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Abstract

In the rapidly evolving field of online test-time
adaptation (OTTA), effectively managing distri-
bution shifts is a pivotal concern. State-of-the-art
OTTA methodologies often face limitations such
as an inadequate target domain information inte-
gration, leading to significant issues like catas-
trophic forgetting and a lack of adaptability in
dynamically changing environments. In this pa-
per, we introduce a stationary latent weight in-
ference (SLWI) framework, a novel approach to
overcome these challenges. The proposed SLWI
uniquely incorporates Bayesian filtering to contin-
ually track and update the target model weights
along with the source model weight in online set-
tings, thereby ensuring that the adapted model
remains responsive to ongoing changes in the tar-
get domain. The proposed framework has the
peculiar property to identify and backtrack non-
linear weights that exhibit local non-stationarity,
thereby mitigating error propagation, a common
pitfall of previous approaches. By integrating and
refining information from both source and target
domains, SLWI presents a robust solution to the
persistent issue of domain adaptation in OTTA,
significantly improving existing methodologies.
The efficacy of SLWI is demonstrated through
various experimental setups, showcasing its su-
perior performance in diverse distribution shift
scenarios.

1. Introduction

Deep neural networks (DNNs) have achieved remarkable
success across various applications, particularly in computer
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vision and speech recognition (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; He et al., 2016; Hinton et al.,
2012; Graves et al., 2013). The success of DNNs predomi-
nantly depend on the assumption that the training and testing
datasets encompass independent and identically distributed
(i.i.d) samples under the same distribution (Goodfellow
et al., 2016; Murphy, 2023). However, this assumption
can be easily invalidated in real-world scenarios because
of minor changes such as varying weather conditions or
noise introduced by aging sensors (Hendrycks & Dietterich,
2019b; Koh et al., 2021). Moreover, data collected in real-
world environments often exhibit biases towards specific
environments or labels owing to limitations in data collec-
tion methodologies. Therefore, the performance of DNNs
degrades significantly when there are distribution shifts
(Quinonero-Candela et al., 2008; Sun et al., 2017), and
addressing domain adaptation under varying distribution
shifts becomes a crucial issue.

Online test-time adaptation (OTTA) has emerged as a po-
tent solution to domain adaptation in distribution shifts. It
involves concurrent training and testing on the streaming
data from the target domain where distribution shifts occur.
The OTTA framework performs unsupervised source-free
domain adaptation. As OTTA operates in real-time, relying
on human annotation for training is impractical, necessitat-
ing an unsupervised learning approach. Furthermore, access
to source-domain data is often restricted, and only models
pre-trained on source data are available. Owing to these
limitations, OTTA methods employ unsupervised objective
functions for the source model. In general, test entropy
minimization (TENT) (Wang et al., 2020) has demonstrated
the effectiveness of entropy minimization in single domains.
However, recent studies have shown that entropy minimiza-
tion often fails under more diverse domain shifts, such as in
multiple domains (Boudiaf et al., 2022; Zhang et al., 2022;
Chen et al., 2022). In distribution shifts, an overlap of in-
formation with particular domains can occur, leading to
model overfitting for specific information and subsequently
forgetting previous knowledge. This results in catastrophic
forgetting of the target models that are adapted to the target
data.

To mitigate catastrophic forgetting, recent OTTA methods
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Figure 1. Illustration of the proposed stationary latent weight inference (SLWI) framework. The OTTA procedure starts with a target
and latent models initialized using a source model pre-trained on source data Ds. During adaptation, target weights 0; are obtained via
stochastic gradient descendent(SGD)-based optimization on the target data D% for each time step ¢. These weights serve as observations

for SLWI, which updates the latent weight ¢ to accumulate information from both the source weight 6y =

¢o and target weight using our

Bayesian filtering (as depicted in the state-space model). Nonlinear weights, which deviate from the posterior predictive distribution of
observations, are identified and backtracked for local stationary processes (illustrated in the right graph). The proposed SLWI concludes
by transferring the refined latent weight information to the OTTA procedure via plug-in approximation represented in Eq. (15). This
SLWTI intercepts the target weight from the general OTTA framework (Algorithm 1) before the weight is passed to the next time step’s
SGD, refines it, and then transfers it back to the SGD. The SLWI framework presents in Algorithm 2.

adopted a dual approach: sample filtering and leveraging
information from a source model (Wang et al., 2022; Niu
et al., 2022; 2023; Marsden et al., 2023). Sample filtering
involves identifying low-confidence samples by measuring
the entropy of model outputs. Despite these measures, the
accuracy of the source model can be compromised, allowing
the recovery of the target model using source model infor-
mation during online adaptation. These methods prevent
excessive overfitting of specific target domains by continu-
ously transmitting weight-related information related to the
weights (i.e., parameter of DNNs) extracted from the source
model to the target model. However, they often neglect
information learned from the target domain and are heavily
dependent on the source model.

In this paper, we propose the stationary latent weight infer-
ence (SLWI) framework, which is an innovative approach
that enhances the domain adaptation capabilities by contin-
ually accumulating information from both the source and
target domains (Figure 1). This accumulation is facilitated
by a latent model that integrates and refines the dual-domain
information. The core of the proposed framework lies in
designing the dynamics of Bayesian filtering, which updates
the latent weight by tracking the target weights (i.e., obser-
vations) along with the source weights in real time. This ap-
proach ensures that the model is responsive and adaptable to
the ongoing changes in the target domain. A key challenge
SLWI addresses is the potential error propagation result-
ing from accumulating unreliable target weights obtained

from unsupervised objective functions. To counter this, we
incorporate a novel mechanism for identifying and back-
tracking nonlinear weights that exhibit local non-stationarity
by leveraging the posterior predictive distribution of the tar-
get weights, which is naturally derived from our framework.
The proposed SLWI framework effectively identifies and
corrects instances in which accumulated weights may lead
to erroneous behaviors in the model, thereby enhancing the
reliability and stability of the OTTA procedure.

The main contributions of this study can be summarized as
follow:

* We provide a framework that combines target-domain
information with source-domain information via la-
tent models and Bayesian filtering with probabilistic
interpretation.

* The proposed framework effectively prevents error
propagation caused by the nonlinearity of the unre-
liable target weights obtained during the OTTA proce-
dure.

e The SLWI framework seamlessly integrates with ex-
isting OTTA methods and requires minimal additional
computational resources.

* The proposed framework exclusively utilizes model
weights, negating the need to store data from the target
domain, resulting in inherently safeguarding privacy
concerns.
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We evaluate the proposed framework across a multitude of
distribution-shift scenarios and datasets, which show sig-
nificant performance improvements compared with current
state-of-the-art methods.

2. Information Retention in the Online
Test-Time Adaptation Procedure

2.1. OTTA Procedure

Let us denote the input data as x € R?, where d denotes
the dimension. The model output is denoted by z € R¥
for K classes and the label is represented as y € R. We
assume a well-pre-trained source model f(-,¢g) : RY —
RE with initial weights ¢y = 6, trained on source data
(X1, Yn) ~ Ds. This model is updated up to time step ¢ on
the streaming target data (x!,) ~ D, resulting in the target
model f(-,6;).

Because OTTA methods do not allow ground-truth labels
y! for adaptation, an unsupervised objective function ¢ :
RE 5 Ris adopted (Wang et al., 2020; Liang et al., 2020).
This function utilizes output z¢, instead of predicted label
9 and is based on entropy. The total objective function is
formulated as follows:
. 1

L(0:—1,D7) = DL

T xt €Dl

ey

where M (z¢) is a binary mask that filter the low-confidence
samples based on entropy-driven confidence scores (Niu
et al., 2022; 2023; Marsden et al., 2023). Further refinement
of these scores involves data augmentation (Wang et al.,
2022; Yuan et al., 2023; Marsden et al., 2023). The opti-
mization to minimize the total loss of the target weight at
each time step is given by:

0, = aré; min L(6;_1, D%—) + R(o, 0t-1), (2)

where R(¢o,0;—1) is a regularization term that ensures that
the target model weight 6;_; does not significantly diverge
from the source model weight ¢¢. This optimization is typi-
cally performed by an SGD-based optimizer (Ruder, 2016).
The model predictions g; obtained from the target model
are immediately evaluated against the ground-truth labels.
Moreover, the model weights obtained from this process
serve as the initial weights for subsequent optimization, thus
facilitating continuous online domain adaptation.

2.2. Source Model Information Retention

The introduction of the regularization term R (¢pg, 6:—1 ) play
a critical role in enhancing the reliability of the adaptation
process. This term is especially pivotal in addressing the

> L(logp(zh|x),, 00-1), M(z})) |

limitations of filtering methods integrated into the OTTA ob-
jective function. These limitations arise from the reliance on
scores extracted from the source model, which may signifi-
cantly underperform in the target domain, leading to error
propagation and catastrophic forgetting. The challenge of
catastrophic forgetting, in which the target model gradually
loses crucial the source model information, is a significant
concern in OTTA. This is primarily due to the reliance on
scores from a source model that performs poorly in the tar-
get domain, leading to error propagation. Strategies that
continuously transfer information from the source model to
the target model have been developed to address this issue.

Several studies (Wang et al., 2022; Yuan et al., 2023; Niu
et al., 2022; 2023; Marsden et al., 2023) have proposed
ensuring retraining source model information in the target
model. EATA (Niu et al., 2022) employs the Fisher infor-
mation matrix (Kirkpatrick et al., 2017), which is calculated
using the source model and data to determine the impor-
tance of weights. This approach ensures that parts of the
target weight 0; do not excessively deviate from the source
model ¢g. SAR (Niu et al., 2023) used a different approach
in which the target weight is reset to the source weight if the
exponential moving average of the total loss falls below a
certain threshold. This strategy serves as a reset mechanism.
ROID (Marsden et al., 2023) adopts a continuous constraint
approach by consistently averaging the source and target
weights using a weight ensemble (Guo et al., 2023). These
strategies play a crucial role in stabilizing the OTTA proce-
dure. This prevents the target model from overfitting to a
specific target domain and loses valuable source information.
This stability is vital for ensuring the efficacy and reliability
of the OTTA process, particularly in dynamic environments
where the target domain is continuously evolving.

2.3. Limitation of Source Model Dependency

A critical limitation inherent to state-of-the-art methods is
their continuous source-model dependency, mainly due to
regularization strategies. This dependence is evident in Eq.
(1), where the probability calculation considers only the
weight from the previous time step 6;_;. Consequently,
these strategies neither incorporate the newly learned tar-
get weights 6;.;_o from different domains nor effectively
leverage ongoing information from the target domain.

This limitation is illustrated in Figure 2, which shows the
average error rates of state-of-the-art OTTA methods across
various domains according to the adaptation order. The
average error rate is measured post-adaptation using the
complete dataset of the source or target domain. As shown
in Figure 2 (a), most existing methods tend to converge
while preserving the source information effectively, with
error rates between 1% and 2%. This trend indicates an
acceptable retention of source information retention.
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Figure 2. Illustration of the information retention ability of state-
of-the-art OTTA methods on ImageNet-C in covariate shifts for
ViT. Average error rates (%) are measured on the entire dataset of
the source or target domain after the adaptation for each domain
was completed according to the adaptation order.

Algorithm 1 General OTTA Framework
Input: Input data stream {D3-, .

f(::60)
Output: 61
Initialization ¢g < 6g
fort =1toT do
OTTA procedure:
0y < argming,_ L(0;—1, D) + R(do, 0i—1)
end for

.. ,D%:}, Source model

However, Figure 2 (b) shows a starkly different trend in
the target domain. After the first domain, represented by
Gaussian noise, the performance of existing methods in the
subsequent domains shows minimal improvement or even
divergence. This trend is concerning because it suggests a
lack of adaptability to the evolving target domain. These
results highlight a fundamental issue in OTTA methods:
their dependency on source model information and their
inability to continuously integrate target domain informa-
tion. In other words, existing methods fail to evolve and
enhance their capabilities by accumulating target domain
information. As the number of target domains increases,
this limitation becomes increasingly pronounced, hindering
the potential for significant performance improvements in
evolving environments.

3. Stationary Latent Weight Inference

3.1. Overview

The primary goal of this paper is to enhance the forward
transferability to the target domain while mitigating catas-

Algorithm 2 Stationary Latent Weight Inference Framework

Input: Input data stream {DZ-, ..., DT}, Source model
f(;00), Bayesian filtering parameters 2 = (a, b, ¢), Hy-
perparameters w = ((, o), Learning rate oy
Output: ¢ R
Initialization ¢g < 0o, Po 0o, Mojo < 0o, 0(2)|0 +— 0,
log pg.t—1(00:0) < 0, A5+ 0
fort =1to7 do

OTTA procedure:

0 < argming, L1, DL

.
gt < aovdgtilL(Qﬁt,hD%—)
Bayesian Filtering & Backtracking:
[it]ts Hele—15 07115 108 Pg,e—1(Bo:¢), A,  FILTER(Y,
O, gt 9o,
Ht—1]t—15 Ut2—1\t—1’
log pg,t—1(600:t—1), Do:t—1;
Q, w)
> Algorithm 3 for FILTER.
Plug-in Approximation:
b, Q R
bt < pugje—1 + 0 (Or — pgge—1)
end for

> Eq. (15)

trophic forgetting of past information, including the source
domain. To achieve this, we introduce a latent weight, ¢,
which is updated using the source weight ¢g = 6, and the
target weight 0, aiming to reduce the dependency on the
source model. The target weight is obtained in an unsu-
pervised manner, which inherently includes noise. Conse-
quently, updating the latent weight with the target weight
poses a risk of error propagation. To counter this, we utilize
our Bayesian filtering method, which possesses noise reduc-
tion capabilities, to update the latent weight (Section 3.2).
Our Bayesian filtering maintains a local stationary process
through strategies for detecting and backtracking rapidly
changing nonlinear weights (Section 3.3). These strategies
ensure that the observations (i.e., target weights) conform
to the linear Gaussian model assumed by Bayesian filtering.

Through our Bayesian filtering, we compute the posterior
distribution of ¢; and transfer this information to the OTTA
procedure. The predictive distribution for z; is calculated
as follows:

p(zt|xt7 01:6-1,91:¢-1, ¢0)

:/p(zt‘xt»¢t—1)p(¢t—l|91:t—lvgl:t—la¢O)d¢t—1,
(3)

where g, is time-varied auxiliary variable. This result omits
R(¢o,0:—1) from Eq. (2) and substitutes the model output
probability p(z:|x¢, 0;—1) with p(z¢|x¢, 01.6-1, 91:t—1, Po)-
This substitution is part of our strategy to integrate informa-
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tion from both the source and target domains more effec-
tively.

Given the significant computational cost associated with
the calculation p(z¢|x:,$:—1), direct computation in an
OTTA scenario is impractical. Therefore, we em-
ploy a widely applicable plug-in approximation. This
approach uses a point-estimated weight, ét,l =
argmaxg, , p(¢dr—1|01:4-1,91:4—1, ¢0), and a delta func-
tion, (.), which leads to p(¢r—1|01:4—1,91:4-1,%0) =
8(¢i—1 — d¢—1). Consequently, the posterior predictive
distribution is approximated as follows:

(2t X, 01:6—1, g1:6—1, Do)
~ /p(zt|xt7¢t71)6(¢t71 — pr1)ds 1

= P(Zt|Xt7 (thfl)~
)

Using the posterior derived from Eq. (4), we can inject
information from both domains into the OTTA procedure
(Section 3.4). As a result, the proposed framework is ex-
ecuted step-by-step as shown in Algorithm 2. This pro-
cess is regarded as an extension of the general framework
adopted in existing OTTA methods (Algorithm 1), where
the regularization term for the source model is replaced with
the posterior distribution of the latent weight derived from
our Bayesian filtering using the plug-in approximation for
the regularization of the next time step’s OTTA procedure.
More details of the step-by-step implementation, theoretical
background, and derivations are provided in Appendix A.

3.2. Bayesian Filtering for Unreliable Weights

The OTTA framework operates on an unsupervised learn-
ing paradigm utilizing a source model that often exhibits
suboptimal performance in the target domain. This results
in observations, specifically, the target weights, which are
fundamentally unreliable and noisy. We adopt Bayesian
filtering as our latent inference framework to address the
intrinsic noise associated with observations, resulting in
the suppression of observation noise. The framework is
structured around linear Gaussian models that imply poten-
tial error through variance, approximated by the Gaussian
assumed density approximation (Siarkkd & Svensson, 2023).

Bayesian filtering comprises a transition model and an emis-
sion model, both of which are recursively applied to infer
the posterior distribution. The transition model predicts the
current latent weight based on the previous latent weight,
while the emission model tracks the observations using the
predicted latent weight. First, we parameterize the transition
model as follows:

P(de|pi—1, do) = N(dilagi—1 + (1 — a)po,q), (5)

where a,q € R. The transition model variance is 0 <
g < 1, which determines the degree of change in the latent
weight and 0 < a < 1 adjusts the extent of recovery of the
latent weight. Unlike typical emission models, our approach
uses recovery strategies to prevent latent weight from being
corrupted by unreliable observations. Our parameterized
emission model is formulated as follows:

PO bt gt) = N (Ol — (1 —ce)ge, 1 —q),  (6)

where g; = a0V, | L(c;ASt_l, DY) with respect to the learn-
ing rate oy € R. The initial condition is ¢; = 1, and
p(0¢|0e, g:) = p(0¢|¢p:). The variance is set to 1 — ¢, in-
versely related to the transition model. The emission model
tracking unreliable observations exhibits a larger variance
than the transition model. The degree of backtracking
0 < ¢t <1 € R, which reflects the nonlinearity of the
observations, allows the mean of the emission model to
track extremely varying observations, justifying a stationary
variance.

Given the linear Gaussian models and the previous posterior
p(¢t—1|91:t—1,91:t—17 ¢0) = N((bt—l‘ﬂt—nt—hUf_l‘t_1)7
we calculate the posterior in the current time step by
Bayesian inference as follows:

P(0el01:¢5 gr:t, $0) = N (Dol o7, (N
ke = Ut2|t—1(a20t2—1\t—1 +1)7, ®)
Bt = ptje—1 + Kt (0, — Htlt—1) ©
0152|t = Ut2|t71 - Kto_?\tfl’ (10)
where fy 1 = ap1j—1 + (1 — a)do, o7,

a20t271|t71 + ¢ and 0, = 0,1 — ctg¢. The initial con-
ditions are .o = 0 and 08:0 = 0. Egs. (8,9, 10) are the
same as those in the update step in the Kalman filter for
the discrete-time linear Gaussian state-space model. The
Kalman gain x; controls the degree to which the error be-
tween backtracked observation ét and predicted mean fiy;_1
is updated. It is important to emphasize that the dynamics
for adjusting the observations based on the value of ¢; are
derived from our emission model. These dynamics adjust
the current observation closer to the past observations as c¢;
decreases. Consequently, these dynamics can be utilized to
backtrack nonlinear weights.

3.3. Non-Stationarity Detection and Backtracking

Target weights prone to catastrophic forgetting tend to
exhibit significant local changes (Niu et al., 2023; Gong
et al., 2023). Furthermore, observations that undergo rapid
changes destabilize the system by violating the assumption
of stationary variance in linear Gaussian models. The nonlin-
ear weights can be adjusted using c;. We begin by defining
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a score for detecting local non-stationarity and measuring
temporal changes in the weight space where the initial con-
dition is ¢, = 1. Given by Eqgs. (5, 6) and the previous
posterior, the posterior predictive probability of the current
weight is marginalized as follows:

pg,tfl(etw():tfl) = p(0¢|00:t—1, g1:6—1)
= /p(gt‘¢t)p(¢t|90:t71>gl:tfl)d¢t

= N (04|11, azatz—uf,—l +1).
(11)

The probability of the entire set of weights up to the current
time step can be calculated using the posterior predictive as
follows:

t
log pg,¢—1(0o:¢) = log p(6160) + Z log pg,t—1(0-100:7-1),
T=2
(12)

where py 1—1(00:t) = p(0o:¢|g1.1—1) following by definition
of Eq. (11). We now define the stationary score for ¢ > 1 as
the difference between the posterior predictive probabilities:

Ay
7
1 A2
V =180:0-1

where A; = logpg—1(0:|00:—1) — F10gpg,i—1(fo:1—1)
and AZ, , = Y'Z' A2 with the initial condition
log pg.t—1(00:0) = 0, A3,y = 0. Our stationary score com-
pares how the current weight differs from that of the pre-
vious time steps and how consistently the weight changes
over time. The numerator represents how different 6, are
from the average trend and the denominator measures the
average variability of the weights over time. This score
is normalized to allow comparisons across different time
steps such as batch normalization (Ioffe & Szegedy, 2015).
Therefore, we use this score to compare the relative change
in weights across different models or time steps. Based on
this score, ¢; is determined as follows:

L
C+ =
! 1/a,

where ( € R is the stationary level and o € R is the
degree of backtracking, which has a value greater than 1.
Here, ¢ assumes a form similar to the confidence level of
a normal distribution. Therefore, we typically set ( =
2 to establish a confidence interval 95%. This approach
detects nonlinear weights by identifying situations in which
the current weight significantly deviates from the average
trend, as indicated by the interval. Then, we reduces the
change in the current weight by using c; in Eq. (9), thereby
guiding the observations towards stationarity. Consequently,

S(t, Ay, A2, 1) = (13)

if ‘S(t7 Atu A(2):1571)| < <

. ; (14)
otherwise

our framework naturally derives a metric for backtracking,
effectively mitigating the instability caused by nonlinear
weights.

3.4. Transferring Latent Information

To transfer inferred latent weight information to the OTTA
procedure, we introduce a plug-in approximation. As indi-
cated in Eq. (10), for the approximation to be valid, the
latent posterior variance at2|t must be sufficiently small,
similar to the variance of 0(.). Achieving this requires
setting k; close to unity, which may not always be feasi-
ble depending on the values of ¢ and 02.,. To maintain a
smaller posterior variance, we introduce the transfer model
p(0¢|de) = N (6¢]¢¢, 7). This model resembles the emis-
sion model, but is distinctive in that it uses r; € R and
does not update the latent weight. The Kalman gain for
the transfer model is derived in manner same to Eq. (8),
which results in Uf\t—1(0t2|t—1 +r¢) L. By setting r; to be
proportional to JtQI +_1» We can derive the time-independent
Kalman gain b. Based on the derivation of Eq. (9), the
point-estimated weight is calculated as follows:

G = puyjp—1 + 0(0r — pugje—1)- (15)
This dynamic allows the direct setting of the Kalman gain
close to unity by adjusting the value of b € R. Consequently,
it enables the consistent enforcement of a sufficiently slight
variance in the posterior. This feature is crucial for ensuring
the effective and efficient transfer of latent weight informa-
tion into the OTTA procedure and maintaining the integrity
and stability of the adapted model.

4. Experiments

In all experiments, we strictly adhered to established bench-
marks (Marsden & Dobler, 2022). The average and standard
deviation of error rates for random seeds 0-4 were used as
the evaluation metrics. More details of the experimental
setup are provided in the Appendix B.

4.1. Experimental Setup

Datasets We conducted experiments on two standard
datasets, ImageNet-C (Hendrycks & Dietterich, 2019a)
and D109 (Marsden et al., 2023), which represent cor-
ruption and natural distribution shifts that occur in the
wild-world (Niu et al., 2023). ImageNet (Deng et al., 2009)
contains 1,281,167 training images and 50,000 test images.
ImageNet-C is a derivative of ImageNet and was subjected
to 15 types of corruption, each with five severity levels.
This dataset is a standard TTA benchmark for assessing
model robustness against image corruption. We selected
the most severe level of corruption, that is, Level 5. D109
encompasses natural shifts across five domains and is based
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Table 1. Average error rates (%) and standard deviations in the covariate shifts scenario on ImageNet-C. Red fonts indicate performance
degradation with respect to Source.

Adaptation Order (—)
Method NOISE BLUR WEATHER DIGITAL Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

Source 439 433 434 69.7 78.3 59.6 69.1 40.1 443 363 265 50.6 67.6 60.6 434 51.8
TENT 43.8 429 43.1 70.1 77.9 59.4 69.3 422 487 459 289 50.4 68.0 63.3 45.3  53.3+0.22
LAME 454 43.7 445 72.1 90.7 60.6 89.3 915 965 99.7 267 95.9 96.1 63.3 447 70.7+0.14
RoTTA 439 433 433 69.7 77.8 59.4 68.7 398 425 358 262 49.7 66.6 60.1 43.3  51.3+0.01
SAR 442 43.8 43.7 69.7 71.5 57.1 66.8 412 414 419 263 48.2 64.3 57.1 419 51.0£0.12
EATA 44.0 43.1 434 69.6 74.8 57.8 66.8 406 483 51.1 267 50.1 62.8 56.6 41.2  51.8+0.08
ROID 42.8 40.5 40.1 64.1 64.7 50.6 576 37.0 367 318 246 40.0 57.0 48.0 37.1 44.8+0.04
SLWI 424 39.8 39.3 62.2 59.7 48.1 531 363 344 320 231 37.7 51.1 44.0 34.6 42.5+0.03

Table 2. Average error rates (%) and standard deviations in the co-
variate shifts scenario on D109. Red fonts indicate performance
degradation with respect to Source.

Adaptation Order (—)

Method clipart infograph painting real sketch Ave.
Source  48.7 72.9 41.2 205  56.7 48.0
TENT 49.1 71.5 51.4 312 794  57.7x0.08
LAME  98.7 99.6 96.4 513 99.1  89.0+0.14
RoTTA  48.6 72.6 40.7 20.0 539  47.2+0.03
SAR 48.3 74.4 429 203 565  48.5+0.10
EATA 48.1 71.8 39.5 19.6  55.1  46.8+0.03
ROID 44.0 68.9 37.7 193 512  44.2+0.06
SLWI 41.8 65.7 359 184 469  41.8+0.05

on DomainNet (Peng et al., 2019), which includes 109
classes that overlap with ImageNet.

Scenarios The domain adaptation problem in OTTA
is categorized into various scenarios based on the type of
distribution shifts (Zhou & Levine, 2021; Press et al., 2024,
Dobler et al., 2023). The most common scenario involves
covariate shifts in time-correlated domains (Wang et al.,
2022; Yuan et al., 2023). In this scenario, the domains in
each dataset were sequenced over time and the input data
was streamed per domain. In addition to covariate shifts,
OTTA methods consider label shifts (Boudiaf et al., 2022;
Gong et al., 2022; Niu et al., 2023; Zhou et al., 2023). This
scenario simulates the appearance of input data belonging
to the same class in a time-correlated manner across the
ordered domains. The simulation is based on the adjustment
of the parameter 7 in the Dirichlet distribution, where
values closer to zero concentrate the local label distribution
on specific classes.

Implementation Details In the experiments, we adopted
data2vec (D2V) (Baevski et al., 2022), a self-supervised
version of VisionTransformer (ViT) (Dosovitskiy et al.,
2020), which is commonly used in previous studies (Niu
et al., 2023; Marsden et al., 2023), as our default backbone.
We also considered SwinTransformer (Swin) (Liu et al.,
2021) as an additional model architecture. All models
are the base size versions. The source models for each
architecture were publicly available finetuned models on
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Figure 3. Aaverage error rates for the source and target datasets
after adaptation to all domains of ImageNet-C.

ImageNet for reproducibility. Following previous studies
(Lietal., 2018; Mancini et al., 2018; Niu et al., 2022; 2023;
Marsden et al., 2023), we designated trainable weights
according to the type of normalization layers used in each
model. We compared the proposed SLWI framework with
the following: TENT, LAME (Boudiaf et al., 2022), RoTTA
(Yuan et al., 2023), SAR, EATA, and ROID. We referred to
the official implementations and hyperparameters reported
in the original reports for all the comparison methods,
adhering to established benchmarks (Marsden & Dobler,
2022). We set the batch size to 64, the learning rate to
0.000014, and trained the models using an SGD optimizer.
Unless specifically mentioned, the ROID objective function
was primarily adopted for our framework. The SLWI
parameters, (a, q), were set to (0.99,0.001), and the strict
Kalman gain b for the transfer model was set to the same
value as a, that is 0.99. The degree of backtracking o was
set to 1.4.

4.2. Comparison with Existing OTTA Methods

Table 1 presents the performances of various OTTA meth-
ods under covariate shifts scenarios on ImageNet-C. SLWI
notably outperformed the existing OTTA methods in all cor-
ruption domains except for the fog domain. Compared with
the best-performing method, i.e., ROID, SLWI exhibited
a substantial performance improvement of 2.3%. Figure 3
further highlights that SLWI achieved the lowest average
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Table 3. Average error rates (%) and standard deviations in the label shifts scenario on ImageNet-C. Red fonts indicate performance

degradation with respect to Source.

Adaptation Order (—)
v Method NOISE BLUR WEATHER DIGITAL Avg.
gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

—  Source 439 433 43.4 69.7 78.3 59.6 69.1 40.1 443 363 265 50.6 67.6 60.6 43.4 51.8
TENT 44.1 43.7 44.0 71.1 79.2 61.6 698 432 531 559 308 48.7 69.4 69.1 589 56.2+0.98
LAME 30.5 29.8 30.2 494 62.4 39.9 503 313 343 314 227 39.9 55.9 414 345 38.9+0.07
RoTTA 43.8 42.0 42.0 69.8 74.5 59.3 674 402 395 40.1 290 74.1 72.3 72.8 514 54.5+0.03
0.0 SAR 442 41.8 41.0 67.8 72.0 54.8 63.6 392 39.1 383 256 43.7 63.6 51.2 38.0 48.3+0.15
EATA 44.5 43.0 43.0 65.6 71.5 53.6 623 398 419 404 242 43.1 58.9 52.8 39.0 48.2+0.34
ROID 12.2 11.8 11.5 33.6 35.7 18.3 302 126 11.6 9.6 7.3 11.8 26.4 15.8 129 17.4+0.21
SLWI 12.0 11.4 11.2 27.0 21.7 14.8 217 11.0 99 85 6.3 10.6 16.7 11.6 9.3  13.6x0.17
TENT 44.0 43.5 43.8 70.8 78.3 59.9 68.8 424 520 565 302 64.7 68.7 63.2 447  55.4+1.58
LAME 45.7 43.7 45.2 72.4 88.0 60.2 875 891 950 99.7 271 95.7 95.0 63.2 442 70.1£0.04
RoTTA 435 412 40.9 68.4 71.1 56.4 645 39.1 383 385 283 65.5 67.5 67.2 49.1  52.0+0.01
0.1 SAR 439 41.7 40.9 68.7 71.7 54.8 633 393 394 388 253 44.7 58.1 49.8 39.2  48.0£0.04
EATA 44.1 42.6 42.6 64.7 68.8 52.1 59.9 377 380 326 238 39.6 58.1 51.7 384  46.3+0.04
ROID 40.8 39.3 394 55.8 56.1 46.9 543 358 351 30.1 236 357 49.1 422 35.1  41.3x0.03
SLWI 39.8 37.9 37.8 51.6 48.7 41.7 455 33.6 324 282 220 34.2 40.9 37.1 31.2  37.5+0.02

Table 4. Average error rates (%) and standard deviations in the
label shifts scenario on D109. Red fonts indicate performance
degradation with respect to Source.

Table 5. Average error rates (%) and standard deviations under
various scenarios on ImageNet-C. CS and LS denote covariate and
label shifts, respectively.

Adaptation Order (—) CS LS (v = 0.0) LS (y=0.1)
5 Method . . . Avg.
! clipart infograph painting real  sketch £ Model g e~ ROID SLWI ROID SLWI ROID SLWI
ViT 60.2 45.0+0.08 44.5+0.08 16.3+0.06 15.8+0.02 41.3+0.05 40.5+0.03
— Source 487 729 412 205 567 48.0 Swin 640  47.2+0.15 463+0.17 18.120.03 16.6+0.13 42.1:0.04 39.4+0.07
TENT 49.2 77.1 51.5 32.6 809  58.2+0.04 D2V 51.8  44.8+0.04 42.5£0.03 17.4+0.21 13.6x0.17 41.3£0.03 37.5£0.02
LAME  26.0 68.8 192 80 267 29.7+0.15
RoTTA  48.7 72.8 411 205 566  48.0+0.02
00 SAR 488 74.5 442 205 570 49.0£0.03 . . .
EATA 481 718 202 214 565 | 476:087 different degrees of label shifts and corruption.
ROID 254 56.1 212 104 333 29.3x0.03
SLWI 240 51.3 204 101 306  27.3+0.07 . . .
TENT  49.1 77.4 513 317 797 57.8+0.06 4.3. Comparison with Various Models
LAME  69.8 9.5 576 327 683  64.6+0.25
RoTTA 487 727 100 200 553 47.6£0.01 Table 5 presents thf.: performance of SLWI compared to that
0.1 SAR 486 74.0 427 205 568  48.5+0.04 of ROID across various models. The results show that SLWI
EATA 482 716 395 196 550 pEeEs0ls outperformed over ROID for all models tested. These results
ROID 355 63.7 280 128 417  36.3+0.07 oo L .
SLWI 332 592 265 122 366  33.5+0.09 indicate the applicability of SLWI across a diverse range

error rate across all domains on ImageNet-C following the
completion of the adaptation process. Notably, the average
error rate on the ImageNet test dataset (i.e., the source do-
main) was minimal, with less than a 1% difference between
the methods, indicating the minimal impact of adaptation
on the source domain performance. Table 2 presents the per-
formance of all methods on D109. In this case, SLWI also
exhibits a superior performance compared to the existing
methods, with a significant performance improvement of
2.4% over ROID.

Tables 3 and 4 present the performances of the OTTA meth-
ods based on the intensity of label shifts yv. SLWI ex-
hibits consistent performance improvements over the ex-
isting OTTA methods across most corruption and natural
domains. In particular, for ImageNet-C, SLWI exhibits a
remarkable improvement of 3.8% in scenarios with both the
highest (i.e., v = 0.0) and lower label shift intensities (i.e.,
~ = 0.1) compared with ROID. These findings underscore
the effectiveness of SLWI in adapting to various challenging
environments and maintaining a robust performance across

of models, showing its versatility and effectiveness in en-
hancing the performance regardless of the underlying model
architecture. This adaptability reinforces SLWI’s potential
as a robust solution that is capable of addressing the diverse
challenges encountered in different model structures.

5. Ablation study
5.1. Integration Efficiency with Various OTTA Methods

The proposed framework infers latent weight through a
simple operation without backpropagation of the weights
obtained from the OTTA procedure. In addition, because
the SGD optimizer already calculates the gradient g; to pro-
duce 6, within the procedure, no additional computation is
required in our framework. Owing to these technical advan-
tages, the proposed SLWI framework can be integrated with
various TTA methods to offer high computational efficiency.
Table 6 lists the average error rates before and after apply-
ing SLWI. The results reveal that SLWI, when combined
with TENT, EATA, or ROID, demonstrates a significant
performance improvement and enhanced stability.
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Table 6. Average error rates (%) and standard deviations w/o and
w/ SLWI on ImageNet-C. CS and LS denote covariate and label
shifts, respectively.

CS LS(y=0.00 LS(y=0.1)
TENT 53.3+0.22 56.2+0.98 55.4+1.58
TENT w/ SLWI  51.1+0.07 27.0+0.07 50.8+0.15
EATA 51.8+0.08 48.2+0.34 46.8+0.06
EATA w/ SLWI  47.4+0.09 20.2+0.12 43.9+0.01
ROID 44.8+0.04 17.4+0.21 41.3£0.03
ROID w/ SLWI  42.5+0.03 13.6+0.17 37.5+0.02

Table 7. Efficiency comparison in covariate shifts scenario on

ImageNet-C.
TENT TENT w/SLWI EATA EATA w/SLWI ROID ROID w/SLWI
Avg. ((;’fg time 59 167.7 1753 178.9 2575 263.8
Relative time 5.0 _ 2.0 — 24

(%)

The performance enhancement capability of SLWI does not
require a substantial increase in computational cost. Table 7
lists the average execution times before and after applying
SLWI. The best-performing method, ROID, had an average
execution time of 257.5s, whereas that of SLWI was 263.8s.
These results indicate that only a 2.4% increase in compu-
tational effort is required for a considerable performance
improvement. Furthermore, when applied to relatively faster
methods, such as TENT and EATA, SLWI only requires an
additional 5.0% and 2.0% in computational time, respec-
tively. This makes SLWI an efficient and valuable addition
to existing OTTA methods, offering a significant perfor-
mance enhancement with minimal computational overhead.

5.2. Effectiveness of Backtracking

To investigate the effectiveness of SLWI backtracking, we
conducted a study in the label shift scenario with v = 0.0 on
ImageNet-C. We adjusted the backtracking hyperparameters
¢ and « and measured their performance, as shown in Figure
4. The results indicate that when backtracking is disabled
(i.e., ( = oo and o = 1.0), there is notable instability in the
performance variability and averages across different seeds.

The left side in Figure 4 shows a substantial enhancement in
performance when the stationary level is set below the 95%
confidence interval, corresponding to ( = 2. This result
suggests that the proposed framework can effectively detect
and address nonlinear weights. The right side in Figure
4 shows that maintaining o within 1.2 to 1.8 facilitated
stable performance levels and, conversely, exceeding this
range by setting o above 1.8 introduced overfitting due to
excessive reliance on past observation, destabilizing the
learning process.

The insights garnered from this investigation affirm that
nonlinear weights derived from the OTTA procedure can
potentially degrade performance. However, through the
strategic application of the backtracking mechanism, it is
possible to mitigate such risks effectively. The right side
in Figure 4 shows that SLWI maintained a stable perfor-

°° 195 i 2 188 _—
3 29— 18 244 —_—
25 355 1.6 135 ]
> ]
2 136 1 14 136 ]
15 ‘136 1 1.2 194 —_—
1 139 1 1 195 |

0.0 20.0 40.0 60.0 0 10 20 30 40

Average Error Rate (%) Average Error Rate (%)

Figure 4. Average error rates and standard deviations (red line) for
various ¢ and a. { = oo or a = 1.0 indicate that backtracking is
not applied.

mance when the degree of backtracking was set between 1.2
and 1.8. These results imply that nonlinear weights derived
from the OTTA procedure pose a performance degradation
risk and that SLWI effectively mitigates this risk through
backtracking, thus playing a vital role in the observed per-
formance enhancement.

6. Conclusion

In this study, we addressed the limitations of OTTA meth-
ods, which simultaneously perform validation and domain
adaptation during the test phase, but fail to comprehensively
consider target domain information. We analyzed the stan-
dard procedures adopted by existing OTTA methods and
proposed the SLWI framework that introduces latent weight
capable of continuously accumulating target domain infor-
mation in the weight space. SLWI leverages the Bayesian
filtering framework to infer latent weight, thus mitigating
the inherent errors of unreliable weights derived from the
unsupervised learning approach of OTTA. We redesigned
the framework to accumulate the target and source infor-
mation and considered the local nonlinearity of unreliable
weights, providing a local stationary process. Consequently,
SLWI combined with existing OTTA methods achieved out-
performed state-of-the-art methods with minimal additional
computational costs. These results will contribute to the the-
oretical research and design of Bayesian filtering for more
effectively utilizing information about the target domain in
unsupervised domain adaptation.

7. Limitation

One limitation of the proposed framework is the need for
hyperparameters to backtrack nonlinear weights. Neverthe-
less, SLWI exhibited consistent performance improvements
across various environments with different distribution shifts
and diverse datasets, even with fixed hyperparameters. In
future work, we plan to focus on implicitly identifying these
hyperparameters to further enhance the adaptability and
effectiveness of our approach to dynamically changing do-
mains.
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A. Framework Details and Derivations

To ensure the completeness of the paper, we detail the background and derivation process of the proposed framework design
in this section. Algorithm 3 provides utility functions for the entire framework.

Algorithm 3 Stationary Latent Weight Inference

function PREDICTION(p;—1/¢—1, Po, af_llt_l; a,q)
Peji—1 < apie—1je—1 + (1 — a)go
o't2|t71 - a20t271|t71 +4q
Return /i1, O't2|t71

end function

function BACKTRACKING(0y, g, fit]t—1, 071115108 Pg,e—1(0o:t—1), Do:e—15 @, O)
c 1
log pg,t—1(0e]00:t—1) < N(Oelpeje—1, 0’07 4,y +1)
Ay logpg1—1(6]00:4—1) — +log pg.s—1(6o:e—1)
if ‘S(t7 Ata A%:t—1>| > C then
1/
qnd if
0; < 0, — cig:
log pg.i—1(00:1) < log pg 1—1(80:—1) +1ogpg.t—1(0:|00:—1)
A(2):t — Ag:t—l + A?
Return 0,, log pg.t—1(00:t), A2,
end function

function UPDATE(f;, feft—15 Ut2—1|t—1’ af‘t_l; a)
Ky = Jt2|t—1(a2‘7t2—1\t—1 +1)7!
Mt = Heje—1 + Ky (ét — fje—1)
Ut2|t = Gtz\t—l - “tc"t2|t—1
Return /i, aflt
end function

function FILTER(Z, 0y, g1, o, fe—1)¢—1, Uf_l‘t_p log pg.i—1(80:1—1), No:e—1; 2, w)

a,_,q <+ <
(a+—w
fit]t—1,07);_y ¢ PREDICTION(k—1j¢—1, D0, 07113 @, q)
if £ > 1 then
log pg,t—1(00:t), Ay, 0r = BACKTRACKING(0r, g1, pejt—1, 071|115 108 Dg,t—1(00:—1), Dose—15 @, C)
else .
10gpg,t—1(90:t)a A(Q):h 0¢ IOng,t—l(QO:O)a A%:Ov 0y
end if

2 ) 2 2 .
Mt\tv o-t\t — UPDATE(HT/’ ,ut\tfla o’t71|t717 O-t‘tfla a/)

Return /i), pog)¢—1, Ut2|ta log pg.t—1(00:¢), A%;t
end function

A.1. Stationary Linear Gaussian Model

The OTTA method, operating in the target domain, often experiences high uncertainty due to the significant performance
drop of the source model and the adoption of an unsupervised learning approach without true labels. This uncertainty
generally leads OTTA’s SGD-based process to adopt the learning rate between 1.0~% and 1.0~5, which are about 100 times
smaller than the learning rate between 1.0~2 and 1.0~3 used for training the source model (Wang et al., 2020; 2022; Yuan
et al., 2023; Niu et al., 2022; Steiner et al., 2021). Furthermore, as we use a method that learns only a tiny fraction of the
weights in the model (Niu et al., 2023; Marsden et al., 2023), the learning rate is 0 for most of the weights. When the
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learning rate is very small, the SGD process can be approximated as a stochastic differential equation (SDE) (Li et al.,
2021). The marginal density of this SDE is governed by Fokker-Planck-Kolmogorov (FPK) equation (Séarkkad & Solin,
2019). Solutions to this equation frequently involve the Gaussian assumed density approximation (Sarkkd & Svensson,
2023). The posterior distribution of Bayesian filters using linear Gaussian models can be a target of the Gaussian assumed
density and satisfy the FPK equation (Ansari et al., 2023). Based on this theoretical foundation, we adopt linear Gaussian
models to model the weight evolution in the OTTA procedure. Considering the minute weight changes over time due to the
small learning rate, we assume the weight changes closely resemble a local stationary process. Thus, we design our linear
Gaussian models for the transition and emission as stationary linear systems, as indicated in Egs. (5) and (6). In addition,
such stationary settings help to stabilize the process (Murphy, 2023).

A.2. Inference using Bayesian Filtering Equations

The process of inferring the latent-weight posterior using transition and emission models in Bayesian filtering is a
recursive method. Given the one-time step previous posterior distribution derived from past domains, denoted as
P(dr—1101:4-1, g1.4—1, @0 ), this serves as the prior distribution for the next step. Along with Eq. (5), we construct the joint
distribution and then perform marginalization to obtain the one-step-ahead predictive distribution. According to Lemma A.2
and A.3 from (Sarkkd & Svensson, 2023), this distribution is formulated as follows:

P(Pe]01:4—1, G1:4—1, Po) = /p(¢t|¢t—17¢0)p(¢t—1|91:t—1791:t—17¢0)d¢)t—1
= N((ﬁt‘/-//ﬂtflaof\t—l)’

(16)

where ju);—1 = apy_14—1 + (1 — a)go, O't2|t71 = a2‘7?71|t71 + q. According to Lemma A.2 and A.3 from Sirkki &
Svensson 2023, the posterior distribution for the latent weight using the predictive distribution and Eq. (6) is

P(O¢| D¢, g¢)p(Dt|01:4—1, G1:4—1, ¢0) 2
(4011, 91:¢, o) T 0O:l bt 90110171, g1t b0) N(¢t|ut\t,0t\t)7 (17)

where x; = of‘t_l(azaf_llt_l + 1) e = pee—1 + Ke(0r — g — feje—1) and 0t2|t = crf‘t_l - “t0t2|t—1- According
to Lemma A.2 and A.3 from Sarkkéd & Svensson 2023, the denominator term of the posterior predictive distribution is
marginalized as follows:

Doy (6ul60t—1, grie—1) = p(6slBo—1, g1.0) — / p(6c] b6, 90)p(D1lBos—1, 9rt—1)dbn

= N(Oclpeje—1 — (1 = ct)gr, 0’071,y + 1),

(18)

where 0, = 0, 1 — ¢t gt For the initial condition ¢; = 1, p(0;|¢¢, g+) = p(0:|¢p:), and then p,, (ét|90:t—17glzt—1) becomes
Pg,t—1(0¢|00:—1). Thus, we can naturally calculate Eq. (11) when determining the posterior distribution for the latent
weight. This convenience leads to the technical advantage of requiring minimal additional computation for backtracking as
described in Section 3.2.

A.3. Log-Posterior Predictive Normalization for Non-Stationarity Detection

Nonlinearity in weight changes can be defined as outliers in the joint distribution of weights. The log-posterior predictive
distribution encapsulates the difference between distributions of the entire weights, including the current observation and the
previous time step:

Ingg,t—l(etwO:t—l) = 10gpg,t—1(9t790:t—1) - lngg,t—l(GO:t—l)a (19)

where log pg +—1(0o:t—1) = log p(61]60) + Zt;:lz log pg,+—1(60+|60:~—1). The first term represents the joint distribution of
all weights, including the current observation, while the second term signifies the joint distribution of weights up to one-time
step prior. A large difference indicates that the current weights are outliers, requiring a reduction in 6; to approximate 6;_1,
necessitating c; to be less than 1 in 6,. However, since the log-likelihood is not normalized over time, comparing across
different times is challenging, making it difficult to set a threshold for detecting outliers. To address this, we adopt a batch
normalization-like approach (Ioffe & Szegedy, 2015), computing running statistics and normalizing the log-likelihood for
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t > 1 as follows:
Ay

/1 A2
i—1 Afq

10g pg,i—1(0¢]60:e—1) — +10g pg,i—1(00:4—1)

S(ta Ay, A(2):1‘/—1) =

(20)

A3 (log pg.e—1(0el00:r—1) — L1og pg.e—1(Bo.r—1))?
where Ay =1og pg.i—1(0¢|60:t—1) — + log pg.s—1(6o:e—1) and A3, _; = Zt;:ll A? with initial conditions log py +—1(00.0) =
0, A2, = 0. From a batch normalization perspective, %logpg,t_l(%:t_l) is the running mean, and t_%A%:t_l is the
running variance. With this score and an arbitrary threshold ¢ > 0, we can perform decision thresholding as follows:

Ay

\/ ﬁA%:t—l
1 T 1 T
7 log pg,t—1(0o:t—1) — ¢ t_ile;tq <logpg,t—1(0|00:t—1) < n log pg,t—1(0o:t—1) + ¢ t_ilAO:tflv (22)

where ( serves a role similar to a confidence level in a normal distribution. We set weights 0, that do not meet this criterion
as outliers and perform backtracking with ¢; less than 1 as described in Section 3.3 and Eq. (14).

<, 2n

A.4. Transfer Model for Plug-in Approximation

Latent weight information is transferred to the OTTA procedure via the transfer model p(6;|¢:) = N (6¢|p¢, ). Owing to

the plug-in approximation, the latent-weight posterior variance obtained from p(¢¢|01.t—1, g1.t—1, o) and the transfer model

must be sufficiently small. According to Lemma A.2 and A.3 from (Sirkkéd & Svensson, 2023), the mean and variance of
the posterior are calculated as follows: A

pe = peje—1 + K (0 — pgje—1), (23)

of = (1= k)od s, 24)

where the Kalman gain is x} = ‘7t2| t71(0t2\ . +7¢)" . By setting the proportionality constant s € R such that ry is

proportional to af‘ +_1» the Kalman gain becomes time-independent as s(s + 1)~L. Finally, the point estimated weight is
calculated as: R .

bt = pyjp—1 + 0(0r — pgje—1), (25)

where b = s(s + 1) 7. This result was used in Section 3.4.

B. Additional Experiments Details

Our experiments were conducted using a single NVIDIA GeForce RTX 3090 GPU, and we provide specific experimental
settings in this section. The evaluation metrics involved averaging and calculating the standard deviation of error rates for
random seeds 0-4.

Datasets We focused on the diverse classes, corruption, and natural distribution shifts prevalent in the wild-world (Niu et al.,
2023). ImageNet-C, a standard TTA benchmark, evaluates robustness against corruption. ImageNet consists of 1,281, 167
training and 50, 000 testing data. ImageNet-C applies 15 types of corruption at five severity levels to ImageNet, with each
corruption considered a domain. We selected severity level 5 for our experiments. D109 deals with natural distribution shifts,
comprising five domains (clipart, infograph, painting, real, and sketch) based on DomainNet, including 109 overlapping
classes with ImageNet. We also used Rendition (Hendrycks et al., 2021) and Sketch (Wang et al., 2019) datasets for other
natural shifts. Rendition includes 30, 000 images from various artistic renderings of 200 ImageNet classes, collected from
Flickr and filtered by Amazon MTurk annotators. The Sketch dataset contains 50, 000 images, with 50 images for each of
the 1, 000 ImageNet classes, sourced from Google image queries with the term ”sketch of” in a ’black and white” color
scheme.

Compared Methods We compared SLWI with various contemporary OTTA methods. TENT updates trainable weights
specified by entropy minimization loss. LAME modifies model outputs, not weights, during testing for adaptation to label
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distribution shifts. ROTTA uses a student-teacher approach with a cross-entropy objective function and data augmentation.
EATA employs an entropy-based objective function, excluding samples with high entropy based on an entropy constant
threshold. Similarly, SAR adapts models using sample exclusion methods, and SAM (Foret et al., 2020) to prevent settling
into sharp local optima. ROID uses an entropy objective function that excludes some samples based on a diversity score of
label distribution.

All experiments strictly adhered to the hyperparameters of each method as per the existing benchmark (Marsden &
Dobler, 2022), which references the official implementations and hyperparameters reported in the original papers. Where
hyperparameters for a specific dataset or model were not provided for a method, we adjusted them accordingly. The
experiments typically used an SGD optimizer with momentum 0.9, with learning rates set at 0.00001/0.00025 for D2V/ViT
models and the same for Swin as for ViT. For EATA, the learning rate was 0.000005 for D2V models. For the SLWI
framework, parameters a and b were set to 0.99 for all models. Another parameter, ¢, was set to 0.00025, 0.005, and 0.001
for ViT, Swin, and D2V models. The degree of backtracking o was set at 2.5 for ViT and Swin and 1.4 for D2V.

C. Additional Experiments: General Unsupervised Domain Adaptation Performance in
One-Epoch Adaptation Scenario

Table 8. Average error rates (%) and standard deviations in the one-epoch adaptation scenario on ImageNet-C. Red fonts indicate
performance degradation with respect to Source.

NOISE BLUR WEATHER DIGITAL

Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg Ave.

Source 439 433 43.4 69.7 78.3 59.6 69.1 40.1 443 363 265 50.6 67.6 60.6 434 51.8
TENT 44.8 43.9 439 70.3 713 58.5 67.6 408 414 378 26.1 472 66.7 60.2 43.6 51.3%0.09
LAME 44.6 439 44.1 70.1 78.6 60.0 69.6 408 454 384 274 52.3 68.3 61.2 442 52.6+0.14
RoTTA 43.5 429 42.7 69.8 77.8 59.4 68.7 397 428 360 263 49.9 67.1 60.4 432 51.3%£0.03
SAR 44.8 44.2 44.0 70.9 78.4 59.0 683 407 41.0 379 26.1 48.7 66.6 60.1 43.2  51.6+0.09
EATA 44.5 43.7 435 71.1 75.6 59.5 69.0 41.7 441 408 265 50.2 66.2 61.3 442 52.1+0.10
ROID 429 423 42.0 64.7 70.4 54.3 623 384 372 342 245 42.6 59.7 55.1 40.3  47.4+0.05
SLWI 41.9 41.0 40.9 60.4 64.6 50.3 592 368 36.0 335 235 414 55.0 50.6 384 44.9+0.03

Table 10. Average error rates (%) and standard
deviations in the one-epoch adaptation sce-
nario on Rendition and Sketch. Red fonts
indicate performance degradation with respect

Table 9. Average error rates (%) and standard deviations in the one-epoch adapta-
tion scenario on D109. Red fonts indicate performance degradation with respect
to Source.

- - — to Source.
Method clipart infograph painting real sketch Avg. Rendition Sketch
Source  48.7 72.9 41.2 20.5 56.7 48.0 Method Avg Avg
TENT 553 79.1 47.0 23,5  63.1  53.6x0.17 Source 466 604
LAME  98.0 99.1 97.7 972 984  98.1x0.07 : .
TENT  46.5£0.03 60.6+0.02
RoTTA  46.8 71.9 40.3 20.1  55.1  46.8+0.03
LAME 86.4+0.35 86.7+0.45
SAR 48.9 73.0 41.0 20.6  57.1  48.1+£0.02
RoTTA 46.5+0.02 60.1+0.03
EATA 474 71.7 39.8 19.8 56.0 47.0+0.02
SAR  46.2+0.05 60.5+0.05
ROID 44.6 70.0 38.0 19.3 532  45.0+0.01 EATA  46.2+0.04  59.6+0.05
SLWI 41.3 67.3 36.3 187 493  42.6+0.06 e Dape

ROID  41.840.12 56.2+0.04
SLWI  39.0+0.06 53.0+0.07

To assess general unsupervised domain adaptation performance, we considered a one-epoch adaptation scenario, where
input and label data are not time-correlated, meaning domains are randomly mixed and fed to the model. Each sample was
fed to the model only once, making it a typical domain adaptation scenario with only one training epoch. We compared
OTTA methods in a one-epoch adaptation scenario. Table 8 shows the performance of each method on ImageNet-C. SLWI
showed a performance improvement of 2.5% over the latest ROID. Tables 9 and 10 display the performance of various
methods under different natural shift scenarios. Compared to ROID, SLWI demonstrated performance improvements of
2.4%, 2.8%, and 3.2% on the D109, Rendition, and Sketch datasets, respectively. These results empirically indicated
that SLWI consistently improved performance on various datasets, even under general unsupervised domain adaptation
situations.
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D. Additional Ablation Study: Valid Bayesian Filtering Parameters

Table 11. Average error rates (%) and standard deviations in the covariate scenario on ImageNet-C along with parameters of SLWI’s
Bayesian filtering.

Parameter SLWI Source
a 0.9999 0.9995 0.99 0.9 0.8
42.6+0.13 42.5+0.11 42.5+0.03 43.5+0.08 43.6+0.04
b 0.9999 0.9995 0.99 0.9 0.8 518
42.6+0.14 42.3+0.11 42.5+0.03 47.2+0.04 49.2+0.03 ’
0.00025 0.0005 0.001 0.01 0.1
q 43.1+0.07 42.9+0.08 42.5+0.03 42.5+0.19 42.3+0.15

We guide setting Bayesian filtering parameters for SLWI. The transition model aims to recover the latent weight, which may
be compromised by unreliable target weights, through the source weight. Since excessive recovery can hinder the utilization
of target domain information, values near 1 should be adopted. The parameter b, due to the plug-in approximation, should
also be close to 1. We set ¢ to be greater than 0 and less than 0.5, ensuring that the variance of the transition model remains
smaller than that of the emission model.

Table 11 lists the performance changes according to variations in each parameter. The results showed that the performance
slightly declined when a exceeded 0.99 and more significantly when b exceeded 0.99. This tendency indicated the importance
of the constraints imposed by the plug-in approximation on these parameters. Variations in ¢ did not significantly affect
the average error rate but impacted stability, with the highest stability observed at ¢ = 0.001. Consequently, within the
guidelines we provided, SLWI demonstrated robust performance.

E. Related Works: Bayesian Inference for DNNs

Bayesian filtering, mainly based on linear Gaussian models and known as Kalman filtering, is a Bayesian inference method
for recursively predicting and updating observations over time (Siarkkd & Solin, 2019; Sirkkd & Svensson, 2023; Kurle et al.,
2020; Li et al., 2020). Kalman filtering is effectively used in natural observation scenarios, such as object tracking (Cheng
et al., 2019; Abuduweili & Liu, 2020). To better capture nonlinear changes in non-stationary environments, extensions
like the Extended Kalman Filter (EKF) and Iterated EKF have been developed (Bell & Cathey, 1993). These methods
have been applied to Kalman filtering of model outputs of nonlinear DNNs (Puskorius & Feldkamp, 2001). The SLWI
framework differs in that it performs Bayesian filtering on the weights of DNNs, as opposed to the model outputs addressed
in traditional EKF applications. Unlike EKF, where the Kalman gain increases with more significant nonlinearity, SLWI
employs backtracking to adjust observations when nonlinearity exceeds a certain level. This approach assumes that excessive
nonlinearity in observations indicates errors, necessitating adjustments. Empirically, we demonstrated in Section 5.2 that
significant performance degradation occurs when the non-stationary interval is increased, i.e., when a certain level of
nonlinearity is accepted. These results suggest that maintaining weights within a stationary range is crucial for stable
unsupervised domain adaptation, even when DNNs handle non-stationary streaming data.

On the other hand, the particle filter, another Bayesian inference method addressing time series observation, is used for
estimating states in non-Gaussian and nonlinear systems. Recently, it was applied to domain adaptation for streaming data
(Huang et al., 2022). This approach requires offline learning using source and target data to train the weights’ distribution
parameters and their importance using DNNs. During the real-time testing phase, weights are sampled and combined with
the learned importance scores to estimate the posterior distribution, effectively performing a weighted ensemble. However,
unlike SLWI, this method necessitates prior offline learning using source and target data. The proposed framework is
an online test-time adaptation method that does not require access to source data or prior offline learning. Additionally,
SLWI, through plug-in approximation and transfer models, avoids the weight sampling process, allowing for much faster
computations. It is also memory-efficient, as it does not store multiple weights in memory but only uses additional latent
weights.
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