
Under review as a conference paper at ICLR 2024

BASIS FUNCTION ENCODING OF NUMERICAL FEA-
TURES IN FACTORIZATION MACHINES FOR IMPROVED
ACCURACY

Anonymous authors
Paper under double-blind review

ABSTRACT

Factorization machine (FM) variants are widely used for large scale real-time con-
tent recommendation systems, since they offer an excellent balance between model
accuracy and low computational costs for training and inference. These systems are
trained on tabular data with both numerical and categorical columns. Incorporating
numerical columns poses a challenge, and they are typically incorporated using a
scalar transformation or binning, which can be either learned or chosen a-priori. In
this work, we provide a systematic and theoretically-justified way to incorporate
numerical features into FM variants by encoding them into a vector of function
values for a set of functions of one’s choice.
We view factorization machines as approximators of segmentized functions, namely,
functions from a field’s value to the real numbers, assuming the remaining fields
are assigned some given constants, which we refer to as the segment. From this
perspective, we show that our technique yields a model that learns segmentized
functions of the numerical feature spanned by the set of functions of one’s choice,
namely, the spanning coefficients vary between segments. Hence, to improve model
accuracy we advocate the use of functions known to have strong approximation
power, and offer the B-Spline basis due to its well-known approximation power,
availability in software libraries, and efficiency. Our technique preserves fast
training and inference, and requires only a small modification of the computational
graph of an FM model. Therefore, it is easy to incorporate into an existing system to
improve its performance. Finally, we back our claims with a set of experiments that
include a synthetic experiment, performance evaluation on several data-sets, and an
A/B test on a real online advertising system which shows improved performance.
The results can be reproduced with the code in the supplemental material.

1 INTRODUCTION

Traditionally, online content recommendation systems rely on predictive models to choose the set
of items to display by predicting the affinity of the user towards a set of candidate items. These
models are trained on feedback gathered from a log of interactions between users and items from the
recent past. For systems such as online ad recommenders with billions of daily interactions, speed
is crucial. The training process must be fast to keep up with changing user preferences and quickly
deploy a fresh model. Similarly, model inference, which amounts to computing a score for each
item, must be rapid to select a few items to display out of a vast pool of candidate items, all within a
few milliseconds. Factorization machine (FM) variants, such as Rendle (2010); Juan et al. (2016);
Pan et al. (2018); Sun et al. (2021), are widely used in these systems due to their ability to train
incrementally, and strike a good balance between being able to produce accurate predictions, while
facilitating fast training and inference.

The training data consists of past interactions between users and items, and is typically given in
tabular form, where the table’s columns, or fields, have either categorical or numerical features.
For example, “gender” or “time since last visit” are fields, whereas “Male” and “10 hours” are
corresponding features. In recommendation systems that rely on FM variants, each row in the table is
typically encoded as a concatenation of field encoding vectors. Categorical fields are usually one-hot
encoded, whereas numerical fields are conventionally binned to a finite set of intervals to form a

1

Under review as a conference paper at ICLR 2024

categorical field, and one-hot encoding is subsequently applied. A large number of works are devoted
to the choice of the intervals, e.g. Dougherty et al. (1995); Peng et al. (2009); Liu et al. (2002); Gama
& Pinto (2006). Regardless of the choice, the model’s output is a step function of the value of a given
numerical field, assuming the remaining fields are kept constant, since the same interval is chosen
independently of where the value falls in a given interval. For example, consider a model training on
a data-set with age, device type, and time the user spent on our site. For the segment of 25-years old
users using an iPhone the model will learn some step function, whereas for the segment of 37-years
old users using a laptop the model may learn a (possibly) different step function.

However, the optimal segmentized functions the model aims to learn, that describe the user behavior,
aren’t necessarily step functions. Typically, such functions are continuous or even smooth, and there
is a gap between the approximating step functions the model learns, and the optimal ones. In theory,
a potential solution is simply to increase the number of bins. This increases the approximation power
of step functions, and given an infinite amount of data, would indeed help. However, the data is
finite, and this can lead to a sparsity issue - as the number of learning samples assigned to each bin
diminishes, it becomes increasingly challenging to learn a good representation of each bin, even
with large data-sets, especially because we need to represent all segments simultaneously. This
situation can lead to a degradation in the model’s performance despite having increased the theoretical
approximation power of the model. Therefore, there is a limit to the accuracy we can achieve with
binning on a given data-set. See Figure 1.

Figure 1: For a given segment, learned segmentized step function approximations (orange) of a
true function (blue) which was used to generate a synthetic data-set. In the left - too few bins, bad
approximation. In the middle - a balanced number of bins, moderate approximation. On the right -
many bins, but approximation gets even worse due to a sparsity issue.

In this work, we propose a technique to improve the accuracy of FM variants by reducing the
approximation gap without sparsity issues, while preserving training and inference speeds. Our
technique is composed of encoding a numerical field using a vector of functions, which we refer to as
basis functions, and a minor modification to the computational graph of an FM variant. The idea of
using basis functions is of course a standard practice with linear models, but combined with FMs it is
surprisingly powerful, and radically differs from the same technique applied to linear models.

Indeed, we present an elementary lemma showing that the resulting model learns a segmentized
output function spanned by chosen basis, meaning that spanning coefficients depend on the values
of the remaining fields. This is, of course, an essential property for recommendation systems, since
indeed users with different demographic or contextual properties may behave differently. To the best
of our knowledge, the idea of using arbitrary basis functions with FMs and the insights we present
regarding the representation power of such a combination are new.

Based on the generic observation above, we offer the B-Spline basis (de Boor, 2001, pp 87) defined
on the unit interval on uniformly spaced break-points, composed onto a transformation that maps
the feature to the unit interval. The number of break-points (knots) is a hyper-parameter. The
strong approximation power of splines ensures that we do not need a large number of break-points,
meaning that we can closely approximate the optimal segmentized functions, without introducing
sparsity issues. Moreover, to make integration of our idea easier in a practical production-grade
recommendation system, we present a technique to seamlessly integrate a model trained using
our proposed scheme into an existing recommendation system that employs binning, albeit with a
controllable reduction in accuracy. Although a significant part of this work considers the B-Spline
basis, the techniques we present can be used with an arbitrary basis.

To summarize, the main contributions of this work are: (a) Basis encoding We propose encoding
numerical features using a vector of basis functions, and introducing a minor change to the

2

Under review as a conference paper at ICLR 2024

computational graph of FM variants. (b) Spanning properties We show that using our method, any
model from a family that includes many popular FM variants, learns a segmentized function spanned
by the basis of our choice, and inherits the approximation power of that basis. (c) B-Spline basis We
justify the use of the B-Spline basis from both theoretical and practical aspects, and demonstrate
their benefits via numerical evaluation. (d) Ease of integration into an existing system We show how
to integrate a model trained by our method into an existing recommender system which currently
employs numerical feature binning, to significantly reduce integration costs. (e) Simplified numerical
feature engineering the strong approximation power of the cubic B-Spline basis allows building
accurate models without investing time and effort to manually tune bin boundaries, and use simple
uniform break-points instead.

1.1 RELATED WORK

If we allow ourselves to drift away from the FM family, we can find a variety of papers on neural
networks for tabular data (Arik & Pfister, 2021; Badirli et al., 2020; Gorishniy et al., 2021; Huang
et al., 2020; Popov et al., 2020; Somepalli et al., 2022; Song et al., 2019; Hollmann et al., 2022).
Neural networks have the potential to achieve high accuracy and can be incrementally trained on newly
arriving data using transfer learning techniques. Additionally, due to the universal approximation
theorem (Hornik et al., 1989), neural networks are capable of representing a segmentized function
from any numerical feature to a real number. However, the time required to train and make inferences
using neural networks is significantly greater than that required for factorization machines. Even
though some work has been done to alleviate this gap for neural networks by using various embedding
techniques (Gorishniy et al., 2022), they have not been able to outperform other model types. As a
result, in various practical applications, FMs are preferred over NNs. For this reason, in this work we
focus on FMs in our work, and specifically on decreasing a gap between the representation power of
FMs and NNs without introducing a significant computational and conceptual complexity.

A very simple but related approach to ours was presented in Covington et al. (2016). The work uses
neural networks and represents a numerical value z as the triplet (z, z2,

√
z) in the input layer, which

can be seen as a variant of our approach using a basis of three functions. Another approach which
bears similarity to ours also comes from works which use deep learning (Cheng, 2022; Gorishniy
et al., 2021; Song et al., 2019; Guo et al., 2021). In these works, first-order splines are used in the
input layer to represent continuity, and the representation power of a neural network compensates for
the weak approximation power of first-order splines. Here we do the opposite - we use the stronger
approximation power of cubic splines to compensate for the weaker representation power of FMs.

The recent work of David (2022) uses a technique which appears to resemble ours, but takes the
perspective of function approximation on a bounded domain, applies to regular FM models only, and
expands towards higher orders of interaction. In contrast, our work takes the recommender system
perspective and has a significantly broader theoretical and practical scope: it applies to a wide range
of FM variants, includes handling of unbounded domains and interaction with categorical features,
and reports A/B test results on a real-world ad recommendation system.

Finally, a work on tabular data cannot go without mentioning gradient boosted decision trees (GBDT)
(Chen & Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018), which are known to achieve
state of the art results (Gorishniy et al., 2021; Shwartz-Ziv & Armon, 2022). However, GBDT models
aren’t useful in a variety of practical applications, primarily due to significantly slower inference
speeds, namely, it is challenging and costly to use GBDT models to rank hundreds of thousands of
items in a matter of milliseconds.

2 FORMAL PROBLEM STATEMENT

We consider tabular data-sets with m fields, each can be either numerical or categorical. A row in the
data-set (z1, . . . zm), is encoded into a feature vector:

x = enc(z1, . . . zm) ≡

 enc1(z1)
...

encm(zm)

 ,

3

Under review as a conference paper at ICLR 2024

where the encf function encodes field f into a vector, e.g. one-hot encoding of a single-valued
categorical field. The vector x is then fed into a model. With a slight abuse of notation, we will
denote by ϕf the model’s segmentized output, which is the output as a function of the value of a field
f , assuming the remaining fields are some given constants. As in any supervised learning task, ϕf

aims to approximate some unknown optimal segmentized function.

In the vast majority of cases, a numerical field f is either encoded using a scalar transform encf :
R → R, or using binning - the numerical domain is partitioned into a finite set of intervals encf (zf)
is a one-hot encoding of the interval zf belongs to. Since for any zf ∈ [ai, ai+1) we have the same
encoding, a deterministic model will produce the same output, and therefore ϕf is a step function.

Step functions are weak approximators in the sense that many cut-points are required to achieve good
approximation accuracy. For example, Lipschitz-continuous functions can be approximated by a step
function on ℓ intervals up to an error of only O(1ℓ) (de Boor, 2001, pp 149). Hence, with binning
we need to strike an intricate balance between the theoretically-achievable approximation accuracy
and our ability to achieve it because of sparsity issues, as illustrated in Figure 1. Note, that the above
observation does not depend on weather the bins are chosen a-priori or learned. In this work we
propose an alternative to binning, by encoding numerical features in a way that allows achieving
more of the theoretical accuracy before sparsity issues take effect.

2.1 THE FACTORIZATION MACHINE FAMILY

In this work we consider several model variants, which we refer to as the factorization machine
family. The family includes celebrated factorization machine (FM) (Rendle, 2010), the field-aware
factorization machine (FFM) (Juan et al., 2016), the field-weighted factorization machine (FwFM)
(Pan et al., 2018), and the field-matrixed factorization machine (FmFM) (Sun et al., 2021; Pande,
2021), that generalized the former variants.

As a convention, we denote by fi the field which was used to encode the ith component of the
feature vector x, and denote arbitrary fields by f, e. We also denote by ⟨x,y⟩P = xTPy the “inner
product”1 associated with some matrix P . The FmFM model computes

ϕFmFM(x) = w0 + ⟨x,w⟩+
n∑

i=1

n∑
j=i+1

⟨xivi, xjvj⟩Mfi,fj
, (1)

where w0 ∈ R, w ∈ Rn, and v1 ∈ Rk1 , ..., vn ∈ Rkn are learned parameters, and the field-
interaction matrices Mfi,fj can be either learned, predefined, or have a special structure. FMs are
typically employed for supervised learning tasks on a dataset {(xi, yi)}Ni=1. Note, that this model
family allows a different embedding dimension for each field, since the matrices mMfi,fj do not
have to be square. For completeness, we present the above FM variants in Appendix B, and explain
why FmFMs generalize the entire family. Since FmFM generalizes the entire, we use equation 1 as
the formalism to describe and prove properties which should hold for the entire family.

3 THE BASIS FUNCTION ENCODING APPROACH

To describe our approach we need to introduce a slight modification to the FmFM computational
graph described in equation 1. Before feeding the vectors xivi and scalars xiwi into the factorization
machine, we pass the vectors and, respectively, scalars belonging to each field through a linear
reduction associated with that field. We consider two reductions: (a) the identity reduction, which
just returns its input; and (b) a sum reduction, which sums up the xivi and, respectively, the xiwi

of the corresponding field. Clearly, choosing the identity function for all fields reduces back to the
regular FmFM model.

For a field f that we designate as continuous numerical, we choose a set of functions B1, . . . , Bℓ,
and encode the field as encf (z) = (B1(z), . . . , Bℓ(z))

T with a subsequent summing reduction. For
the remaining fields, we use the identity reduction. The process for xivi is depicted in Figure 2. Note,
that each field can have its own basis, and in particular, the number of basis functions between fields
may differ. For a formal description using matrix notation we refer the readers to Appendix A.1.

1FmFMs do not require it to be a real inner product. For it to be a true inner product, the matrix has to be
square and positive definite

4

Under review as a conference paper at ICLR 2024

Figure 2: The computational graph with continuous numerical fields. Field 3 is a continuous
numerical field whose value is z. The vectors v1, . . . ,vn in the rows of v are multiplied by the input
vector x. Then, a reduction is applied to each field. Most fields have the identity (Id) reduction,
whose output is identical to its input, whereas field 3 uses the sum reduction. The resulting vectors
are then passed to the pairwise interaction module. An analogous process happens with the w vector.

3.1 SPANNING PROPERTIES

To show why our modeling choices improve the approximation power of the model, we prove two
technical lemmas that establish a relationship between the basis of choice and the model’s output.
Lemma 1 (Spanning property). Let encf (z) = (B1(z), · · · , Bℓ(z))

T be the encoding function asso-
ciated with a continuous numerical field f , and suppose ϕFmFM is computed according to equation 1.
Then, assuming the remaining field values are some given constants, there exist α1, . . . , αℓ, β ∈ R,
which depend on the values of the remaining fields and the model’s parameters but not on z, such
that ϕFmFM as a function of z can be written as

ϕFmFM(z) =

ℓ∑
i=1

αiBi(z) + β.

An elementary formal proof can be found in Appendix A.2, but to convince the readers, we present
an informal explanation. The vector stemming from a numerical field, after the summing reduction
is a linear combination of the basis functions, while the remaining post-reduction vectors do no
depend on z. Thus, when pairwise inner products are computed, we obtain a scalar which is a linear
combination of the basis functions.

Another interesting result can be obtained by looking at ϕFmFM as a function of two continuous
numerical fields. It turns out that we obtain a function in the span of a tensor product of the two bases
chosen for the two fields.
Lemma 2 (Pairwise spanning property). Let e, f be two continuous numerical fields. Suppose
that ence(ze) = (B1(ze), · · ·Bℓ(ze))

T and encf (zf) = (C1(zf), · · ·Cκ(zf))
T be field encoding

functions, and suppose ϕFmFM is computed according to equation 1. Define B0(z) = C0(z) = 1.
Then, assuming the remaining fields are kept constant, there exist αi,j , β ∈ R for i ∈ {0, . . . , ℓ} and
j ∈ {0, . . . , κ}, which depend on the values of the remaining fields and the model’s parameters but
not on ze, zf , such that ϕFmFM as a function of ze, zf can be written as

ϕFmFM(ze, zf) =

ℓ∑
i=0

κ∑
j=0

αi,jBi(ze)Cj(zf) + β.

The proof can be found in Appendix A.3. Note, that the model learns O(ℓ·κ) segmentized coefficients
without actually learning O(ℓ · κ) parameters, but instead it learns only O(ℓ+ κ) parameters in the
form of ℓ+ κ embedding vectors.

Essentially, the model learns an approximation of an optimal user behavior function for each continu-
ous numerical field in the affine span of the chosen basis, or the tensor product basis in case of two
fields. So it is natural to ask ourselves - which basis should we choose? Ideally, we should aim to
choose a basis that is able to approximate functions well with a small number of basis elements, to
keep training and inference efficient, and avoid over-fitting.

5

Under review as a conference paper at ICLR 2024

3.2 CUBIC SPLINES AND THE B-SPLINE BASIS

Spline functions (Schoenberg, 1946) are piece-wise polynomial functions of degree d with up to d−1
continuous derivatives defined on a set of consecutive sub-intervals of some interval [a, b] defined a
set of break-points a = a0 < a1 < · · · < aℓ−d = b. The case of d = 3 are known as cubic splines.
Here we concentrate on splines with uniformly spaced break points, and at this stage assume that
the values of our numerical field lie in a compact interval. We discuss the more generic case in the
following sub-section.

It well-known that spline functions can be written as weighted sums of the celebrated B-Spline
basis (de Boor, 2001, pp 87). For brevity, we will not elaborate their explicit formula in this paper,
and point out that it’s available in a variety of standard scientific computing packages e.g. the
scipy.interpolate.BSpline class of the SciPy package (Virtanen et al., 2020).

It is known (de Boor, 2001, pp 149), that cubic splines can approximate an arbitrary function g
with k ≤ 4 continuous derivatives up to an error bounded by O(∥g(k)∥∞/ℓk)2, where g(k) is the kth

derivative of g. The spanning property (Lemma 1) ensures that the model’s segmentized outputs are
splines spanned by the same basis, and therefore their power to approximate the optimal segmentized
outputs. Therefore, assuming that the functions we aim to approximate are smooth enough and vary
“slowly”, in the sense that their high-order kth derivatives are small, the approximation error goes
down at the rate of O(1

ℓk
), whereas with binning the rate is O(1ℓ).

A direct consequence is that we can obtain a theoretically good approximation which is also achievable
in practice, since we can be accurate with a small number of basis functions, and this significantly
decreases the chances of sparsity issues. This is in contrast to binning, where high resolution binning
is required to for a good theoretical approximation accuracy, but it may not be achievable in practice.

Yet another important property of the B-Spline basis is that at any point only four basis functions are
non-zero. Thus, regardless of the number of basis functions we use, computing the model’s output
remains efficient.

3.3 NUMERICAL FIELDS WITH ARBITRARY DOMAIN AND DISTRIBUTION

Splines approximate functions on a compact interval. Thus, numerical fields with unbounded domains
pose a challenge. Moreover, the support of each cubic B-Spline function is only a sub-interval of the
domain defined by five consecutive knots. Thus, even if a numerical field f is bounded in [a, b], a
highly skewed distribution may cause “starvation” of some basis functions: if P(zf ∈ support(Bi))
is extremely small, there will be little training data to effectively learn a useful representation of Bi.

As a remedy to both challenges, we recommend first transforming a numerical field f using a function
Tf with two objectives: (a) map values to a compact interval, that we assume w.l.o.g. to be [0, 1],
and (b) spread the values such that for every P(Tf (zf) ∈ support(Bi)) is non-negligible for all i. In
theory, if we knew the distribution of zf , we could use its CDF as the transform of choice, since the
transformed values would be uniformly distributed in [0, 1]. In practice, Tf can be any function which
roughly resembles the cumulative distribution function (CDF) of the field’s values, as described next.

On small benchmark datasets we approximate the empirical CDF using a dense step function (see
QuantileTransform in the Scikit-Learn package (Buitinck et al., 2013)). However, in a practical
large-scale real-time recommender system, evaluating this CDF approximation is prohibitively
expensive. Hence, we recommend fitting a distribution with a simple closed-form CDF, such as
Normal or Student-T, to a sub-sample of the data, and using its CDF as Tf . Note, that our method
does not eliminate the need for data analysis and feature engineering, but only simplifies it; just fit a
few distributions3, and see (visually) whose CDF resembles the empirical CDF best.

3.4 INTEGRATION INTO AN EXISTING SYSTEM BY SIMULATING BINNING

Suppose we would like to obtain a model which employs binning of the field f into a large number
N of intervals, e.g. N = 1000. As we discussed in the introduction, in most cases we cannot directly

2For a function ϕ defined on S, its infinity norm is ∥ϕ∥∞ = maxx∈S |ϕ(x)|
3Easy to do using scipy.stats.{some_dist}.fit()

6

Under review as a conference paper at ICLR 2024

learn such a model because of sparsity issues. However, we can generate such a model from another
model trained using our scheme to make initial integration easier.

The idea is best explained by referring, again, to Figure 2. For any value z of the numerical field of
our choice, the vector corresponding to that field after the reduction stage (field 3 in the figure) is
a weighted sum of the field’s vectors, where the weights are Bi(z). Thus, for any field value z we
can compute a corresponding embedding e(z). Given a set of N intervals, we simply compute N
corresponding embedding vectors by evaluating e at the mid-point of each interval. The resulting
model has an embedding vector for each bin, as we desired.

The choice of the set of interval break-points may vary between fields. For example, in many practical
situations a geometric progression is applicable to fields with unbounded domains. Another natural
choice is utilizing the transformation Tf from the previous section, that resembles the data CDF, and
using its inverse computed at uniformly spaced points as the bin boundaries, i.e., {T−1

f (j
N)}Nj=0.

4 EVALUATION

We divide this section into three parts. First, we use a synthetically generated data-set to show that
our theory holds - the model learns segmentized output functions that resemble the ground truth.
Then, we compare the accuracy obtained with binning versus splines on several data-sets. The code
to reproduce these experiments is available in the supplemental material. Finally, we report the results
of a web-scale A/B test conducted on a major online advertising platform.

4.1 LEARNING ARTIFICIALLY CHOSEN FUNCTIONS

Figure 3: Results of segmentized approximations of four FFM models trained on synthetic data, with
5, 12, and 120 bins, and splines with 6 break-points, down-left order. 5 bins have poor accuracy
(test loss = 0.3474), 12 bins have a better accuracy (test loss = 0.3442), with 120 bins the accuracy
worsens due to sparsity (test loss = 0.3478), and with splines we achieve best accuracy (0.3432).

We used a synthetic toy click-through rate prediction data-set with four fields, and zero-one labels
(click / non-click). Naturally, the cross-entropy loss is used to train models on such tasks. We
have three categorical fields each having two values each, and one numerical field in the range
[0, 40]. For each of the eight segment configurations defined by the categorical fields, we defined
functions p0, . . . , p7 (see Figure 3) describing the CTR as a function of the numerical field. Then,
we generated a data-set of 25,000 rows, such that for each row i we chose a segment configuration
si ∈ {0, ..., 7} of the categorical fields uniformly at random, the value of the numerical field
zi ∼ Beta-Binomial(40, 0.9, 1.2), and a label yi ∼ Bernoulli(psi(zi)).

7

Under review as a conference paper at ICLR 2024

We trained an FFM (Juan et al., 2016) provided by Yahoo-Inc (2023) using the binary cross-entropy
loss on the above data, both with binning of several resolutions and with splines defined on 6 sub-
intervals. The numerical field was naïvely transformed to [0, 1] by simple normalization. We plotted
the learned curve for every configuration in Figure 3. Indeed, low resolution binning approximates
poorly, a higher resolution approximates better, and a too-high resolution cannot be learned because
of sparsity. However, Splines defined on only six sub-intervals approximate the synthetic functions
{pi}7i=0 quite well.

Next, we compared the test cross-entropy loss on 75,000 samples generated in the same manner with
for several numbers of intervals used for binning and cubic Splines. For each number of intervals
we performed 15 experiments to neutralize the effect of random model initialization. As is apparent
in Figure 4, Splines consistently outperform in this theoretical setting. The test loss obtained by
both strategies diminishes if the number of intervals becomes too large, but the effect is much more
significant in the binning solution.

Figure 4: Comparison of the test cross-entropy loss obtained with Splines and bins. Both methods
suffer from sparsity issues as the number of intervals grows, but Splines are able to utilize their
approximation power with a small number of intervals, before sparsity takes effect. The bands are
bootstrap CIs - for each number of boundaries and numerical feature type we ran 15 experiments to
neutralize the effect of random initialization.

4.2 PUBLIC DATA-SETS

We test our approach versus binning on several tabular data-sets: the california housing (Pace &
Barry, 1997) , adult income (Kohavi, 1996), Higgs (Baldi et al., 2014) (we use the 98K version from
OpenML (Vanschoren et al., 2014)), and song year prediction (Bertin-Mahieux et al., 2011). For the
first two data-sets we used an FFM, whereas for the last two we used an FM, both provided by Yahoo
(Yahoo-Inc, 2023), since an FFM is more expensive when there are many columns. We used Optuna
(Akiba et al., 2019) for hyper-parameter tuning, e.g. step-size, batch-size, number of intervals, and
embedding dimension, separately for each strategy. For binning, we also tuned the choice of uniform
or quantile bins. In addition, 20% of the data was held out for validation, and regression targets were
standardized. Finally, for the adult income data-set, 0 has a special meaning for two columns, and
was treated as a categorical value.

We ran 20 experiments with the tuned configurations to neutralize the effect of random initialization,
and report the mean and standard deviation of the metrics on the held-out set in Table 1, where it is
apparent that our approach outperforms binning on these datasets. These datasets were chosen since
they contain several numerical fields, and are small enough to run a many experiments to neutralize
the effect of hyper-parameter choice and random initialization at a reasonable compute cost, or time.
They were also used in other works on tabular data, such as Gorishniy et al. (2021; 2022).

4.3 A/B TEST RESULTS ON AN ONLINE ADVERTISING SYSTEM

Here we report an online performance improvement measured using an A/B test, serving real traffic of
a major online advertising platform. The platform applies a proprietary FM family click-through-rate
(CTR) prediction model that is closely related to FwFM (Sun et al., 2021). The model, which provides

8

Under review as a conference paper at ICLR 2024

Cal. housing Adult income Higgs Song year

rows 20640 48842 98050 515345
cat. fields 0 8 0 0
num. fields 8 6 28 88
Metric type RMSE Cross-Entropy Cross-Entropy RMSE
Binning metric (std%) 0.4730 (0.36%) 0.2990 (0.47%) 0.5637 (0.22%) 0.9186 (0.4%)
Splines metric (std%) 0.4294 (0.57%) 0.2861 (0.28%) 0.5448 (0.12%) 0.8803 (0.2%)
Splines vs. binning −9.2% −4.3% −3.36% −4.16%

Table 1: Comparison of binning vs. splines. Standard deviations are reported as % of the mean.

CTR predictions for merchant catalogue-based ads, has a recency field that measures the time (in
hours) passed since the user viewed a product at the advertiser’s site. We compared an implementation
using our approach of continuous feature training and high-resolution binning during serving time
described in Section 3.4 with a fine grained geometric progression of 200 bin break points, versus the
“conventional” binned training and serving approach used in the production model at that time. The
new model is only one of the rankers4 that participates in our ad auction. Therefore, a mis-prediction
means the ad either unjustifiably wins or loses the auction, both leading to revenue losses.

We conducted an A/B test against the production model at that time, when our new model was serving
40% of the traffic for over six days. The new model dramatically reduced the CTR prediction error,
measured as (Average predicted CTR

Measured CTR − 1) on an hourly basis, from an average of 21% in the baseline
model, to an average of 8% in the new model. The significant increase in accuracy has resulted in
this model being adopted as the new production model.

5 DISCUSSION

We presented an easy to implement approach for improving the accuracy of the factorization machine
family whose input includes numerical features. Our scheme avoids increasing the number of model
parameters and introducing over-fitting, by relying on the approximation power of cubic splines. This
is explained by the spanning property together with the spline approximation theorems. Moreover,
the discretization strategy described in Section 3.4 allows our idea to be integrated into an existing
recommendation system without introducing major changes to the production code that utilizes the
model to rank items.

It is easy to verify that our idea can be extended to factorization machine models of higher order
(Blondel et al., 2016). In particular, the spanning property in Lemma 1 still holds, and the pairwise
spanning property in Lemma 2 becomes q-wise spanning property from machines of order q. However,
to keep the paper focused and readable, we keep the analysis out of the scope of this paper.

With many advantages, our approach is not without limitations. We do not eliminate the need for data
research and feature engineering, which is often required when working with tabular data, since the
data still needs to be analyzed to fit a function that roughly resembles the empirical CDF. Feature
engineering becomes somewhat easier, but some work still has to be done.

Finally, we would like to note two drawbacks. First, our approach slightly reduces interpretability,
since we cannot associate a feature with a corresponding learned latent vector. Second, our approach
may not be applicable to all kinds of numerical fields. For example, consider a product recommenda-
tion system with a product price field. Usually higher prices mean a different category of products,
leading to a possibly different trend of user preferences. In that case, the optimal segmentized output
as a function of the product’s price is probably far from having small (higher order) derivatives, and
thus cubic splines may perform poorly, and possibly even worse than simple binning.

4Usually each auction is conducted among several models (or “rankers”), that rank their ad inventories and
compete over the incoming impression.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Sercan Ö. Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(8):6679–6687, May 2021. doi: 10.1609/aaai.v35i8.
16826. URL https://ojs.aaai.org/index.php/AAAI/article/view/16826.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, Khoa Doan, and Sathiya S.
Keerthi. Gradient boosting neural networks: Grownet, 2020.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications, 5(1):4308, 2014.

Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. 2011.

Mathieu Blondel, Akinori Fujino, Naonori Ueda, and Masakazu Ishihata. Higher-order fac-
torization machines. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pp. 108–122, 2013.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.1145/
2939672.2939785.

Yuan Cheng. Dynamic explicit embedding representation for numerical features in deep ctr predic-
tion. In Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, pp. 3888–3892, 2022.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pp. 191–198,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450340359. doi:
10.1145/2959100.2959190. URL https://doi.org/10.1145/2959100.2959190.

Rügamer David. Additive higher-order factorization machines, 2022.

Carl de Boor. A Practical Guide to Splines, volume 27 of Applied Mathematical Sciences. Springer-
Verlag New York, 2001. ISBN 978-0-387-95366-3.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In Armand Prieditis and Stuart Russell (eds.), Machine Learn-
ing Proceedings 1995, pp. 194–202. Morgan Kaufmann, San Francisco (CA), 1995. ISBN
978-1-55860-377-6. doi: https://doi.org/10.1016/B978-1-55860-377-6.50032-3. URL https:
//www.sciencedirect.com/science/article/pii/B9781558603776500323.

João Gama and Carlos Pinto. Discretization from data streams: Applications to histograms and
data mining. In Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06, pp.
662–667, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595931082.
doi: 10.1145/1141277.1141429. URL https://doi.org/10.1145/1141277.1141429.

10

https://ojs.aaai.org/index.php/AAAI/article/view/16826
https://proceedings.neurips.cc/paper_files/paper/2016/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/158fc2ddd52ec2cf54d3c161f2dd6517-Paper.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2959100.2959190
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://www.sciencedirect.com/science/article/pii/B9781558603776500323
https://doi.org/10.1145/1141277.1141429

Under review as a conference paper at ICLR 2024

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 18932–18943.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf.

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. On embeddings for numerical features in
tabular deep learning. In Advances in Neural Information Processing Systems, volume 35, pp.
24991–25004, 2022.

Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang He. An embedding
learning framework for numerical features in ctr prediction. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2910–2918, 2021.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In NeurIPS 2022 First Table Represen-
tation Workshop, 2022. URL https://openreview.net/forum?id=eu9fVjVasr4.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings, 2020.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization ma-
chines for ctr prediction. In Proceedings of the 10th ACM Conference on Recommender Systems,
RecSys ’16, pp. 43–50, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450340359. doi: 10.1145/2959100.2959134. URL https://doi.org/10.1145/
2959100.2959134.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In Proceed-
ings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96,
pp. 202–207. AAAI Press, 1996.

Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash. Discretization: An enabling
technique. Data mining and knowledge discovery, 6:393–423, 2002.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, and Quan Lu.
Field-weighted factorization machines for click-through rate prediction in display advertising.
In Proceedings of the 2018 World Wide Web Conference, WWW ’18, pp. 1349–1357, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356398. doi:
10.1145/3178876.3186040. URL https://doi.org/10.1145/3178876.3186040.

Harshit Pande. Field-embedded factorization machines for click-through rate prediction, 2021.

Liu Peng, Wang Qing, and Gu Yujia. Study on comparison of discretization methods. In 2009
International Conference on Artificial Intelligence and Computational Intelligence, volume 4, pp.
380–384, 2009. doi: 10.1109/AICI.2009.385.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1eiu2VtwH.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9d86d83f925f2149e9edb0ac3b49229c-Paper.pdf
https://openreview.net/forum?id=eu9fVjVasr4
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1145/2959100.2959134
https://doi.org/10.1145/2959100.2959134
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1145/3178876.3186040
https://openreview.net/forum?id=r1eiu2VtwH

Under review as a conference paper at ICLR 2024

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. Catboost: unbiased boosting with categorical features. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/14491b756b3a51daac41c24863285549-Paper.pdf.

Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data Mining, pp.
995–1000, 2010. doi: 10.1109/ICDM.2010.127.

Isaac Jacob Schoenberg. Contributions to the problem of approximation of equidistant data by
analytic functions. part b. on the problem of osculatory interpolation. a second class of analytic
approximation formulae. Quarterly of Applied Mathematics, 4(2):112–141, 1946.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Gowthami Somepalli, Avi Schwarzschild, Micah Goldblum, C. Bayan Bruss, and Tom Goldstein.
SAINT: Improved neural networks for tabular data via row attention and contrastive pre-training.
In NeurIPS 2022 First Table Representation Workshop, 2022. URL https://openreview.
net/forum?id=FiyUTAy4sB8.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian
Tang. Autoint: Automatic feature interaction learning via self-attentive neural networks. In
Proceedings of the 28th ACM International Conference on Information and Knowledge Man-
agement, CIKM ’19, pp. 1161–1170, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450369763. doi: 10.1145/3357384.3357925. URL https:
//doi.org/10.1145/3357384.3357925.

Yang Sun, Junwei Pan, Alex Zhang, and Aaron Flores. Fm2: Field-matrixed factorization machines
for recommender systems. In Proceedings of the Web Conference 2021, WWW ’21, pp. 2828–2837,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127. doi:
10.1145/3442381.3449930. URL https://doi.org/10.1145/3442381.3449930.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Yahoo-Inc. Fully-vectorized weighted field embedding bags for recommender systems. https:
//github.com/yahoo/weighted_fields_recsys, 2023. [Online; accessed 01-May-
2023].

12

https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://openreview.net/forum?id=FiyUTAy4sB8
https://openreview.net/forum?id=FiyUTAy4sB8
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.1145/3357384.3357925
https://doi.org/10.1145/3442381.3449930
https://github.com/yahoo/weighted_fields_recsys
https://github.com/yahoo/weighted_fields_recsys

Under review as a conference paper at ICLR 2024

A PROOF OF THE SPANNING PROPERTIES

First, we write the FmFM model using matrix notation. Then, we use the matrix notation to prove
our Lemmas.

A.1 FORMALIZATION USING LINEAR ALGEBRA

To formalize our approach, we denote by v the matrix whose rows are the vectors vi, and decompose
the FmFM formula equation 1 into three sub-formulas:

y = diag(x)w,

P = diag(x)v,

ϕFmFM = w0 + ⟨1,y⟩+
n∑

i=1

n∑
j=i+1

⟨Pi,Pj⟩Mfi,fj
,

where the diag(·) operator creates a diagonal matrix with the argument on the diagonal, 1 is a vector
whose components are all 1, and Pi is the ith row of P . Next, we associate each field f with a field
reduction matrix Rf , concatenate them into one big block-diagonal reduction matrix. Note, that
neither the block matrices Rf , nor the matrix R have to be square.

R =

R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . Rm

 ,

and assuming R has n̂ rows, we modify the FmFM formula as:

ŷ = Rdiag(x)w,

P̂ = Rdiag(x)v,

ϕFmFM = w0 + ⟨1, ŷ⟩+
n̂∑

i=1

n̂∑
j=i+1

⟨P̂i, P̂j⟩Mfi,fj
.

(2)

Setting Rf = I for a field f amounts to the identity reduction, whereas setting Rf = 1T , will cause
the scalars xiwi and the vectors xivi to be summed up, resulting in the summing reduction. This
matrix notation is useful for the study of the theoretical properties of our proposal, but in practice we
will apply the field reductions manually, as efficiently as possible without matrix multiplication.

A.2 PROOF OF THE SPANNING PROPERTY (LEMMA 1)

Proof. Recall that we need to rewrite equation 2 as a function of z. For some vector q, denote by
qa:b the sub-vector (qa, . . . , qb). Assume w.l.o.g. that f = 1, and that field 1 has the value z. By
construction in equation 2, we have ŷ1 =

∑ℓ
i=1 wiBi(z), while the remaining components ŷ2:n̂ do

not depend on z. Thus, the we have

w0 + ⟨1, ŷ⟩ =
ℓ∑

i=1

wiBi(z) + w0 + ⟨1, ŷ2:n̂⟩︸ ︷︷ ︸
β1

. (3)

13

Under review as a conference paper at ICLR 2024

Moreover, by equation 2 we have that P̂1 =
∑ℓ

i=1 viBi(z), whereas the remaining rows P̂2, . . . , P̂n̂

do not depend on z. Thus,

n̂∑
i=1

n̂∑
j=i+1

⟨P̂i, P̂j⟩Mfi,fj
=

n̂∑
j=2

⟨P̂1, P̂j⟩M1,fj
+

n̂∑
i=2

n̂∑
j=i+1

⟨P̂i, P̂j⟩Mfi,fj︸ ︷︷ ︸
β2

=

n̂∑
j=2

⟨
ℓ∑

i=1

viBi(z), P̂j⟩M1,fj
+ β2

=

ℓ∑
i=1

 n̂∑
j=2

⟨vi, P̂j⟩M1,fj

︸ ︷︷ ︸

α̃i

Bi(z) + β2.

(4)

Combining equation 3 and equation 4, we obtain

ϕFmFM(z) =

ℓ∑
i=1

(wi + α̃i)Bi(z) + (β1 + β2),

which is of the desired form.

A.3 PROOF OF THE PAIRWISE SPANNING PROPERTY (LEMMA 2)

Proof. Recall that we need to rewrite equation 2 as a function of ze, zf , which are the values of
the fields e and f . Assume w.l.o.g. that e = 1, f = 2. By construction in equation 2, we have
ŷ1 =

∑ℓ
i=1 wiBi(z1), and ŷ2 =

∑κ
i=1 wiCi(z2), while the remaining components ŷ3:n̂ do not

depend on z. Thus, the we have

w0 + ⟨1, ŷ⟩ =
ℓ∑

i=1

wiBi(z1) +

κ∑
i=1

wi+ℓCi(z2) + w0 + ⟨1, ŷ3:n̂⟩︸ ︷︷ ︸
β1

=

ℓ∑
i=0

κ∑
j=0

α̂i,jBi(z1)Cj(z2) + β1,

(5)

where α̂i,0 = wi, α̂0,j = wi+ℓ for all i, j ≥ 1, for all other values of i, j we set α̂i,j = 0.

Moreover, by equation 2 we have that P̂1 =
∑ℓ

i=1 viBi(z1) and P̂2 =
∑κ

i=1 viCi+ℓ(z2), whereas
the remaining rows P̂3, . . . , P̂n̂ do not depend on z1, z2. First, let us rewrite the interaction between
z1, z2 specifically:

⟨p1, p2⟩M1,2
= ⟨

ℓ∑
i=1

viBi(z),

κ∑
i=1

vi+ℓCi(z)⟩M1,2
=

ℓ∑
i=1

κ∑
j=1

⟨vi,vj+ℓ⟩M1,2︸ ︷︷ ︸
γi,j

Bi(z1)Cj(z2) (6)

By following similar logic to 4, one can obtain a similar expression when looking at the partial sums
that include the interaction between f (resp. e) and all other fields except e (resp. f). Observe that
the interaction between all other values does not depend on z1, z2. Given all of this, we show how to

14

Under review as a conference paper at ICLR 2024

rewrite the interaction as a function of z1, z2:
n̂∑

i=1

n̂∑
j=i+1

⟨P̂i, P̂j⟩Mfi,fj

= ⟨P̂1, P̂2⟩M1,2 +

n̂∑
j=3

⟨P̂1, P̂j⟩M1,fj
+

n̂∑
j=3

⟨P̂2, P̂j⟩M2,fi
+

n̂∑
i=3

n̂∑
j=i+1

⟨P̂i, P̂j⟩Mfi,fj︸ ︷︷ ︸
β2

=

ℓ∑
i=1

κ∑
j=1

γi,jBi(z1)Cj(z2) +

ℓ∑
i=1

α̃iBi(z1) +

κ∑
i=1

ᾱiCi(z2) + β2

(7)

where α̃i, ᾱi are obtained similarly in equation 4’s final step.

B THE FACTORIZATION MACHINE FAMILY

Factorization machines are formally described as models whose input is a feature vector x represent-
ing rows in tabular data-sets, as described in section 2. In the context of recommendation systems,
the data-set contains past interactions between users and items, whose columns, often named fields,
and whose values are features. The columns describe the context, such as the user’s gender and age,
the time of visit, or the article the user is currently reading, whereas others describe the item, such as
product category, or item popularity.

The initial Factorization Machines (FMs), as proposed in Rendle (2010), compute

ΦFM(x) = w0 + ⟨x,w⟩+
n∑

i=1

n∑
j=i+1

⟨xivi, xjvj⟩.

The learned parameters are w0 ∈ R, w ∈ Rn, and v1, . . . ,vn ∈ Rk, where k is a hyper-parameter.
The model can be thought of as a way to represent the quadratic interaction model

Φquad(x) = w0 + ⟨x,w⟩+
n∑

i=1

n∑
j=i+1

Ai,jxixj ,

where the coefficient matrix A is represented in factorized form. The vectors v1, . . . ,vn are the
feature embedding vectors. Classical matrix factorization is recovered when we have only user id and
item id fields, whose values are one-hot encoded. We note that this is a special case of the FmFM
model in equation 1, with Mfi,fj = I .

The ΦFM model does not represent the varying behavior of a feature belonging to some field when
interacting with features from different fields. For example, genders may interact with ages differently
than they interact with product categories. Initially, to explicitly encode this information into a
model, the Field-aware Factorization Machine (FFM) was proposed in Juan et al. (2016). The each
embedding vector vi is modeled as a concatenation of field-specific embedding vectors for each of
the m fields:

vi =

vi,1

...
vi,m

 ,

where vi,f is the embedding vector of feature i when interacting with another feature from a field f .
The model computes

ΦFFM(x) = w0 + ⟨x,w⟩+
n∑

i=1

n∑
j=i+1

⟨xivi,fj , xjvj,fi⟩

For any field f , let Pf be the matrix that extracts vi,f from vi, namely, Pfvi = vi,f . Then FFMs are
also a special case of the FmFM model in equation 1 with Me,f = P T

f Pe.

15

Under review as a conference paper at ICLR 2024

As pointed out by Pan et al. (2018); Juan et al. (2016), the FFM models are prone to over-fitting,
since it learns a feature embedding vector for each feature x field pair. As a remedy, Pan et al. (2018)
proposed the Field-Weighted Factorization Machine (FwFM) that models the varying behavior of
field interaction using learned scalar field interaction intensities re,f for each pair of fields e, f . The
FwFM computes

ΦFwFM(x) = w0 + ⟨x,w⟩+
n∑

i=1

n∑
j=i+1

ri,j⟨xivi, xjvj⟩.

Letting Me,f = ri,jI , we recover the FmFM model in equation 1.

16

	Introduction
	Related work

	Formal problem statement
	The factorization machine family

	The basis function encoding approach
	Spanning properties
	Cubic splines and the B-Spline basis
	Numerical fields with arbitrary domain and distribution
	Integration into an existing system by simulating binning

	Evaluation
	Learning artificially chosen functions
	Public data-sets
	A/B test results on an online advertising system

	Discussion
	Proof of the spanning properties
	Formalization using linear algebra
	Proof of the spanning property (Lemma 1)
	Proof of the pairwise spanning property (Lemma 2)

	The factorization machine family

