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ABSTRACT

Several positional and structural encodings are recently proposed into vanilla
transformer architecture to overcome its inability to model graph’s positional in-
variance and topology. However, in addition to graph topology, graph signals
could be multi-channeled and contain heterogeneous information which cannot be
inherently captured by the transformer. Hence, we propose an approach to induce
a spectral module into the transformer architecture to enable decomposition of
graph spectrum and selectively learn useful information akin to filtering in the fre-
quency domain. Empirical results suggest that SpecTRA provides homogeneous
performance gain against vanilla transformer across all tasks on standard bench-
marks. Furthermore, incorporating SpecTRA instead of vanilla transformer model
with recently proposed position encoding schemes have resulted in comparable or
better performance than existing transformer and GNN based architectures.

1 INTRODUCTION

Several graph neural network (GNN) approaches have been devised as generic and efficient frame-
work to learn from graph-structured data for tasks such as graph classification, node classification,
graph regression, and link property prediction (Zhou et al., 2020). Among them, message-passing
GNNs (MPGNNs) have been prominently used to obtain latent encoding of graph structures, achiev-
ing good results on related tasks (Gilmer et al., 2017; Veličković et al., 2018; Xu et al., 2019a).
Although effective, these methods suffer from performance issues such as over-smoothing (Zhao &
Akoglu, 2020), suspended animation (Zhang & Meng, 2019), and over-squashing (Alon & Yahav,
2021). Recently, researchers (Zhang et al., 2020; Li et al., 2018) have attempted to use transformers
(Vaswani et al., 2017) for graph representation learning. However, transformers are inherently inca-
pable of learning the topological information of graphs (Dwivedi et al., 2020). Hence, more recent
works have added a gamut of effective positional and structural encoding methods (Mialon et al.,
2021; Kreuzer et al., 2021) to alleviate limitation of transformers to learn topological information.

Background and Hypothesis: Viewed from classical signal processing domain, signals on a graph
could contain heterogeneous information spread over a wider frequency domain (Ortega et al.,
2018). The message passing graph convolutional networks (MPGCNs) such as GCN (Kipf &
Welling, 2017) and GAT (Veličković et al., 2018) have low-pass characteristics (Muhammet et al.,
2020). Furthermore, researchers aim go beyond static low or highpass filters to design adaptive fil-
ters to capture entire graph spectrum in GNNs (Gao et al., 2021; Bo et al., 2021; Chien et al., 2021).
We argue that a similar issue plagues the transformers that cannot effectively segregate the noise
from the signal for the entire spectral components of a graph. Gleaning from the work on MPGNNs
as transformer can be special case of GNNs (Joshi, 2020), we hypothesize that inducing transformers
with the ability to selectively use the signals in the frequency domain will enable better representa-
tion learning on a broader range of tasks. As graphs have different topologies, we further postulate
that having an approach to dynamically select filters, as opposed to dataset-specific single static fil-
ter, will be more expansive to permit effective learning of graph representations using transformers.

Proposed Approach: This work, instead of devising a new position encoding scheme, proposes a
novel direction. Our work aims to empower transformers to learn the essential components of the
graph spectrum while filtering out the noise. We propose SpecTRA that effectively integrates the
attention of the transformer with the spectrum of the graph. SpecTRA consists of a filtering module
built on top of the vanilla transformer (Vaswani et al., 2017) to learn distinct filter coefficients for
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each input graph. The transformer naturally gives diverse attention sub-spaces, which are utilized
by SpecTRA to design multiple filters covering a broad spectrum of the graph. Specifically, we
utilize the spatial information learned by the attention heads of the transformer to dynamically de-
cide the filter coefficients. This enables interpreting the association between a particular frequency
component with each head for a given graph. Furthermore, it also helps select the useful range of
information in the frequency domain for different sub-spaces (attention heads in SpecTRA’s case).
Our rationale emerges from the following: 1) If the graph spectrum consists of several underlying
components, which are relevant for different sub-graphs, then it is paramount to dynamically learn
filter coefficient. This also provides an extra advantage concerning interpretability in spectral space
per graph (cf., section 5.1). 2) In cases where certain classes are skewed, a task-specific filter would
learn generic coefficients for the majority class, keeping a limit on the number of filters. SpecTRA
handles these special cases by learning filters after observing the input graph (cf., section A.5).

Contributions: To summarize, this work make the following key contributions:

• Our primary contribution is SpecTRA, a novel approach for empowering vanilla trans-
former with the ability to perform graph-specific filtering in multiple sub-spaces of the
attention heads. We study the efficacy of SpecTRA by conducting extensive experiments
on standard benchmark datasets of graph classification/regression and node classification
resulting in superior performance compared to vanilla transformer.

• We provide an exhaustive empirical study on the effect of inducing a variety of recently
proposed transformer-based positional encoding schemes (Dwivedi et al., 2020; Kreuzer
et al., 2021; Mialon et al., 2021) into the SpecTRA architecture. Empirical results show
comparable or better performance against current state-of-the-art transformer and GNN
based approaches. Hence, transformers, when induced with the ability to decompose and
attend to signals spectrally, can effectively capture representations on a wide range of tasks
complementing the effect of position encoding schemes.

The remainder of the paper is organized as follows: we describe the related works in section 2.
Section 3 provides the preliminaries and problem definition. In section 4, we explain the proposed
approach for graph specific dynamic filtering. Dataset details, experimental results, and ablations
are given in sections 5 and 5.1. Section 6 concludes the paper.

2 RELATED WORK

GNNs and Graph Transformers: In this section, we stick to the work closely related to our ap-
proach (detailed survey in (Chen et al., 2020b)). Since the early attempts for GNNs (Scarselli et al.,
2008), many variants of the message passing scheme were developed for graph structures such as
GCN (Kipf & Welling, 2017), GIN (Xu et al., 2018), and GraphSAGE (Hamilton et al., 2017).
The message passing paradigm employs neural networks for updating representation of neighboring
nodes by exchanging messages between them. The use of transformer-style attention to GNNs for
aggregating local information within the graphs is also an extensive research topic in recent literature
(Thekumparampil et al., 2018; Shi et al., 2020; Li et al., 2018). Dwivedi & Bresson (2020) use the
eigenvectors of the graph laplacian to induce positional information into the graph. Kreuzer et al.
(2021) propose a learnable position encoding module that applies a transformer on the eigenvectors
and eigenvalues of the graph laplacian. Ying et al. (2021) provide the concept of relative positional
encoding in which the positional information is induced in the attention weights rather than in the
input by obtaining correlation matrices of the spatial, edge, and centrality encoding. Similarly, Mi-
alon et al. (2021) induce relative position information in the form of diffusion and random walk
kernels along with structural information using the Graph Convolutional Kernel network (GCKN).
In contrast with existing transformer-based attempts that inherit vanilla transformer model (Vaswani
et al., 2017) for inducing position and topological encoding, we aim to improve the capabilities of
the vanilla transformer model by empowering it to decompose the spectrum of a graph.

Filters on Graphs: Filtering in the frequency domain is generalized to graphs using the spectral
graph theory (Chung et al., 1997; Shuman et al., 2013). The GCN model (Kipf & Welling, 2017)
and variants such as (Zhang & Meng, 2019) approximate convolution for graph structures in the
spatial domain. However, these models suffer from operating in the low-frequency regime, leaving
rich information in graph data available in the middle- and high-frequency components (Gao et al.,
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2021). Other approaches in the spectral domain attempt to reduce the computationally complex
eigen decomposition of the laplacian by adopting certain functions of the graph laplacian such as
Chebyshev polynomials (Defferrard et al., 2016), Cayley polynomials (Levie et al., 2018), and auto
regressive moving average (ARMA) filters (Isufi et al., 2016). These approaches focus on designing
specific filters with desirable characteristics such as bandpass and highpass. Our work focuses on
the design of learnable filters, whose frequency response can be represented in polynomial functions
in multiple sub-spaces of the signal. Gao et al. (2021) is closely related to part of our work which
also designs filter banks, albeit task-specific, for heterogeneous and multi-channel signals on graphs.
However, our work differs from Gao et al. (2021) in that we learn graph-specific filters to enable
interpretability in spectral space per graph and filtering into the transformer architecture.

3 PRELIMINARIES AND PROBLEM DEFINITION

Graph Fourier Transform: We denote a graph as (V, ϵ) where V is the set of N nodes and ϵ
represents the edges between them. The adjacency matrix is denoted by A. Here, we consider the
setting of an undirected graph, hence, A is symmetric. The diagonal degree matrix D is defined as
(D)ii =

∑
j(A)ij . The normalized laplacian L of the graph is defined as L = I − D− 1

2AD− 1
2 .

The laplacian L can be decomposed into its eigenvectors and eigenvalues as:

L = UΛU∗

where U is the N × N matrix; the columns of which are the eigenvectors corresponding to the
eigenvalues λ1, λ2, . . . , λN and Λ = diag(λ1, λ2, . . . , λn]). Let X ∈ RN×d be the signal on the
nodes of the graph. The Fourier Transform X̂ of X is then given as: X̂ = U∗X . Similarly, the
inverse Fourier Transform is defined as: X = UX̂ . Note U∗ is the transposed conjugate of U . By
the convolution theorem (Blackledge, 2005), the convolution of the signal X with a filter G having
its frequency response as Ĝ is given by (below, vm is the mth node in the graph):

(X ∗G)(vm) =

n∑
k=1

X̂(λk)Ĝ(λk)U(vm) =

n∑
k=1

(U∗X)(λk)Ĝ(λk)U(vm, λk) = UĜ(Λ)U∗X(vm) (1)

Transformers and Position encoding: The recent works (Dwivedi & Bresson, 2020; Kreuzer et al.,
2021) established the necessity of encoding schemes for inducing positional encoding into the trans-
former architecture. The relative encoding schemes proposed by GraphiT (Mialon et al., 2021) use
diffusion and random walk kernels for relative positional encodings. The diffusion kernel KD for a
graph with laplacian L is given by the equation below,

KD = e−βL = lim
p−→inf

(I − β

p
L)p (2)

For physical interpretation, diffusion kernels can be interpreted as the amount of a substance that
accumulates at a given node if injected into another node and allowed to diffuse through the graph.
Similarly, the random walk kernel generalizes this notion of diffusion for fixed-step walks on the
graph. It is described by the equation below,

KpRW = (I − γL)p (3)

We can see that above equation becomes the diffusion kernel if γ = β
p and p −→ inf . However, the

difference with respect to the diffusion kernel is that the random walk kernel is sparse. GraphiT also
makes use of GCKN (Chen et al., 2020a) for learning structural position encoding and we inherit it
in our approach describe in Section 4. We refer the readers to (Mialon et al., 2021) for more details.

Spectral GNN: Spectral GNNs rely on the spectral graph theory (Chung et al., 1997). Consider a
graph with U as its eigen vectors, λ the eigen values, and L the laplacian. The graph convolution
operation in the frequency domain can be written as below,

H l+1
j =

dl∑
i=1

Udiag(Gi,j,l)U
∗H l

i (4)

where H l
j is the feature vector of the jth node in the (l)th layer, dl is the dimension of the signal

in the lth layer, Gi,j,l is the learnable weight vector for the ith and jth node in the lth layer. This
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Figure 1: SpecTRA architecture. Besides introducing a dynamic filtering module for learning mul-
tiple filters per attention head, position encoding schemes are used in a plug-and-play manner.

formulation is non-transferable to multigraph learning problem (Muhammet et al., 2020). Thus,
Gi,j,l is re-parametrized as below,

Gi,j,l = B[W l,1
i,j ,W

l,2
i,j , . . .W

l,S
i,j ]

where B ∈ RN×S , S is the number of convolutional supports and W l,s is the learnable matrix. The
Equation 4 depends on the computation of the eigen vectors U of L, which is computationally costly
for large graphs. In our work, we consider the polynomial approximations as proposed by Hammond
et al. (2011). Specifically, the frequency response of the desired filter can be approximated as,

Ĝ =

K∑
k=0

αkTk(Λ̃) (5)

where T (k) is the polynomial basis such as Chebyshev polynomials (Defferrard et al., 2016), Λ̃ =
2Λ

λmax
− I , λmax is the maximum eigen value and αk is the corresponding filter coefficients. A

recursive formulation could be used for the Chebyshev polynomials with basis T0(x) = 1, T1(x) =
x and beyond that Tk(x) = 2xTk−1(x) − Tk−2(x). Thus, the convolution operation in Equation 1
can be approximated as

X ∗G ≈ U(

K∑
k=0

αkTk(Λ̃))U
∗X =

K∑
k=0

αkTk(U Λ̃U∗)X =

K∑
k=0

αkTk(L̃)X (6)

This corresponds to an FIR filter of order K (Smith et al., 1997). Setting α as a learnable parameter
help us learn the filter for the upstream task.

Problem definition In this work, we aim to learn the filter coefficients from the attention weights of
the transformer. Formally, given the transformer attention for the head h at layer l as Ah,l ∈ RN×N ,
we aim to define a mapping M : RN×N −→ RK where K is the filter order. The mapping M would
take us from the space in the attention weights to the filter coefficient space.

4 SPECTRA:SPETRAL TRANSFORMER

In this section, we present our approach, SpecTRA. We first describe the notion of dynamic filtering
module of SpecTRA architecture followed by its position encoding module (cf., Figure 1).

4.1 MULTI HEADED ATTENTION WITH DYNAMIC FILTERING MODULE

We view the graph as set of node features to be fed to the vanilla transformer (Vaswani et al., 2017)
that learns the pairwise similarity between these nodes using its attention mechanism as follows:

AttentionWeightsh(Q,K) = softmax(
QKT

√
dout

) (7)
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Here, QT = Wh
QX

T and KT = Wh
KXT where Wh

Q,W
h
K ∈ Rdout×din are the projection matrices

for the query and key respectively for the head h. The output Xh at the head h can be obtained from:

Xh = Attentionh(Q,K, V ) = softmax(
QKT

√
dout

)V (8)

Learning filter coefficients: In order to obtain the filter coefficients from the weights of each atten-
tion head, we use a message passing framework. The spectral and spatial domains are interchange-
able, and transformers traditionally learn good latent representations of spatial domain (Vaswani
et al., 2017; Devlin et al., 2019). Hence, attention map provides inference to the connectivity of
a graph implicitly, using which, we can deduce the frequency band to filter out the noise. If each
node’s signal xi is considered with its neighborhood N (xi) which represents the non-zero attention
weights obtained from Equation 7, then the message passing is defined as:

xl
im = A(xl

j |xj ∈ N (xi)), x
l+1
i = U(xl

i, x
l
im)

where xl
i and xl

im are the signals and the aggregated message at node xi in the layer l. Here, A
and U are the aggregation and update functions respectively. This framework enables the usage of
popular message passing schemes such as GCN (Kipf & Welling, 2017). For example, in GCN,
the aggregation is a simple projection of the signals followed by a summation weighted by the
normalized laplacian with self loops. Next, the updation is an activation function such as ReLU.
The final equation is now represented as below:

xh,l+1
i = σ(

∑
xj∈N (xi)

L[i, j](xh,l
j )TW l

p ) (9)

where xh,l
j is the node embedding for the jth node in the l-th layer of the GNN(to learn coefficients)

for the h-th head of the transformer, L = I −D− 1
2AD− 1

2 is the normalized laplacian and W l
p is the

learnable projection matrix at layer l. This GNN is common for all the heads and at all layers of the
transformer. Here, the node embeddings reside in the coefficient space i.e. X ∈ RN×K , where K
is the order of the filter. For learning the filter coefficients we initialize the node embeddings with a
prior of the filter depending on the task. For an all-pass filter we could use a vector of all ones as the
initialization. This choice of prior is justified by property 4.1 (cf., Appendix A.1 for proof).
Property 4.1. The filter coefficients consisting of the vector of all ones is an all-pass filter.

After the L-th message passing, the vector obtained from Equation 9 is given to a readout function
such as global average pooling followed by a simple feed forward network to obtain the final filter
coefficients αh, per attention head, as below:

αh = MLP (
1

N

N∑
i=1

xh,L
i ) (10)

where xh
i is the vector at node xi in the h-th attention head obtained from Equation 9.

Dynamic Filtering Module: We use the filter coefficient αh to obtain the appropriate filter fre-
quency response defined as:

Ĝh =

K∑
k=0

αh[k]Tk(L̃) (11)

where K is the filter order. The desired filter response Hh at head h can then be obtained from Ĝh

as observed in Eq 6 as:

Hh = Xh ∗Gh = UĜh(Λ̃)U∗Xh = Ĝh(L̃)Xh =

K∑
k=0

αh[k]Tk(L̃)X
h

The filter outputs from each head is concatenated to get the filtered output which is further concate-
nated with the attention output X , followed by an MLP, with appropriate normalizations, for the
output of the encoder layer:

H = ∥
h

Hh, X = MLP (∥
h

Xh), Xa = Norm(MLP (X ⊕H))
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This could then be used in the upstream task of classification, regression, etc. In order to learn dis-
tinct filter coefficients for each head we add a regularization term to the objective. The regularization
tries to keep the coefficient vectors orthogonal to each other. It does so by taking the Frobenius norm
(Horn & Johnson, 1990) of the gram matrix of X whose columns consist of the coefficient vector
of each head. Formally, define αi ∈ Rk and X = [α1, α2, . . . αh] ∈ Rk×h where h is the number
of heads and k is the filter order. The regularization term is given by ∥(XTX)⊙ (1− I)∥2, where
I ∈ Rh×h is the identity matrix and ⊙ is the hadamard product. The below theorem (proof in
Appendix A.1) justifies the proposed method.

Theorem 4.1. Assume the desired filter response G(x) has m + 1 continuous derivatives on the
domain [−1, 1]. Let ST

nG(x) denote the nth order approximation by the polynomial(chebyshev)
filter and ST ′

n G(x) denote the learned filter, Cf be the first absolute moment of the distribution of
the fourier magnitudes of f (function learned by the network), h the number of hidden units in the
network and N the number of training samples. Then the error between the learned and desired
frequency response is bounded by the below expression

|G(x)− ST ′

n G(x)|= O(
nC2

f

h
+

hn2

N
log(N) + n−m)

The above theorem argues that the Chebyshev polynomials are able to learn any smooth function.
Using injective aggregators in GNNs and universal approximators in MLP, we can approximate
these coefficients to the desired precision given by the bounds. The input to the GNNs could be
divided into two parts: the input graph indicating the connectivity of nodes and the signals on the
graph. In this work, we aim to study if the spectral components could be identified by using the
spatial connectivity pattern of the signals on the original graph obtained from the attention maps of
the transformer. This justifies the proposed architecture, in which a graph is constructed with the
edge weights taken from the attention weights and fed to a GNN for learning the filter coefficients.
These coefficients are then used in a spectral GNN in which the input is the original graph with node
embeddings as learned from the transformer. The output of this is then fed to further transformer
layers, and the process is repeated. The input to the first transformer is the node/edge attributes
itself. We leave using the connectivity structure imposed by the original graph for future works.

4.2 POSITIONAL ENCODING SCHEMES

In SpecTRA, we learn the pairwise similarity between graph nodes inheriting the attention mecha-
nism of vanilla transformer as follows:

Attentionh(Q,K, V ) = softmax(
QKT

√
dout

)V (12)

Here QT = Wh
QX

T , KT = Wh
KXT and V T = Wh

V X
T , where Wh

Q,W
h
K ,Wh

V ∈ Rdout×din are
the projection matrices for the query, key and values respectively for the head h. Following GraphiT
(Mialon et al., 2021), we share the weight matrices for the query and key matrices for learning a
positive semi-definite kernel. For the input features we use the node attributes, if provided, along
with the static laplacian position encoding, as in (Dwivedi & Bresson, 2020). The static encoding
in the form of the laplacian eigen vectors is simply added to the node embeddings. For the relative
positional encoding we follow GraphiT and use the diffusion (KD) and random walk (Krw) kernels
(cf., Equations 2 and 3). The attention using the relative positional encoding schemes is now:

Attention(Q,V ) = softmax(exp(
QQT

√
dout

) ·Kp)V (13)

Here, Kp is the respective kernel being used i.e. Kp ∈ KD,Krw. We also borrow from the
positional encoding scheme of SAN (Kreuzer et al., 2021) that allow usage of the edge features
E ∈ RN×N×din . Formally, the attention weights wkl

ij between the nodes i and j in the lth layer and
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kth attention head is given by the below equations

ŵkl
ij =


W 1,k,l

Q X[i]T ⊙W 1,k,l
K X[j]T ⊙W 1,k,l

E E[i, j]T

dout
, if i and j are connected in sparse graph

W 2,k,l
Q X[i]T ⊙W 2,k,l

K X[j]T ⊙W 2,k,l
E E[i, j]T

dout
, otherwise

wkl
ij =


1

1 + γ
softmax(

∑
dk

ŵkl
ij ), if i and j are connected in sparse graph

γ

1 + γ
softmax(

∑
dk

ŵkl
ij ), otherwise

where W 1,k,l
Q ,W 1,k,l

K ,W 1,k,l
E are the projection matrices corresponding to the query, key and edge

vectors for the real edges and W 2,k,l
Q ,W 2,k,l

K ,W 2,k,l
E are the projection matrices corresponding to

the respective vectors for the added edges in the kth head and lth layer as in (Kreuzer et al., 2021).
We further employ GCKN (Chen et al., 2020a) to encode graph’s topological properties.

Limitations The space and time complexity of our method is O(N2) for full attention. This could
be alleviated by using sparse attention (cf., Table 2). One may also use kernel methods as in (Choro-
manski et al., 2021) to reduce the number of nodes in the graph and then apply the transformer on
the reduced graph. Similar to vanilla transformer,SpecTRA cannot induce positional encoding on its
own. It is yet to be explored if learning position encodings could be incorporated into the proposed
method. We leave these directions of exploration to future works.

5 EXPERIMENT RESULTS

We aim to answer following research questions: RQ1: Can multi-headed attention combined with
dynamic graph filtering improve SpecTRA’s ability over base transformer for graph representation
learning? RQ2: What is the impact of recently proposed position encoding schemes on SpecTRA?
RQ3: What is the efficacy of graph-specific filters on the performance of SpecTRA?
Datasets, Settings and Baselines: We use widely popular datasets (Kreuzer et al., 2021; Mialon
et al., 2021; Hu et al., 2020): MUTAG, NCI1, and the OGBG-MolHIV for graph classification;
PATTERN and CLUSTER for node classification; and ZINC for graph regression task. Further de-
tails are in the Appendix A.2. We borrow experiment settings from (Mialon et al., 2021; Kreuzer
et al., 2021). The GNN and transformer baselines are listed in Table 5.1.
SpecTRA Configurations: For a fair and exhaustive comparison, we provide six variants of Spec-
TRA: 1) SpecTra-Base to compare against vanilla transformer without position encoding module
(cf., section 4.2), 2) SpecTRA+LapE contains static position encoding from Mialon et al. (2021), 3)
SpecTRA+3RW consists of position encoding based on 3-step RW kernel from Mialon et al. (2021),
4) SpecTRA+GCKN+3RW that uses GCKN (Chen et al., 2020a) in addition with 3-step RW kernel
to induce graph topology, 5) SpecTRA+LPE+Full with learnable position encoding (Kreuzer et al.,
2021) with full attention. 6) SpecTRA+LPE+Sparse inheriting learnable position encoding from
Kreuzer et al. (2021), with sparse attention on the graphs.

5.1 RESULTS

SpecTRA-Base outperforms vanilla transformer (Table 1) across all datasets establishing the positive
impact of combining dynamic filtering with multi-headed attention into SpecTRA architecture (suc-
cessfully answering RQ1). We observe (Table 2) that for the smaller MUTAG and NCI1 datasets,
SpecTRA achieves the best results against baselines using the structural encoding of GCKN. It indi-
cates that these datasets benefit more from structural information. The results of the other SpecTRA
variants are comparable or better than the transformer-based (SAN, GraphiT-LapE, GraphiT-3RW)
and GNN baselines. On OGBG-MolHIV and PATTERN/CLUSTER’s graph and node classifica-
tion tasks, learnable position encoding has most positive impact on SpecTRA. Graphformer reports
the highest value on MolHIV. However, its parameters are 47M compared to ≈ 500K from Spec-
TRA+LPE, GCN-based models, and SAN. Notably, we see that SpecTRA performs exceptionally
well on the graph regression task of ZINC with a relative decrease in the error of up to 50%. Po-
tential reason could be SpecTRA’s ability to learn diverse filters that are distinct for each graph (c.f,
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Models MUTAG NCI1 ZINC MolHIV PATTERN CLUSTER

Vanilla Transformer 82.2 ± 6.3 70.0 ± 4.5 0.696 ± 0.007 65.22 ± 5.52 75.77 ± 0.4875 21.001 ± 1.013
SpecTRA-Base (ours) 87.2 ± 2.6 73.7 ± 1.4 0.412 ± 0.004 65.77 ± 3.838 78.65 ± 2.509 30.351 ± 2.669

Table 1: Results on graph/node classification/regression Tasks (RQ1)). Higher (in green) value is
better (except for ZINC). Means and uncertainties are derived from four runs.

Models MUTAG NCI1 ZINC MolHIV PATTERN CLUSTER
% ACC % ACC MAE % ROC-AUC % ACC % ACC

GCN (Kipf & Welling, 2017) 78.9±10.1 75.9 ± 1.6 0.367 ± 0.011 76.06 ± 0.97 71.892 ± 0.334 68.498 ± 0.976
GatedGCN (Bresson & Laurent, 2017) - - 0.282 ± 0.015 - 85.568 ± 0.088 73.840 ± 0.326
GraphSAGE (Hamilton et al., 2017) - - 0.398 ± 0.002 - 50.492 ± 0.001 63.844 ± 0.110
GAT (Veličković et al., 2018) 80.3 ± 8.5 74.8 ± 4.1 0.384 ± 0.007 - 78.271 ± 0.186 70.587 ± 0.447
PNA(Corso et al., 2020) - - 0.142 ± 0.010 79.05 ± 1.32 - -
GIN (Xu et al., 2018) 82.6 ± 6.2 81.7 ± 1.7 0.526 ± 0.051 75.58 ± 1.40 85.387 ± 0.136 64.716 ± 1.553
Graphormer (Ying et al., 2021) - - 0.122 ± 0.006 80.51 ± 0.53 - -
GT-sparse(Dwivedi & Bresson, 2020) - - 0.226 ± 0.014 - 84.808 ± 0.068 73.169 ± 0.662
GT-full (Dwivedi & Bresson, 2020) - - 0.598 ± 0.049 - 56.482 ± 3.549 27.121 ± 8.471
SAN-Sparse(Kreuzer et al., 2021) 74.1 ± 2.6* 80.5 ± 1.3* 0.198 ± 0.004 76.61 ± 0.62 81.329 ± 2.150 75.738 ± 0.106
SAN-full(Kreuzer et al., 2021) 71.9 ± 2.9* 75.1 ± 1.5* 0.139 ± 0.006 77.85 ± 0.65 86.581 ± 0.037 76.691 ± 0.247
GraphiT-LapE (Mialon et al., 2021) 85.8 ± 5.9 74.6 ± 1.9 0.507 ± 0.003 65.10 ± 1.76* 76.701 ± 0.738* 18.136 ± 1.997*
GraphiT-3RW (Mialon et al., 2021) 83.3 ± 6.3 77.6 ± 3.6 0.244 ± 0.011 64.22 ± 4.94* 76.694 ± 0.921* 21.311 ± 0.478*
GraphiT-3RW+GCKN (Mialon et al., 2021) 90.5 ± 7.0 81.4 ± 2.2 0.211 ± 0.010 53.77 ± 2.73* 75.850 ± 0.192* 69.658 ± 0.895*

SpecTRA + LapE (ours) 87.4 ± 2.6 75.4 ± 2.6 0.077 ± 0.001 66.80 ± 2.18 78.808 ± 1.662 19.366 ± 3.818
SpecTRA + 3RW (ours) 87.0 ± 2.6 78.5 ± 1.3 0.104 ± 0.005 59.95 ± 3.91 77.285 ± 1.146 68.572 ± 2.164
SpecTRA + GCKN+ 3RW (ours) 92.9 ± 1.6 83.0 ± 0.5 0.068 ± 0.002 53.50 ± 5.89 77.86 ± 0.573 67.507 ± 2.856
SpecTRA + LPE+Full (ours) 72.2 ± 1.6 73.8 ± 0.8 0.1836 ± 0.002 76.88 ± 0.573 86.52 ± 0.013 76.750 ± 0.296
SpecTRA + LPE+Sparse (ours) 72.2 ± 3.5 81.0 ± 1.5 0.1581 ± 0.001 78.10 ± 0.303 86.30 ± 0.024 77.224 ± 0.111

Table 2: Impact of external position encoding schemes (RQ2). For a dataset, Green and Grey cells
represent the highest and the second best result, respectively. The baselines values are from (Kreuzer
et al., 2021; Mialon et al., 2021) and its additional values with * are calculated by us.

Appendix A.5). An important observation is that no position encoding scheme provides homoge-
neous performance gain across all datasets for SpecTRA and it supports our choice to use them as a
plug-in (answering RQ2). Hence, it is still an open research question to propose a position encoding
scheme that provides homogeneous performance gain across all tasks agnostic of the datasets.

Models MUTAG NCI1 ZINC MolHIV PATTERN CLUSTER

SpecTRA-Base 87.2 ± 2.6 73.7 ± 1.4 0.412 ± 0.004 65.77 ± 3.838 78.65 ± 2.509 30.351 ± 2.669
SpecTRA-ARMA 85.1 ±1.3 72.2 ± 2.1 0.355 ± 0.007 65.45 ± 4.237 76.93 ± 0.279 20.390 ± 2.859
SpecTRA-Static 83.3 ± 1.3 70.4 ± 3.8 0.470 ± 0.002 67.10 ± 3.647 76.03 ± 0.861 20.995 ± 0.005

Table 3: Comparing SpecTRA-Base against (RQ3): 1) SpecTRA-Static that uses static filter and 2)
SpecTRA-ARMA which changes the filter in base configuration to ARMA.

Ablation Studies We created another SpecTRA configuration (SpecTRA-Static) where the filter is
static per dataset based on attention heads. Our idea here is to understand the impact of combin-
ing multi-headed attentions with a dynamic filter. From Table 3, we clearly observe the empirical
advantage of SpecTRA-Base. More importantly, graph-specific filters aim for interpretability in
spectral space per graph. Similar to attention weights, learning graph-specific filters facilitates the
understanding of which nodes interact in the spectral domain and which filter is helpful for the task.
In some cases, it may benefit from learning representations by aggregating from connected neigh-
bors, which a low pass filter would do. Whereas in other cases, the task would benefit learning from
unconnected distant nodes, which may be graph dependent. For instance, in Figure 3, we see that
for sparse graphs (graph (a) - (c)) the filter response has a prominent magnitude for the lower com-
ponents of the spectrum along with some components in the middle regions of the spectrum. On the
other hand, for relatively dense graphs, we see a relatively less prominent low frequency response
and many heads learning to focus on the higher frequency components of the spectrum. In a sense,
this enables aggregation of nodes that are distant in the graph and helps in providing interpretation
as to which nodes interact in the spectral domain. Note that existing graph-specific attention mech-
anisms, such as GAT, learn only low pass filters (Muhammet et al., 2020) and cannot perform such
an aggregation. Also, the spectral GNNs (cf., section 2) that learn filters for the entire dataset are
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(a) K = 3. (b) K = 8. (c) K = 3. (d) K = 4. (e) K = 8.

Figure 2: Aggregate Filter Frequency response (K is filter order). (a) ∼ (b) are on MUTAG and (c)
∼ (e) are on NCI1. X axis shows the normalized frequency with magnitudes on the Y axis.

unable to perform similar aggregation in a graph-specific manner which may be beneficial in some
cases (cf., A.4). Also, the learned filters have different frequency responses specific to the dataset
as they are tuned to the data characteristics (cf., Figure 2). These observations justify our rationale
to propose graph-specific filters and successfully answering RQ3. We note, equation 11 represents

(a) (b) (c) (d) (e)

(f) K = 8. (g) K = 8. (h) K = 8. (i) K = 8. (j) K = 8.

Figure 3: Filter Frequency response on individual graphs. Graph (a) is from MUTAG and, (b) ∼ (e)
are from the NCI1 dataset and Figures (f) ∼ (j) are the corresponding frequency responses. X axis
shows the normalized frequency with magnitudes on the Y axis.

a polynomial filter using the Chebyshev polynomials (Defferrard et al., 2016). Polynomial filters
(Hammond et al., 2011) are smooth and have restrictions that they cannot model filter responses
with sharp edges. Hence, we devise SpecTRA-ARMA that uses rational filters such as ARMA (Isufi
et al., 2016). Our idea here is to study the empirical efficacy of these filters. It can be observed
from Table 3 that SpecTRA-ARMA resulted in lower performance than SpecTRA-Base on most
of the datasets. However, on ZINC, there is an improvement using ARMA filters as compared to
Chebyshev polynomial filters. Also on CLUSTER, we observer a sharp increase using SpecTRA-
Base as compared to SpecTRA-Static but not with SpecTRA-ARMA. Hence, we conclude that filter
response and empirical predictive performance could be orthogonal objectives, and it becomes a
trade-off to decide which type of filter to apply for a given task.

6 CONCLUSION

In this work, we have introduced a novel transformer-based approach for graph representation learn-
ing. Our model SpecTRA aims to effectively learn multiple filters per attention head to capture
heterogeneous information spread over a wider frequency domain. Furthermore, learning graph-
specific filters provide interpretability in spectral space per graph, which is not the case in a dataset-
specific static filter. Experiments on standard datasets of a variety of tasks suggest a clear empirical
edge on vanilla transformer. Also, using recently proposed position encoding schemes as plug-ins in
the flexible architecture of SpecTRA resulted in better or comparable state-of-the-art performance.

9
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7 ETHICS AND REPRODUCIBILITY STATEMENT

In this work, we present significant progress in graph representation learning using transformers.
Knowledge representation from the data (mainly graphs) is an important goal that human beings
seek for reasoning along with the advancement of technology. Many recently proposed transformer
approaches rely on static frequency filters (including one of our configuration SpecTRA-Static)
compared to our proposed dynamic filtering approach. Furthermore, we employ widely used public
datasets for graphs. When it comes to who may be disadvantaged from this research, we do not think
it is applicable since our study of addressing the dynamic filtering capabilities of the transformer,
which is still at an early stage. Additionally, there is no concrete evidence in the literature that
signals on the graphs causes bias or ethical concerns for effectively learning graph representations.

Having said so, we are fully supporting the development of ethical and responsible AI. The poten-
tial bias in the standard public datasets that may lead to wrong knowledge needs to be cleaned or
corrected with validation mechanisms. We are also aware of energy consumption of GPUs used in
the empirical evaluations and support development of Green AI for sustainable development of ML
research.

Regarding reproducibility: upon acceptance, we will publicly release code with detailed user instruc-
tions to reproduce our empirical values. We have provided an additional appendix section including
GPU size and all other hyper parameters needed to reproduce this work. Also, we have made sure
that in methodology, all relevant equations are presented in the main section of the paper to clarify
our proposed approach.
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A APPENDIX

A.1 THEORETICAL JUSTIFICATION

Property A.1. The filter coefficients consisting of the vector of all ones is an all-pass filter

Proof. Consider the filter response given by the chebyshev coefficients Tn of the first kind as below

G(x) =
∞∑
i=0

Ti(x)t
n

where ti represent the coefficients for the ith polynomial. It can be verified that the generating
function for G above could be given by the below equation

G(x) =
1− tx

1− 2tx+ t2
(14)

setting t = 1 in this equation gives G(x) = 1
2 which does not depend on x. Thus G would behave

as an all-pass filter.

Note that t = 0 is also an alternative but this would cause a degenerate learning of the filter
coefficients which may always remain 0 after aggregation and the MLP layers (in the absence of
bias).

Theorem A.1. Assume the desired filter response G(x) has m + 1 continuous derivatives on the
domain [−1, 1]. Let ST

nG(x) denote the nth order approximation by the polynomial(chebyshev)
filter and ST ′

n G(x) denote the learned filter, Cf be the first absolute moment of the distribution of
the fourier magnitudes of f (function learned by the network), h the number of hidden units in the
network and N the number of training samples. Then the error between the learned and desired
frequency response is bounded by the below expression

|G(x)− ST ′

n G(x)|= O(
nC2

f

h
+

hn2

N
log(N) + n−m)

Proof. We begin by defining a bounded linear functional L on the space Cm+1[−1, 1] with m + 1
continuous derivatives as below

LG = (ST
nG)(x)−G(x)

Since G(x) has m + 1 derivatives, it is approximated by a polynomial function of degree n > m.
By Peano’s kernel theorem (Peano, 1913), we can write LG as below

(ST
nG)(x)−G(x) =

∫ 1

−1

Gm+1(t)Kn(x, t)dt (15)

where
Kn(x, t) =

1

m!
ST
n (x− t)m+ − (x− t)m+ (16)

The notation (.− t)m+ indicates

(x− t)m+ =

{
(x− t)m if x > t

0 otherwise

13
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We note the nth order approximation of the chebyshev expansion of the function Gx is given by

ST
nG =

n∑
k=0

ckTk(x)

where,

ck =
2

π

∫ 1

−1

G(x)Tk(x)√
1− x2

dx

Thus we get ST
n (x− t)m+ as

ST
n (x− t)m+ =

n∑
k=0

ckmTk(x)

where,

ckm =
2

π

∫ 1

t

(x− t)mTk(x)√
1− x2

dx

If a Graph Neural Network approximates ckm in the proposed method, then we would have an
error due to this approximation. We now find the bounds of this approximation. As the current
method relies on the connectivity pattern due to the signals of the nodes of the graph, we desire
a different graph for different signal patterns and thus different filter coefficients. Assuming an
injective function (Xu et al., 2019b) for aggregation, we can always find a unique map for a unique
graph corresponding to the frequency response. Now we need to learn a function that maps the
output of the previous network to the coefficients of the desired frequency response. A classical
neural network with h hidden units could approximate this by the below bound (Barron, 1991)

ϵ = c
′

km − ckm = O(
C2

f

h
+

hd

N
log(N))

where d = n as the input dimension is the filter order, N is the number of training samples. In-
tuitively the first term of the expression states that increasing the number of nodes h decreases the
error bounds and the second term acts as a regularizer to limit the increase in h by the number of
samples. The latter term can be thought of as enforcing the bound to obey the Occam’s razor that
parameters should not be increased beyond necessity.

Cf =

∫
|ω||F |dω

|F | is the Fourier magnitude distribution of f which is the function to be learned by the network.
Thus we get,

ϵ = O(
C2

f

h
+

hn

N
log(N)) (17)

We represent by ST ′

n (x−t)m+ the approximation obtained by the network of the nth order chebyshev
polynomial. Thus

ST ′

n (x− t)m+ =

n∑
k=0

c
′

kmTk(x)
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From equation 17 and the previous equation we get the below

|ST ′

n (x− t)m+ − (x− t)m+ | = |
n∑

k=0

c
′

kmTk(x)− (x− t)m+ |

= |
n∑

k=0

(ckm + ϵ)Tk(x)− (x− t)m+ |

= |
n∑

k=0

ckmTk(x)− (x− t)m+ +

n∑
k=0

ϵTk(x)|

= |
∞∑
k=0

ckmTk(x)− (x− t)m+ +

n∑
k=0

ϵTk(x)−
∞∑

k=n+1

ckmTk(x)|

= |
n∑

k=0

ϵTk(x)−
∞∑

k=n+1

ckmTk(x)|

≤ |
n∑

k=0

ϵTk(x)|+|
∞∑

k=n+1

ckmTk(x)|

= |
n∑

k=0

(O(
C2

f

h
+

hn

N
log(N)))Tk(x)|+|

∞∑
k=n+1

ckmTk(x)|

= O(
nC2

f

h
+

hn2

N
log(N)) + |

∞∑
k=n+1

ckmTk(x)|

We now bound the expression |
∑∞

k=n+1 ckmTk(x)|. We note that

ckm =
2

π

∫ 1

t

(x− t)mTk(x)√
1− x2

dx

Using x = cos θ and t = cosϕ we get

ckm =
2

π

∫ ϕ

0

(cos θ − cosϕ)m cos kθdθ

We now have to solve the integral I =
∫ ϕ

0
(cos θ − cosϕ)m cos kθdθ We do this by integrating by

parts

I = [(cos θ − cosϕ)m
sin kθ

k
]ϕ0 −

∫ ϕ

0

m(cos θ − cosϕ)m−1(− sin θ)
sin kθ

k
dθ

= −
∫ ϕ

0

m(cos θ − cosϕ)m−1(− sin θ)
sin kθ

k
dθ

= −
∫ ϕ

0

m(cos θ − cosϕ)m−1 cos (k − 1)θ + cos (k + 1)θ

k
dθ

= −(

∫ ϕ

0

m(cos θ − cosϕ)m−1 cos (k − 1)θ

k
dθ + (

∫ ϕ

0

m(cos θ − cosϕ)m−1 cos (k + 1)θ

k
dθ)

= −(I11 + I12)

Continuing in this manner we get O(2m) integrals, one of which is as below

Im1 =
m(m− 1)(m− 2) . . . 1

k(k − 1)(k − 2) . . . (k −m)
(− sin θ) sin (k −m)θ)

= O(mmk−m)

= O(k−m)as k −→ ∞
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Thus I evaluates to O(k−m) and ckm = O(k−m).

Thus we have,

|
∞∑

k=n+1

ckmTk(x)| =
∞∑

k=n+1

|ckm|

= O(n−m)

Using this result in the expression for |ST ′

n (x− t)m+ − (x− t)m+ | we get

|ST ′

n (x− t)m+ − (x− t)m+ | = O(
nC2

f

h
+

hn2

N
log(N)) + |

∞∑
k=n+1

ckmTk(x)|

= O(
nC2

f

h
+

hn2

N
log(N)) +O(n−m)

Finally using equations 16 and 15 for ST ′

n G we get

|ST ′

n G−G|= O(
nC2

f

h
+

hn2

N
log(N) + n−m) (18)

which concludes the proof.

The bound states that as the filter order n and the hidden dimension of the network h are increased
(subject to n3C2

f ≤ hn2 ≤ N
logN ) the approximation will converge to the desired filter response. The

condition can be thought to satisfy the statistical rule that the model parameters must be less than the
sample size. In the limit of N −→ ∞, h and n could be increased to as large values as desired subject
to h ≥ O(n), which is the order of parameters to be approximated. This is equivalent to say that if
we do not consider the generalization error, we can theoretically take a large h. Then, we are left
with only the term containing the filter order i.e. the approximation error comes down to O(n−m)
as expected. One point to note is that we assume suitable coefficients ckm can be learned from
the input graph. This assumption requires that the graph has the necessary information regarding
spatial connectivity and signals. In the current implementation, we only use the information from the
signals residing on the graph nodes in the attention heat map and discard the spatial connectivity. It
is a straightforward exercise to extend this idea by using multi-relational graphs to include the graph
signals and the spatial connectivity information which we leave for future works. Nevertheless, the
current implementation does well empirically, as is evident from the results on the real world and
synthetic (A.4) datasets.

A.1.1 TRANSFORMERS AND WL TEST

WL-test has been used as a standard measure to study the expressivity of GNNs. The k-WL test
is the variant of the WL test that works on k-tuples instead of one-hop node neighbors compared
to the standard 1-WL test. Recently, with the rapid adoption of transformers on graph tasks, the
equivalence of transformer and WL test naturally arises. In the following section, we try to argue
how a transformer can approximate the WL test.

Given a sequence, recent works by (Yun et al., 2019; 2020) have theoretically illustrated that Trans-
formers are universal sequence-to-sequence approximators. The core building block of the trans-
former is a self-attention layer; the self-attention layers compute dynamic attention values between
the query and key vectors by attending to all the sequences. This can be viewed as passing messages
between all nodes, regardless of the input graph connectivity.

For position encoding, recently, many works have tried using eigenvectors and eigenvalues as PEs
for GNNs (Dwivedi & Bresson, 2020; Kreuzer et al., 2021). The recent work by DGN (Beaini et al.,
2021) shows how using eigenvalues can distinguish non-isomorphic graphs which WL test cannot.

Transformers are universal approximators coupled with eigenvalues and eigenvectors as position
encodings are powerful than the WL test given enough model parameters. However, they can only
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DATASET GPU Memory TIME (sec PER EPOCH)

MUTAG Geforce P8 8 1.5
NCI1 Geforce P8 8 37.8
Molhiv Tesla V100 16 79.0
PATTERN Tesla V100 16 104.2
CLUSTER Tesla V100 16 115.4
ZINC Tesla V100 16 529.9

Table 4: Computational details used for the datasets on the SpecTRA-Base setting

Model Dataset PE PE layers PE dim no. layers hidden dim Model Params Heads Filter Order

SpecTRA-
Base

MUTAG - - - 3 64 118074 4 8
NCI1 - - - 3 64 122194 4 8

Molhiv - - - 3 64 129465 4 8
PATTERN - - - 3 64 5465930 4 8
CLUSTER - - - 3 64 5467726 4 8

ZINC - - - 3 64 351537 4 8

Vanilla-
Transformer

MUTAG - - - 3 64 119080 4 8
NCI1 - - - 3 64 107074 4 8

Molhiv - - - 3 64 127356 4 8
PATTERN - - - 3 64 5445389 4 8
CLUSTER - - - 3 64 5447657 4 8

ZINC - - - 3 64 340737 4 8

Table 5: Model architecture parameters of SpecTRA-Base and Vanilla-Transformer

approximate the solution to the graph isomorphism problem with a specific error and not solve them
fully which is also proven by Kreuzer et al. (2021). The same holds for us as we inherit the identical
characteristics from SAN.

A.2 DATASET DETAILS

We benchmark the widely used datasets for graph classification, node classification, and graph re-
gression. Namely for graph classification we use MUTAG (Morris et al., 2020), NCI1 (Morris et al.,
2020) and, the ogbg-MolHIV (Hu et al., 2020) dataset, for node classification we use the PATTERN
and CLUSTER datasets (Dwivedi et al., 2020) and for graph regression we run our method on the
ZINC (Dwivedi et al., 2020) dataset.

MUTAG is a collection of nitroaromatic compounds. Here, the goal is to predict the mutagenicity
of these compounds. Input graphs represent the compounds with atoms as the vertices and bonds
as the edges. Similarly, in NCI1, the graphs represent chemical compounds with nodes representing
the atoms and the edges indicating their bonds. The atoms are labeled as one-hot vectors as node
features. Ogbg-MolHIV is a molecular dataset in which each graph consists of a molecule, and
the nodes have their features encoded as the atomic number, chirality, and other additional features.
PATTERN and CLUSTER are node classification datasets constructed using stochastic block mod-
els. In PATTERN, the task is to identify subgraphs and CLUSTER aims at identifying clusters in
a semi-supervised setting. ZINC is a database of commercially available compounds. The task is
to predict the solubility of the compound formulated as a graph regression problem. Each molecule
has the type of heavy atom as node features and the type of bond as edge features.

A.3 EXPERIMENT SETTINGS

Table 4 lists the hardware and the run time of the experiments on each dataset. Table ?? lists out the
model architecture parameters for each configurations. For the configurations SpecTRA-Base, Spec-
TRA+LapE, SpecTRA+3RW and SpecTRA+GCKN+3RW we used the default hyper-parameters
provided by GraphiT (Mialon et al., 2021) as we inherited position encodings from GraphiT. For
instance, in ZINC, we don’t use edge features. In the configurations SpecTRA+LPE+Sparse and
SpecTRA+LPE+Full we used the configurations from SAN (Kreuzer et al., 2021). This is to en-
sure same experiment settings which these encoding schemes have used while inducing position
encodings in the vanilla transformer models. Means and uncertainties are derived from four runs

17



Under review as a conference paper at ICLR 2022

Model Dataset PE PE layers PE dim no. layers hidden dim Model Params Heads Filter Order

SpecTRA
+ LapE

MUTAG LapE 1 64 3 64 2216402 4 8
NCI1 LapE 1 64 3 64 2218322 4 8

Molhiv LapE 1 64 3 64 129657 4 8
PATTERN LapE 1 64 3 64 4414026 4 8
CLUSTER LapE 1 64 3 64 5468494 4 8

ZINC LapE 1 64 3 64 483401 4 8

GraphiT
+ LapE

MUTAG LapE 1 64 3 64 2195467 4 8
NCI1 LapE 1 64 3 64 2207266 4 8

Molhiv LapE 1 64 3 64 127489 4 8
PATTERN LapE 1 64 3 64 4395278 4 8
CLUSTER LapE 1 64 3 64 5447384 4 8

ZINC LapE 1 64 3 64 474456 4 8

SpecTRA
+ 3RW

MUTAG RW 1 - 3 64 106694 4 8
NCI1 RW 1 - 3 64 110698 4 8

Molhiv RW 1 - 3 64 129465 4 8
PATTERN RW 1 - 3 64 4413258 4 8
CLUSTER RW 1 - 3 64 5467726 4 8

ZINC RW 1 - 3 64 482825 4 8

GraphiT
+ 3RW

MUTAG RW 1 - 3 64 104578 4 8
NCI1 RW 1 - 3 64 106498 4 8

Molhiv RW 1 - 3 64 125745 4 8
PATTERN RW 1 - 3 64 4394786 4 8
CLUSTER RW 1 - 3 64 5445478 4 8

ZINC RW 1 - 3 64 338817 4 8

SpecTRA
+ GCKN
+ 3RW

MUTAG GCKN+RW 1 32 3 64 116783 4 8
NCI1 GCKN+RW 1 32 3 64 2228434 4 8

Molhiv GCKN+RW 1 32 3 64 5619529 4 8
PATTERN GCKN+RW 1 32 3 64 37988386 4 8
CLUSTER GCKN+RW 1 32 3 64 37990182 4 8

ZINC GCKN+RW 1 32 3 64 499273 4 8

GraphiT
+ GCKN
+ 3RW

MUTAG GCKN+RW 1 32 3 64 114882 4 8
NCI1 GCKN+RW 1 32 3 64 2205672 4 8

Molhiv GCKN+RW 1 32 3 64 5598726 4 8
PATTERN GCKN+RW 1 32 3 64 37889986 4 8
CLUSTER GCKN+RW 1 32 3 64 37895163 4 8

ZINC GCKN+RW 1 32 3 64 478645 4 8

Table 6: Model architecture parameters of SpecTRA with position embedding from GraphiT and
original GraphiT model

Model Dataset PE PE layers PE dim no. layers hidden dim Model Params Heads Filter Order

SpecTRA
+ LPE +
Sparse

MUTAG LPE 1 16 6 64 558322 4 8
NCI1 LPE 1 16 6 64 559762 8 8

Molhiv LPE 2 16 6 96 608129 4 8
PATTERN LPE 3 16 6 96 579013 10 8
CLUSTER LPE 1 16 16 56 412978 8 8

ZINC LPE 3 16 6 96 364167 8 8

SAN +
LPE +
Sparse

MUTAG LPE 1 16 6 64 542082 4 8
NCI1 LPE 1 16 6 64 543522 8 8

Molhiv LPE 2 16 6 96 602672 4 8
PATTERN LPE 3 16 6 96 570736 10 8
CLUSTER LPE 1 16 16 56 403783 8 8

ZINC LPE 3 16 6 96 360617 8 8

SpecTRA
+ LPE +
Full

MUTAG LPE 1 16 6 64 640242 4 8
NCI1 LPE 1 16 6 64 641682 8 8

Molhiv LPE 2 16 6 96 732984 4 8
PATTERN LPE 3 16 6 96 697003 10 8
CLUSTER LPE 1 16 16 56 867046 8 8

ZINC LPE 3 16 6 96 458303 8 8

SAN +
LPE +
Full

MUTAG LPE 1 16 6 64 624002 4 8
NCI1 LPE 1 16 6 64 625442 8 8

Molhiv LPE 2 16 6 96 714769 4 8
PATTERN LPE 3 16 6 96 688534 10 8
CLUSTER LPE 1 16 16 96 858538 8 8

ZINC LPE 3 16 6 96 454753 8 8

Table 7: Parameters of SpecTRA with position embedding from SAN compared with original SAN
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Method MUTAG NCI1 ZINC PATTERN CLUSTER ogbg-molhiv

Avg |V| 30.32 29.87 23.15 118.89 117.20 25.51
Avg |E| 32.13 32.30 24.90 3039.28 2,150.86 27.47
Node feature L L A L L A
Dim(feat) 38 37 28 3 6 9
#Classes 2 2 NA 2 6 2
#Graphs 4,127 4,110 250,000 14,000 12,000 41,127

Table 8: Dataset statistics (L indicates node categorical features and A denotes node attributes).

with different seeds, same as SAN. Additionally, with the final optimized parameters, we reran 10
experiments with identical seeds, which is same as SAN’s/Mialon et al/Dwivedi et al’s experiment
settings. Vanilla transformer implementation and its values in main paper is taken from Mialon et al.
(2021).

A.4 SYNTHETIC DATASET

To show the benefit of graph-specific filtering compared to static filtering, we run experiments on
synthetic datasets that have different spectral components for different graphs. We begin by noting
a few basic properties of the Laplacian and its spectral decomposition before detailing the data
generation process. The below equation gives the unnormalized Laplacian (L = D−A) of a graph:

L(i, j) =


deg(i) if i = j

−1 if (i, j) ∈ E

0 otherwise

where deg(i) is the degree of the node i and E is the set of edges in the graph. Multiplying L by a
vector v gives the below expression

w = Lv

w(i) =
∑
i,j∈E

(v(i)− v(j))

The expression vTLv gives

vTLv =
∑
i

v(i)
∑
i,j∈E

(v(i)− v(j))

=
∑
i

∑
i,j∈E

v(i)(v(i)− v(j))

=
∑

j>i,(i,j)∈E

v(i)(v(i)− v(j)) + v(j)(v(j)− v(i))

=
∑

j>i,(i,j)∈E

(v(i)− v(j))2

Thus we can see that the expression vTLv evaluates to the sum of squared distances between neigh-
boring nodes in the graph. We also note that due to this property, the laplacian is a positive semi-
definite matrix. If v were the eigenvector of the graph, we know that vTLv would be the eigenvalue
corresponding to that vector by the spectral decomposition theory. Thus all the eigenvalues of the
laplacian are non-negative.

We now try to develop an intuition of the laplacian’s lowest and largest eigenvalues/vectors. We see
from the above equations that vTLv is the sum of squared differences between values on the nodes.
Thus the smallest eigenvalue would correspond to the eigenvector that assigns the same value to
all the neighboring nodes, subject to ∥v∥= 1. The second eigenvalue would correspond to the
orthonormal vector to the first vector and minimizes the sum of squared differences of nodes within
a cluster. Thus the second eigenvector would try to keep values of its components similar/closer for
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(a) (b) (c)

Figure 4: Graphs and Filter Frequency response for the graphs on the Synthetic1 dataset for the
case with K = 4 and h = 1. Figure (a) is a graph that illustrates low frequency signals (here, we
observe the neat clusters as expected for low frequency information). Figure (b) represents a graph
with a high frequency component (we observe the mixing of signals in nodes of the same cluster,
i.e., different intra-cluster signal values). Finally, figure (c) is the aggregated frequency response
across the dataset with the normalized frequency along the X-axis and associated magnitudes on
the Y-axis. Here we note the filter has learned the two components of the graph spectrum: the low
frequency and the high frequency components.

nodes that belong to the same cluster. Similarly, the vector corresponding to the largest eigenvalue
would try to maximize the sum of squared differences between neighboring nodes and have its
nodes(components) belonging to the same take different values subject to ∥v∥= 1 while also being
orthonormal to the other vectors.

With the above background, we generate synthetic datasets with node signals exhibiting different
spectral components for different graphs. Consider L to be the graph laplacian with eigenvalues
λ and eigenvectors V . We generate stochastic block matrices (SBMs) with B number of blocks
and N number of nodes per block having an intracluster density of edges as pi and the inter-cluster
edge density as po. The signals are assigned to the graphs according to the eigenvectors of the
selected components of the spectrum. To keep it simple, we use only a single eigenvector (Vi)
to generate signals per graph. Specifically, out of the NG = E(NB) eigenvalues, we select one
and take the components of the corresponding eigenvectors. The nodes are then clustered using
standard clustering algorithms, such as K-means, into C classes that we keep equal to the number
of blocks. Each node is assigned a one-hot vector at the position of the class it belongs to. We
then drop this attribute of 50% of the nodes i.e., these nodes are assigned a 0 vector, and the task
is to find the correct assignment for the unknown class based on the connectivity pattern and the
spectrum of the known signals on the graph. Thus this task boils down to finding the suitable
spectral component in the graph signal and using this information for classification. This should
benefit from a graph-specific decomposition and filtering approach, which we confirm from the
empirical results. We generate 3 datasets namely Synthetic1, Synthetic2, and Synthetic3 using
different values of N , B, pi, po, Vi. Synthetic1 has N = 10, B = 2, pi = 0.9, po = 0.05,
{Vi | i ∈ {1, NG}}, with 1000, 100, 100 graphs in the train, test and valid graphs respectively.
Synthetic2 has N = 10, B = 6, pi = 0.9, po = 0.05, {Vi | i ∈ {1, NG}}, with 1000, 100, 100
graphs in the train, test and valid graphs respectively. Synthetic1 has N = 10, B = 6, pi = 0.9,
po = 0.05, {Vi | i ∈ {1, ⌈NG

2 ⌉, NG}}, with 1000, 100, 100 graphs in the train, test and valid graphs
respectively.

We train the synthetic datasets on the SpecTRA-Static and SpecTRA-Base models to study the
effect of graph-specific dynamic filters on the graph. For the Synthetic1 dataset, we use the hidden
dimension as 16, and for Synthetic2 and Synthetic3 we keep it to 64. The number of layers is fixed
to 1. The number of heads h and filter order K for SpecTRA-Static are kept at 1 and 4 respectively
and for varied for other settings as can be seen in table A.4 . We can see from table A.4 that the
performance on the synthetic datasets, using dynamic filters of SpecTRA-Base, has increased by a
large margin as compared to the case of static dataset-specific filters in SpecTRA-Static using the
same model parameters. This justifies the benefit and necessity of graph-specific filter design in
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Model Synthetic1 Synthetic2 Synthetic3 #Param(dim=16) #Param(dim=64)

SpecTRA-Static K = 4 h = 1 70.04 ± 4.41 35.34 ± 0.25 33.05 ± 0.48 4122 62958

SpecTRA-Base K = 2
h = 1

89.67 ± 0.50 45.63 ± 0.30 39.67 ± 0.55 3582 54738
K = 4 92.15 ± 0.20 46.32 ± 0.42 40.22 ± 0.61 4122 62958
K = 8 92.26 ± 0.40 47.14 ± 0.63 40.27 ± 0.30 5250 79446

SpecTRA-Base
K = 2

h = 4
79.26 ± 7.47 46.26 ± 0.20 39.83 ± 0.33 3090 47010

K = 4 91.54 ± 0.56 46.59 ± 0.34 39.42 ± 0.30 3150 47550
K = 8 92.35 ± 0.37 46.24 ± 0.56 40.74 ± 0.35 3318 48678

SpecTRA-Base
K = 2

h = 8
74.99 ± 0.43 45.88 ± 0.50 38.60 ± 1.05 3064 46618

K = 4 91.32 ± 0.43 45.77 ± 0.73 38.86 ± 0.17 3100 46774
K = 8 91.60 ± 0.30 45.75 ± 0.73 39.71 ± 0.50 3220 47134

Table 9: Study on the performance of SpecTRA-Base vs SpecTRA-Static on the synthetic datasets.
We study the effect of the order K of filters and the number of heads h for SpecTRA-Base.

cases where the spectral information differs from graph to graph. We also observe that as the filter
order is increased for a given number of heads, the performance improves.

On the other hand, lower filter order is detrimental to the task. The performance saturates if the
filter order is increased beyond a specific limit, as is evident from the Synthetic1 dataset. Also, we
do not observe any improvement by increasing the number of heads, keeping the filter order fixed,
in this case. This may be due to the nature of the dataset, where we have restricted each graph to
contain a single spectral component. We leave it to future studies to determine the effect of number
of heads on multiple spectral components in the signal.

A.5 FILTER FREQUENCY RESPONSE ON OTHER DATASETS

Here we provide the plots of the frequency response of the filters learned on the other datasets which
has not been included in the main paper due to page limit.

Filter Frequency response on ZINC: The frequency response of the filters learned on ZINC with
filter order four is given in figure 5. Each curve is the frequency response of a filter learned for a
single head. We see various filters being learned, such as few low pass, high pass, and band stop
filters. Figure 6 shows the frequency response for filters of order 8. Here we observe the high pass
and multi-modal band pass responses being learned.

Filter Frequency response on MolHIV: Figure 7 illustrates the frequency response for filters
learned on the MolHIV. Here, we observe the low pass and multi-modal band pass filter responses.

Filter Frequency response on PATTERN: Figure 8 shows the frequency response for filters learned
on the PATTERN dataset. Here we observe the filters allowing signals in the low and high frequency
regime along with some magnitude assigned to the mid-frequency components. The filter order eight
(the two right-most plots) shows a surprising result of visually indistinct filters being learned despite
the regularization. This indicates the task has a high bias towards signals in the low-frequency
region and some components in the middle and high frequency regime to an extent. This could be
interpreted as the model trying to learn the two components: the SBM, which corresponds to the
low-frequency signal, and the underlying pattern itself, which may benefit from the middle and high
frequency components in the spectrum.

Filter Frequency response on CLUSTER: Similar to PATTERN, the filter response plots for
CLUSTER as in figure 9 show low-frequency filters being learned along with bandpass filters. This
is intuitive as the task of CLUSTER would indeed benefit by learning low-frequency signals for
grouping nodes belonging to the same cluster. All these observations across all datasets validates
our hypothesis studied in the scope of this paper.

A.6 INTERPRETABILITY IN SPECTRAL SPACE

In this section, we look at the interpretability aspect induced by SpecTRA in the spectral space.
The figures 10 and 11 show the graphs with the eigenvectors on the nodes corresponding to the
top eigenvalues selected by the filter. From both figures, we see that in the case of the low pass
filter (leftmost graph in sub-figure (a), (d) of figure 10 and subfigure (a)-(d) of figure 11), the nodes
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(a) (b) (c) (d)

(e) K = 4. (f) K = 4. (g) K = 4. (h) K = 4.

Figure 5: Filter Frequency response on individual graphs on the ZINC dataset for a filter order of
4. Figures (a) ∼ (d) are the graphs from the dataset and Figures (e) ∼ (g) are the corresponding
frequency responses. X axis shows the normalized frequency with magnitudes on the Y axis.

(a) (b) (c) (d)

(e) K = 8. (f) K = 8. (g) K = 8. (h) K = 8.

Figure 6: Filter Frequency response on individual graphs on the ZINC dataset for a filter order of
8. Figures (a) ∼ (d) are the graphs from the dataset and Figures (e) ∼ (g) are the corresponding
frequency responses. X axis shows the normalized frequency with magnitudes on the Y axis.
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(a) (b) (c) (d)

(e) K = 4. (f) K = 4. (g) K = 8. (h) K = 8.

Figure 7: Filter Frequency response on individual graphs on the MolHIV dataset. Figures (a) ∼ (d)
are the graphs from the dataset and Figures (e) ∼ (h) are the corresponding frequency responses. X
axis shows the normalized frequency with magnitudes on the Y axis.

(a) (b) (c) (d)

(e) K = 4. (f) K = 4. (g) K = 8. (h) K = 8.

Figure 8: Filter Frequency response on individual graphs on the PATTERN dataset. Figures (a) ∼
(d) are the graphs from the dataset and Figures (e) ∼ (h) are the corresponding frequency responses.
X axis shows the normalized frequency with magnitudes on the Y axis.
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(a) (b) (c) (d)

(e) K = 4. (f) K = 4. (g) K = 8. (h) K = 8.

Figure 9: Filter Frequency response on individual graphs on the CLUSTER dataset. Figures (a) ∼
(d) are the graphs from the dataset and Figures (e) ∼ (g) are the corresponding frequency responses.
X axis shows the normalized frequency with magnitudes on the Y axis.

(a) (b)

(c) (d)

Figure 10: Attention heat map in spectral space of the sample graphs in ZINC dataset determined
from the frequency response in Figure 6 for its each sub-graph (a)-(d). Blue illustrates the lower end
of the spectrum and red color shows the higher end of the spectrum.
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(a) (b)

(c) (d)

Figure 11: Attention heat map in spectral space of the sample graphs in MolHIV dataset determined
from the frequency response in Figure 7 for its each sub-graph (a)-(d). Blue illustrates the lower end
of the spectrum and red color shows the higher end of the spectrum.

in the neighborhood forming a cluster have similar eigenvalues. Whereas in the highpass filter (
(rightmost graph in each subfigure (a)-(d))) the eigenvalues of the nodes alternate, with neighboring
nodes taking distinct values and far off nodes having similar values.

We could make two interpretations of this phenomenon. The first one is closely related to attention
in the spatial space where SpecTRA attends to select input features. In this case, we can think of the
model learning to pay more attention to the nodes with higher eigenvalues and lesser attention to the
nodes with smaller eigenvalues in a graph and task-specific manner. The second interpretation is re-
lated to the interaction between the nodes, i.e., for a given node which other nodes are considered for
aggregation. For example, in graph attention networks, the neighboring nodes are aggregated, and
the values of nodes in the same cluster tend to be closer to each other (homophily). This is a particu-
lar case of the low pass filter in which we can see from the figures 10 and 11 that the nodes belonging
to the same cluster take on similar values. For example, consider the Figure 10 (d). The leftmost
graph has nodes in a particular cluster taking similar eigenvalues showing short-range dependencies
(interactions). In the rightmost graph, nodes in the same clusters take on different eigenvalues, illus-
trating the need for long-range interactions. However, depending on the task and graph, the model
also learns to aggregate (interact with) distant nodes, as seen in the graph corresponding to the high
pass filter (the rightmost graphs in each sub-figure of 10 and 11). Thus SpecTRA can be interpreted
as a generic(covering the entire spectrum of frequencies) attention network in the spectral space.
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