green. (4)
Write a helper ‘all_adjacent_ok‘ that takes a list of lights, and checks that all adjacent elements
are ‘adjacent_ok‘. (5) Write a lemma ‘check_activation(source: light, target: light)‘ to prove that a
returned list never has adjacent elements that are distinct and red or green. The ‘ensures‘ clause
should be ‘all_adjacent_ok(activation(source, target))‘.

Hints for Coq.
Hint: Start with ‘Require Import List. Import ListNotations.‘

Check lemma for Coq.
Lemma CHECK__check_activation: ∀ (source: l i g h t) (t a r g e t : l i g h t) ,

a l l _ad jacen t_ok (a c t i v a t i o n (source t a r g e t) .
Proof .

i n t r o s .
eapply check_ac t i va t i on ; eauto .

Qed .

Check lemma for Dafny.
lemma CHECK__check_activation (source: l i g h t , t a r g e t : l i g h t)

ensures a l l_ad jacen t_ok (a c t i v a t i o n (source , t a r g e t))
{

check_ac t i va t i on (source , t a r g e t) ;
}

G.4 BST Prompt

Coq. In Coq, (1) write an ADT for a tree of natural numbers. Call it ‘Tree‘. Then (2) write a
predicate ‘IsBST‘ that checks whether a given tree is a binary search tree (BST). Then (3) write a
function ‘insert‘ that inserts an element into a binary search tree while preserving the BST property.
Then (4) write a predicate ‘Contains‘ that checks whether a given tree contains a given element. Then
(5) write a lemma ‘InsertContains‘ about the insert function that ensures that the tree resulting from
inserting an element contains that element (without requiring nor ensuring the BST property). Then
(6) write another lemma ‘InsertPreservesBST‘ about the insert function that checks the BST property
continues to hold after insertion. This lemma should take bounds on the BST, and require that the
element to be inserted is within those bounds.

Dafny. In Dafny, (1) write an ADT for a tree of natural numbers. Call it ‘Tree‘. Then (2) write a
predicate ‘IsBST‘ that checks whether a given tree is a binary search tree (BST). Then (3) write a
function ‘insert‘ that inserts an element into a binary search tree while preserving the BST property.
Then (4) write a predicate ‘Contains‘ that checks whether a given tree contains a given element. Then
(5) write a lemma ‘InsertContains‘ about the insert function that ensures that the tree resulting from
inserting an element contains that element (without requiring nor ensuring the BST property). Then
(6) write another lemma ‘InsertPreservesBST‘ about the insert function that checks the BST property
continues to hold after insertion. This lemma should take bounds on the BST, and require that the
element to be inserted is within those bounds.

15

Hints for Coq.
Hint: Start with ‘Require Import List. Import ListNotations.‘

Hint: Use Fixpoint instead of Definition for recursive functions.
Hint: Use ‘l‘ and ‘r‘ for variable names instead of ‘left‘ and ‘right‘ to avoid name clashes.

Check lemma for Coq.
/ / (5) Lemma about the i n s e r t f u n c t i o n t h a t ensures the t ree r e s u l t i n g
/ / from i n s e r t i n g an element conta ins t h a t element
Lemma CHECK_InsertContains: ∀ (t : Tree) (x: nat) ,

Contains (i n s e r t t x) x .
Proof .

i n t r o s .
eapply Inse r tCon ta ins ; eauto .

Qed .

/ / (6) Lemma about the i n s e r t f u n c t i o n t h a t checks the BST proper ty
/ / cont inues to hold a f t e r i n s e r t i o n
lemma CHECK_InsertPreservesBST: ∀ (t : Tree) (x: nat) (min: nat) (max: nat) ,

(IsBST t min max) −> min ≤ x ≤ max −>
IsBST (i n s e r t t x) min max .

Proof .
i n t r o s .
eapply InsertPreservesBST ; eauto .

Qed .

Check lemma for Dafny.
/ / (5) Lemma about the i n s e r t f u n c t i o n t h a t ensures the t ree r e s u l t i n g from
/ / i n s e r t i n g an element conta ins t h a t element
lemma CHECK_InsertContains (t : Tree , x: nat)

ensures Contains (i n s e r t (t , x) , x)
{

Inse r tCon ta ins (t , x) ;
}

/ / (6) Lemma about the i n s e r t f u n c t i o n t h a t checks the BST proper ty cont inues
/ / to hold a f t e r i n s e r t i o n
lemma CHECK_InsertPreservesBST (t : Tree , x: nat , min: nat , max: nat)

requires IsBST (t , min , max) ∧ min ≤ x ≤ max
ensures IsBST (i n s e r t (t , x) , min , max)

{
InsertPreservesBST (t , x , min , max) ;

}

G.5 Opt0 Prompt

Coq. In Coq, write an ADT for arithmetic expressions (called ‘Expr‘) comprising constants, variables
and binary additions. Then write an evaluator (called ‘Eval‘) taking an expression and an environment
(a function that takes a variable name and returns a number) and returning the number resulting
from evaluation. Then write an optimizer (called ‘Optimize‘) taking an expression and returning an
expression with all additions by 0 removed. Then prove that the optimizer preserves the semantics as
defined by the evaluation function. Do so by proving the lemma ‘OptimizePreservesSemantics: forall
(e: Expr) (env: string -> nat), Eval(Optimize(e), env) = Eval(e, env)‘.

Dafny. In Dafny, write an ADT for arithmetic expressions (called ‘Expr‘) comprising constants,
variables and binary additions. Then write an evaluator (called ‘Eval‘) taking an expression and
an environment (a function that takes a variable name and returns a number) and returning the
number resulting from evaluation. Then write an optimizer (called ‘Optimize‘) taking an expres-
sion and returning an expression with all additions by 0 removed. Then prove that the optimizer
preserves the semantics as defined by the evaluation function. Do so by proving the lemma ‘Op-
timizePreservesSemantics(e: Expr, env: string -> int) ensures Eval(Optimize(e), env) == Eval(e,
env)‘.

Hints for Coq.
Hint: In the optimizer, recursively optimize the sub-expressions.
Hint: You can import the ‘string‘ datatype with the line ‘Require Import Coq.Strings.String.‘.

16

Hint: Use Fixpoint instead of Definition for recursive functions.
Hint: With tactics like ‘induction‘ and ‘destruct‘, _avoid_ naming with ‘as‘ and let Coq pick the
names for you. For example, use ‘induction e.‘ but _not_ ‘induction e as [...]‘.

Hint: For the proof, do ‘induction e.‘. Do NOT name the hypotheses with ‘as‘.
Hint: The simple cases are by ‘simpl. reflexivity.‘.
Hint: The addition case is by ‘simpl. rewrite <- IHe1. rewrite <- IHe2. destruct (optimize e1);
destruct (optimize e2); try destruct n; try destruct n0; eauto using PeanoNat.Nat.add_0_r.‘.
Hint: You’ll need ‘Require Import Arith‘.

Check lemma for Coq.

Lemma CHECK_OPS: ∀ (e: Expr) (env: str ing −> nat) , Eval (Optimize e) env = Eval e env .
Proof .
i n t r o s .
apply OptimizePreservesSemantics ; eauto .
Qed .

Check lemma for Dafny.

lemma CHECK_OPS(e: Expr , env: str ing −> i n t)
requires true
ensures Eval (Optimize (e) , env) = Eval (e , env)

{
OptimizePreservesSemantics (e , env) ;

}

G.6 Factorial Prompt

Coq. In Coq, write a factorial function, called ‘fac‘, and prove (in a lemma ‘FacPositive: forall (n:
nat), fac n > 0‘) that the factorial is always strictly positive.

Dafny. In Dafny, write a factorial function, called ‘fac‘, and prove (in a lemma called ‘FacPositive(n:
nat)‘) that the factorial is always strictly positive.

Hints for Coq.
Hint: Don’t forget to import the Arith module.
Hint: use ‘Nat.lt_0_1‘ in the base case of the proof.
Hint: use ‘Nat.lt_lt_add_r‘ in the inductive case of the proof.

Check lemma for Coq.

Lemma CHECK_FacPositive: ∀ (n: nat) , fac n > 0. Proof . i n t r o s . apply FacPos i t i ve ; eauto . Qed .

Check lemma for Dafny.

lemma CHECK_FacPositive (n: nat) ensures fac (n) > 0 { FacPos i t i ve (n) ; }

G.7 Food Prompt

In Dafny: (1) Write a datatype for ‘Food‘: ‘Pasta‘ or ‘Pizza‘. Each Pasta or Pizza has a list of
toppings. Each ‘Topping‘ is one of: ‘tomato‘, ‘cheese‘, ‘olive‘, ‘broccoli‘, ‘mushroom‘, ‘pepper‘.
(2) Write a predicate ‘ok‘ that accepts any pizza with five toppings or fewer, and any pasta with two
toppings or fewer. (3) Write a lemma ‘ok3_pizza‘ that proves that an accepted food with three or
more toppings must be a pizza.

Hints for Dafny.
Hint: The length of a list or sequence ‘s‘ is ‘|s|‘.

17

Check lemma for Dafny.
lemma CHECK_ok3_pizza (x: Food)

requires ok (x)
requires | x . topp ings | ≥ 3
ensures match x { case Pizza (_) ⇒ true case _ ⇒ fa lse }
{

ok3_pizza (x) ;
}

G.8 Reverse Prompt

In Dafny: (1) Write a function ‘reverse‘ that takes a list as input and reverses it. (2) Then write a
lemma ‘reverse_permutes‘ that checks that for any list ‘l‘, an element exists in ‘l‘ if and only if it
exists in the result of calling ‘reverse‘ on ‘l‘. (3) Then write a lemma ‘reverse_involutes‘ that checks
that for any list ‘l‘, calling ‘reverse‘ twice on ‘l‘ yields ‘l‘.

Hints for Dafny.
Hint: The length of a list or sequence ‘s‘ is ‘|s|‘.
Hint: Use a plain ‘function‘ to define ‘reverse‘, not a ‘function method‘ or a ‘method‘.

Check lemma for Dafny.
lemma CHECK__reverse_permutes (l : seq< int >)

/ / TODO
{
}
lemma CHECK__reverse_involutes (l : seq< int >)
ensures reverse (reverse (l)) = l ;
{

r eve rse_ invo lu tes (l) ;
}

G.9 Days Prompt

In Dafny: (1) Write an ADT ‘Day‘ for the days of the week: ‘Sunday‘ to ‘Saturday‘. (2) Write a
function ‘next_biz_day‘ that gives the next business day. (3) Write a function‘iter_biz_day(d: Day, n:
nat): Day‘ that iterates the next business day function, for an arbitrary number n of business days.
(4) Write a lemma ‘iter5_biz_day_idempotent‘ that ensures that starting with a business day, taking
the next five business days is idempotent.

Check lemma for Dafny.
lemma CHECK_iter5_biz_day_idempotent (d: Day)

requires d ̸= Saturday
requires d ̸= Sunday
ensures i t e r _b i z_d ay (d , 5) = d
{

i te r5_b iz_day_ idempotent (d) ;
}

H Examples of Scoring Partial Programs

Partial program with a score of 0:

datatype Expr =

Partial program with a score of +1:

datatype Expr =
| Const (va l : i n t)

Partial program with a score of −1:

18

datatype Expr =
| Const (va l : i n t)
| Var (name: str ing)
| Add (e1: Expr , e2: Expr)

function Evaluate (e: Expr ,
env: str ing −> i n t) : i n t
reads env

{
match e
case Const (va l) ⇒ va l
case Var (name) ⇒ env (name)
case Add (e1 , e2) ⇒

Evaluate (e1 , env) +
Evaluate (e2 , env)

}

The negative score is due to the reads clause, which shouldn’t be there. Unfortunately, we only
confirm the error once the whole function is generated.

I Broader Impacts

The development of algorithms that allow generation of verified code using smaller models has
notable broader impacts on both machine learning and society. We increase the efficiency per token
in code language model usage, and allow for the usage of smaller models. This further reduces
energy consumption and allows for a usage of cheaper hardware, thereby democratizing access to
this technology. Our approach, which is asking models to prove their work is correct, and then
immediately and externally checking whether the proof is correct, can mitigate some of the open
issues with trusting LLMs.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and intro clearly state the key results directly.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations is a subsection of our Discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss our algorithms in detail with pseudocode in section 2 and provide
all used hyperparameters in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]

Justification: We provide our code, including instructions on how to run it and reproduce
our experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we specify all hyperparameters, algorithms, and and used models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars report Wilson intervals as described in C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experiments are explicitly reported in terms of token counts which can be
directly converted to compute requirements on your hardware. We use an internal cluster
with A100 and H100 GPUs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is about optimizing results from existing models, and does not
introduce new models. Hence, we believe our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The model we use is correctly cited in section C.2.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Method: VerMCTS
	MDP for verified program synthesis
	VerMCTS

	Results
	Connecting the partial program score to the MDP
	A problem suite for multi-step verified programming
	Defining the problems
	Criteria for Success

	Experimental setup
	Pass@T evaluation metric
	Base model
	Baselines
	Hyperparamters

	Extended results
	Per-problem results
	Examining the VerMCTS search trees

	Related Work
	Discussion
	Prompts
	Repeat Prompt
	Opt0 Opt Prompt
	Lights Prompt
	BST Prompt
	Opt0 Prompt
	Factorial Prompt
	Food Prompt
	Reverse Prompt
	Days Prompt

	Examples of Scoring Partial Programs
	Broader Impacts

