
Periodic agent-state based Q-learning for POMDPs

Amit Sinha1, Matthieu Geist2, and Aditya Mahajan1

1McGill University, Mila
2Cohere

Abstract

The standard approach for Partially Observable Markov Decision Processes (POMDPs) is to
convert them to a fully observed belief-state MDP. However, the belief state depends on the
system model and is therefore not viable in reinforcement learning (RL) settings. A widely
used alternative is to use an agent state, which is a model-free, recursively updateable function
of the observation history. Examples include frame stacking and recurrent neural networks.
Since the agent state is model-free, it is used to adapt standard RL algorithms to POMDPs.
However, standard RL algorithms like Q-learning learn a stationary policy. Our main thesis
that we illustrate via examples is that because the agent state does not satisfy the Markov prop-
erty, non-stationary agent-state based policies can outperform stationary ones. To leverage
this feature, we propose PASQL (periodic agent-state based Q-learning), which is a variant of
agent-state-based Q-learning that learns periodic policies. By combining ideas from periodic
Markov chains and stochastic approximation, we rigorously establish that PASQL converges
to a cyclic limit and characterize the approximation error of the converged periodic policy.
Finally, we present a numerical experiment to highlight the salient features of PASQL and
demonstrate the benefit of learning periodic policies over stationary policies.

1 Introduction

Recent advances in reinforcement learning (RL) have successfully integrated algorithms with strong
theoretical guarantees and deep learning to achieve significant successes [Mni+13; Sil+16]. How-
ever, most RL theory is limited to models with perfect state observations [SB08; BT96]. Despite
this, there is substantial empirical evidence showing that RL algorithms perform well in partially
observed settings [Wie+07; Wie+10; Hau00; HS15; Gru+18; Kap+19; Haf+20; Haf+21]. Recently,
there has been a significant advances in the theoretical understanding of different RL algorithms for
POMDPs [Sub+22; KY22; Sey+23; DRZ22] but a complete understanding is still lacking.

Planning in POMDPs. When the system model is known, the standard approach [Åst65; SS73;
CKL94] is to construct an equivalent MDP with the belief state (which is the posterior distribution
of the environment state given the history of observations and actions at the agent) as the information
state. The belief state is policy independent and has time-homogeneous dynamics, which enables the
formulation of a belief-state based dynamic program (DP). There is a rich literature which leverages
the structure of the resulting DP to propose efficient algorithms to solve POMDPs [SS73; CKL94;
CLZ97; Cha07; Zha09; PGT+03; SS04; SV05]. See [KWW22] for a review. However, the belief
state depends on the system model, so the belief-state based approach does not work for RL.

RL in POMDPs. An alternative approach for RL in POMDPs is to consider policies which depend
on an agent state {zt}t≥1, where Zt ∈ Z, which is a recursively updateable compression of the
history: the agent starts at an initial state z0 and recursively updates the agent state as some function
of the current agent-state, next observation, and current action. A simple instance of agent-state is
frame stacking, where a window of previous observations is used as state [WS94; Mni+13; KY22].
Another example is to use a recurrent neural network such as LSTM or GRU to compress the history
of observations and actions into an agent state [Wie+07; Wie+10; HS15; Kap+19; Haf+20]. In

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Figure 1: The cells indicate the state of the environment. Cells with the same background color have the same
observation. The cells with a thick red boundary correspond to elements of the set D0 := {n(n + 1)/2 + 1 :
n ∈ N}, where the action 0 gives a reward of +1 and moves the state to the right, while the action 1 gives a
reward of −1 and resets the state to 1. The cells with a thin black boundary correspond to elements of the set
D1 = N \ D0, where the action 1 gives the reward of +1 and moves the state to the right while the action 0
gives a reward of −1 and resets the state to 1. Discount factor γ = 0.9.

fact, as argued in [DVZ22; Lu+23] such an agent state is present in most deep RL algorithms for
POMDPs. We refer to such a representation as an “agent state” because it captures the agent’s
internal state that it uses for decision making.

When the agent state is an information state, i.e., satisfies the Markov property, i.e.,
P(zt+1|z1:t, a1:t) = P(zt+1|zt, at) and is sufficient for reward prediction, i.e., E[Rt|y1:t, a1:t] =
E[Rt|zt, at] (where yt is the observation, at is the action, and Rt is the per-step reward), the optimal
agent-state based policy can be obtained via a dynamic program (DP) [Sub+22]. An example of
such an agent state is the belief state. But, in general, the agent state is not an information state. For
example, frame stacking and RNN do not satisfy the Markov property, in general. It is also possible
to have agent-states that satisfy the Markov property but are not sufficient for reward prediction (e.g.,
when the agent state is always a constant). In all such settings, the best agent-state policy cannot
be obtained via a DP. Nonetheless, there has been considerable interest to use RL to find a good
agent-state based policy.

One of the most commonly used RL algorithms is off-policy Q-learning, which we call agent-state
Q-learning (ASQL). In ASQL for POMDPs, the Q-learning iteration is applied as if the agent state
satisfied the Markov property even though it does not. The agent starts with an initial Q1(z, a), acts
according to a behavior policy µ, i.e., chooses at ∼ µ(zt), and recursively updates

Qt+1(z, a) = Qt(z, a) + αt(z, a)
[
Rt + γmax

a′∈A
Qt(zt+1, a

′)−Qt(z, a)
]

(ASQL)

where γ ∈ [0, 1) is the discount factor and the learning rates {αt}t≥1 are chosen such that
αt(z, a) = 0 if (z, a) ̸= (zt, at). The convergence of ASQL has been recently presented in [KY22;
Sey+23] which show that under some technical assumptions, ASQL converges to a limit. The policy
determined by ASQL is the greedy policy w.r.t. this limit.

Limitation of Q-learning with agent state. The greedy policy determined by ASQL is stationary
(i.e., uses the same control law at every time). In infinite horizon MDPs (and, therefore, also in
POMDPs when using the belief state as an agent state), stationary policies perform as well as non-
stationary policies. This is because the agent-state satisfies the Markov property. However, in ASQL
the agent state generally does not satisfy the Markov property. Therefore, restricting attention to
stationary policies may lead to a loss of optimality!

As an illustration, consider the POMDP shown in Fig. 1, which is described in detail in App. A.2 as
Ex. 2. Suppose the system starts in state 1. Since the dynamics are deterministic, the agent can infer
the current state from the history of past actions and can take the action to increment the current
state and receive a per-step reward of +1. Thus, the performance J⋆

BD of belief-state based policies
is J⋆

BD = 1/(1−γ). Contrast this with the performance J⋆
SD of deterministic agent-state base policies

with agent state equal to current observation, which is given by J⋆
SD = (1+γ−γ2)/(1−γ3) < J⋆

BD.
In particular, for γ = 0.9, J⋆

BD = 10 which is larger than J⋆
SD = 4.022.

We show that the gap between J⋆
SD and J⋆

BD can be reduced by considering non-stationary policies.
Ex. 2 has deterministic dynamics, so the optimal policy can be implemented in open-loop via a
sequence of control actions {a⋆t }t≥1, where a⋆t = 1{t ∈ D1}. This open-loop policy can be imple-
mented via any information structure, including agent-state based policies. Thus, a non-stationary
deterministic agent-state based policy performs better than stationary deterministic agent-state
based policies. A similar conclusion also holds for models with stochastic dynamics.

The main idea. Arbitrary non-stationary policies cannot be used in RL because such policies have
countably infinite number of parameters. In this paper, we consider a simple class of non-stationary

2

policies with finite number of parameters: periodic policies. An agent-state based policy π =
(π1, π2, . . .) is said to be periodic with period L if πt = πt′ whenever t ≡ t′ (mod L).

To highlight the salient feature of periodic policies, we perform a brute force search over all deter-
ministic periodic policies of period L, for L = {1, . . . , 10}, in Ex. 2. Let J⋆

L denote the optimal
performance for policies of period L. The result is shown below (see App. A.2 for details):

L 1 2 3 4 5 6 7 8 9 10

J⋆
L 4.022 4.022 7.479 6.184 8.810 7.479 9.340 8.488 9.607 8.810

The above example highlights some salient features of periodic policies: (i) Periodic determinis-
tic agent-state based policies may outperform stationary deterministic agent-state based policies.
(ii) {J⋆

L}L≥1 is not a monotonically increasing sequence. This is because ΠL, the set of all peri-
odic deterministic agent-state based policies of period L, is not monotonically increasing. (iii) If
L divides M , then J⋆

L ≤ J⋆
M . This is because ΠL ⊆ ΠM . In other words, if we take any integer

sequence {Ln}n≥1 that has the property that Ln divides Ln+1, then the performance of the poli-
cies with period Ln is monotonically increasing in n. For example, periodic policies with period
L ∈ {n! : n ∈ N} will have monotonically increasing performance. (iv) In the above example, the
set D0 is chosen such that the optimal sequence of actions1 is not periodic. Therefore, even though
periodic policies can achieve a performance that is arbitrarily close to the optimal belief-based poli-
cies, they are not necessarily globally optimal (in the class of non-stationary agent-state based poli-
cies). Thus, the periodic deterministic policy class is a middle ground between the stationary deter-
ministic and non-stationary policy classes and provides us a simple way of leveraging the benefits
of non-stationarity while trading-off computational and memory complexity.

The main contributions of this paper are as follows.

1. Motivated by the fact that non-stationary agent-state based policies outperform stationary ones,
we propose a variant of agent-state based Q-learning (ASQL) that learns periodic policies. We
call this algorithm periodic agent-state based Q-learning (PASQL).

2. We rigorously establish that PASQL converges to a cyclic limit. Therefore, the greedy policy
w.r.t. the limit is a periodic policy. Due to the non-Markovian nature of the agent-state, the limit
(of the Q-function and the greedy policy) depends on the behavioral policy used during learning.

3. We quantify the sub-optimality gap of the periodic policy learnt by PASQL.
4. We present numerical experiments to illustrate the convergence results, highlight the salient fea-

tures of PASQL, and show that the periodic policy learned by PASQL indeed performs better
than stationary policies learned by ASQL.

2 Periodic agent-state based Q-learning (PASQL) with agent state

2.1 Model for POMDPs

A POMDP is a stochastic dynamical system with state st ∈ S, input at ∈ A, and output yt ∈ Y,
where we assume that all sets are finite. The system operates in discrete time with the dynamics
given as follows: The initial state s1 ∼ ρ and for any time t ∈ N, we have

P(st+1, yt+1 | s1:t, y1:t, a1:t) = P(st+1, yt+1 | st, at) =: P (st+1, yt+1 | st, at)

where P is a probability transition matrix. In addition, at each time the system yields a reward
Rt = r(st, at). We will assume that Rt ∈ [0, Rmax]. The discount factor is denoted by γ ∈ [0, 1).

Let π⃗ = (π⃗1, π⃗2, . . .) denote any (history dependent and possibly randomized) policy. Then the
action at time t is given by at ∼ π⃗t(y1:t, a1:t−1). The performance of policy π⃗ is given by

J π⃗ := E at∼π⃗t(y1:t,at−1)
(st+1,yt+1)∼P (st,at)

[∞∑
t=1

γt−1r(st, at)

∣∣∣∣ s1 ∼ ρ

]
.

The objective is to find a (history dependent and possibly randomized) policy π⃗ to maximize J π⃗ .

1Recall that the system dynamics are deterministic, so optimal policy can be implemented in open loop.

3

Agent state for POMDPs. An agent-state is model-free recursively updateable function of the
history of observations and actions. In particular, let Z denote agent-state space. Then, the agent
state process {zt}t≥0, zt ∈ Z, starts with an initial value z0, and is then recursively computed as
zt+1 = ϕ(zt, yt+1, at) for a pre-specified agent-state update function ϕ.

We use π = (π1, π2, . . .) to denote an agent-state based policy,2 i.e., a policy where the action at
time t is given by at ∼ πt(zt). An agent-state based policy is said to be stationary if for all t and
t′, we have πt(a|z) = πt′(a|z) for all (z, a) ∈ Z × A. An agent-state based policy is said to be
periodic with period L if for all t and t′ such that t ≡ t′ (mod L), we have πt(a|z) = πt′(a|z) for
all (z, a) ∈ Z× A.

2.2 PASQL: Periodic agent-state based Q-learning algorithm for POMDPs

We now present a periodic variant of agent-state based Q-learning, which we abbreviate as PASQL.
PASQL is an online, off-policy learning algorithm in which the agent acts according to a behavior
policy µ = (µ1, µ2, . . .) which is a periodic (stochastic) agent-state based policy µ with period L.

Let JtK := (t mod L) and L := {0, 1, . . . , L− 1}. Let (z1, a1, R1, z2, a2, R2, . . .) be a sample path
of agent-state, action, and reward observed by the agent. In PASQL, the agent maintains an L-tuple
of Q-functions (Q0

t , Q
1
t , . . . , Q

L−1
t), t ≥ 1. The ℓ-th component, ℓ ∈ L, is updated at time steps

when JtK = ℓ. In particular, we can write the update as

Qℓ
t+1(z, a) = Qℓ

t(z, a)+αℓ
t(z, a)

[
Rt+γmax

a′∈A
Q

Jℓ+1K
t (zt+1, a

′)−Qℓ
t(z, a)

]
, ∀ℓ ∈ L, (PASQL)

where the learning rate sequence {(α0
t , . . . , α

L−1
t)}t≥1 is chosen such that αℓ

t(z, a) = 0 if
(ℓ, z, a) ̸= (JtK, zt, at) and satisfies Assm. 1. PASQL differs from ASQL in two aspects: (i) The
behavior policy µ is periodic. (ii) The update of the Q-function is periodic. When L = 1, PASQL
collapses to ASQL.

The standard convergence analysis of Q-learning for MDPs shows that the Q-function convergences
to the unique solution of the MDP dynamic program (DP). The key challenge in characterizing
the convergence of PASQL is that the agent state {Zt}t≥1 does not satisfy the Markov property.
Therefore, a DP to find the best agent-state based policy does not exist. So, we cannot use the
standard analysis to characterize the convergence of PASQL. In Sec. 2.3, we provide a complete
characterization of the convergence of PASQL.

The quality of the converged solution depends on the expressiveness of the agent state. For example,
if the agent state is not expressive (e.g., agent state is always constant), then even if PASQL con-
verges to a limit, the limit will be far from optimal. Therefore, it is important to quantify the degree
of sub-optimality of the converged limit. We do so in Sec. 2.4.

2.3 Establishing the convergence of tabular PASQL

To characterize the convergence of tabular PASQL, we impose two assumptions which are standard
for analysis of RL algorithms [JSJ94; BT96]. The first assumption is on the learning rates.
Assumption 1 For all (ℓ, z, a), the learning rates {αℓ

t(z, a)}t≥1 are measurable with respect to the
sigma-algebra generated by (z1:t, a1:t) and satisfy αℓ

t(z, a) = 0 if (ℓ, z, a) ̸= (JtK, zt, at). Moreover,∑
t≥1 α

ℓ
t(z, a) = ∞ and

∑
t≥1(α

ℓ
t(z, a))

2 < ∞, almost surely.

The second assumption is on the behavior policy µ. We first state an immediate property.
Lemma 1 For any behavior policy µ, the process {(St, Zt)}t≥1 is Markov. Therefore, the processes
{(St, Zt, At)}t≥1 and {(St, Yt, Zt, At)}t≥1 are also Markov.

Assumption 2 The behavior policy µ is such that the Markov chain {(St, Yt, Zt, At)}t≥1 is time-
periodic3 with period L and converges to a cyclic limiting distribution (ζ0µ, . . . , ζ

L−1
µ), where∑

(s,y) ζ
ℓ
µ(s, y, z, a) > 0 for all (ℓ, z, a) (i.e., all (ℓ, z, a) are visited infinitely often).

2We use π⃗ to denote history dependent policies and π to denote agent-state based policies.
3Time-periodic Markov chains are a generalization of time-homogeneous Markov chains. We refer the

reader to App. B for an overview of time-periodic Markov chains and cyclic limiting distributions, including
sufficient conditions for the existence of such distributions.

4

For the ease of notation, we will continue to use ζℓµ to denote the marginal and conditional dis-
tributions w.r.t. ζℓµ. In particular, for marginals we use ζℓµ(y, z, a) to denote

∑
s∈S ζ

ℓ
µ(s, y, z, a)

and so on; for conditionals, we use ζℓµ(s|z, a) to denote ζℓµ(s, z, a)/ζ
ℓ
µ(z, a) and so on. Note that

ζℓµ(s, z, y, a) = ζℓµ(s, z)µ(a | z)P (y|s, a). Thus, we have that ζℓµ(s | z, a) = ζℓµ(s | z).

Theorem 1 Under Assms. 1 and 2, the process {(Q0
t , . . . , Q

L−1
t)}t≥1 converges to a limit

(Q0
µ, . . . , Q

L−1
µ) a.s., where the limit is the unique fixed point of the DP for a periodic MDP:4

Qℓ
µ(z, a) = rℓµ(z, a) + γ

∑
z′∈Z

P ℓ
µ(z

′|z, a)max
a′∈A

QJℓ+1K
µ (z′, a′), ∀ℓ ∈ L,∀(z, a) ∈ Z× A (1)

where the periodic rewards (r0µ, . . . , r
L−1
µ) and dynamics (P 0

µ , . . . , P
L−1
µ) are given by

rℓµ(z, a) :=
∑
s∈S

r(s, a)ζℓµ(s | z), P ℓ
µ(z

′|z, a) :=
∑

(s,y′)∈S×Y

1{z′=ϕ(z,y′,a)}P (y′|s, a)ζℓµ(s|z). (2)

See App. E for proof. Some salient features of the result are as follows:

• In contrast to Q-learning for MDPs, the limiting value Qℓ
µ depends on the behavioral policy µ.

This dependence arises because the agent state Zt is not an information state and thus is not
policy-independent. See [Wit75] for a discussion on policy independence of information states.

• We can recover some existing results in the literature as special cases of Thm. 1. If we take L = 1,
Thm. 1 recovers the convergence result for ASQL obtained in [Sey+23, Thm. 2]. In addition, if
the agent state is a sliding window memory, Thm. 1 recovers the convergence result obtained in
[KY22, Thm. 4.1]. Note that the results of Thm. 1 for these special cases is more general because
the previous results were derived under a restrictive assumption on the learning rates.

The policy learned by PASQL is the periodic policy πµ = (π0
µ, . . . , π

L−1
µ) given by

πℓ
µ(z) = argmax

a∈A
Qℓ

µ(z, a), ∀ℓ ∈ L, z ∈ Z. (PASQL-policy)

Since PASQL learns a periodic policy, it circumvents the limitation of ASQL described in the in-
troduction. Thm. 1 addresses the main challenge in the convergence analysis of PASQL: the non-
Markovian dynamics of {Zt}t≥1. A natural follow-up question is: How good is the learnt pol-
icy (PASQL-policy) compared to the optimal? We address this in the next section.

2.4 Characterizing the optimality-gap of the converged limit

History-dependent policies and their value functions. Let ht = (y1:t, a1:t−1) denote the history
of observations and actions until time t. and let σt : ht 7→ zt denotes the map from histories to
agent-states obtained by unrolling the memory update function ϕ, i.e., σ1(h1) = ϕ(z0, y1, a0),
where z0 is the initial agent state, a0 is a dummy action used to initialize the process, σ2(h2) =
ϕ(σ1(h1), y2, a1), etc.

For any history dependent policy π⃗ = (π⃗1, π⃗2, · · ·), where π⃗t : ht 7→ at, let V π⃗
t (ht) :=

Eπ⃗
[∑∞

τ=t γ
τRτ

∣∣ ht

]
denote the value function of policy π⃗ starting from history ht at time t.

Let V ⋆
t (ht) := supπ⃗ V

π⃗
t (ht) denote the optimal value function, where the supermum is over all

history dependent policies. In Thm. 1, we have shown that PASQL converges to a limit. Let
π⃗µ = (π⃗µ,1, π⃗µ,2, . . .) denote the history dependent policy corresponding to the periodic policy
(π0

µ, . . . , π
L−1
µ) given by (PASQL-policy), i.e., π⃗µ,t(ht) := πJtK(σt(ht)), In this section, we present

a bound on the sub-optimality gap V ⋆
t (ht)− V

π⃗µ

t (ht).

Integral probability metrics. Let F be a convex and balanced5 subset of (measureable) real-valued
functions on S. The integral probability metric (IPM) w.r.t. F, denoted by dF, is defined as follows:
any probability measures ξ1 and ξ2 on S, we have dF(ξ1, ξ2) := supf∈F

∣∣∫ fdξ1 −
∫
fdξ2

∣∣. More-
over, for any real-valued function f on S, define ρF := inf{ρ > 0: f/ρ ∈ F} to be the Minkowski
functional w.r.t. F. Note that if for every positive ρ, f/ρ ̸∈ F, then ρF(f) = ∞.

4See App. C for an overview of periodic MDPs.
5F is balanced means that for every f ∈ F and scalar a such that |a| ≤ 1, we have af ∈ F.

5

Many commonly used metrics on probability spaces are IPMs. For example, (i) Total variation dis-
tance for which F = {span(f) ≤ 1}, where span(f) = max f −min f is the span seminorm of f .
In this case, ρF(f) = span(f). (ii) Wasserstein distance for which F = {Lip(f) ≤ 1}, where
Lip(f) is the Lipschitz constant of f . In this case, ρF(f) = Lip(f). Other examples include Kan-
torovich metric, bounded Lipschitz metric, and maximum mean discrepancy. See [Mül97; Sub+22]
for more details.

Sub-optimality gap. Let T(t, ℓ) := {τ ≥ t : JτK = ℓ}. Furthermore, for any ℓ ∈ L and t, define

εℓt := sup
τ∈T(t,ℓ)

sup
hτ ,aτ

∣∣∣E[Rτ | hτ , aτ]−
∑
s∈S

r(s, aτ)ζ
ℓ
µ(s | στ (hτ), aτ)

∣∣∣,
δℓt := sup

τ∈T(t,ℓ)

sup
hτ ,aτ

dF(P(Zτ+1 = · | hτ , aτ), P
ℓ
µ(Zτ+1 = ·|στ (hτ), aτ)).

Then, we have the following sub-optimality gap for π⃗µ.

Theorem 2 Let V ℓ
µ (z) := maxa∈A Q

ℓ
µ(z, a). Then,

sup
ht

[
V ⋆
t (ht)− V

π⃗µ

t (ht)
]
≤ 2

(1− γL)

∑
ℓ∈L

γℓ
[
ε
Jt+ℓK
t+ℓ + γδ

Jt+ℓK
t+ℓ ρF(V

Jt+ℓ+1K
µ)

]
. (3)

See App. F for proof. The salient features of the sub-optimality gap of Thm. 2 are as follows.

• We can recover some existing results as special cases of Thm. 2. When we take L = 1, Thm. 2
recovers the sub-optimality gap for ASQL obtained in [Sey+23, Thm. 3]. In addition, when the
agent state is a sliding window memory, Thm. 2 is similar to the sub-optimality gap obtained in
[KY22, Thm. 4.1]. Note that the results of Thm. 2 for these special cases is more general because
the previous results were derived under a restrictive assumption on the learning rates.

• The sub-optimality gap in Thm. 2 is on the sub-optimality w.r.t. the optimal history-dependent
policy rather than the optimal non-stationary agent-state policy. Thus, it inherently depends on
the quality of the agent state. Consequently, even if L → ∞, the sub-optimality gap does not go
to zero.

• It is not easy to characterize the sensitivity of the bound to the period L. In particular, increasing L
means changing behavioral policy µ, and therefore changing the converged limit (ζ0µ, . . . , ζ

L−1
µ),

which impacts the right hand side of (3) in a complicated way. So, it is not necessarily the case
that increasing L reduces the sub-optimality gap. This is not surprising, as we have seen earlier
in Ex. 2 presented in the introduction that even the performance of periodic agent-state based
policies is not monotone in L.

3 Numerical experiments

0

1

2

3

4

5

1

0.5 0.5

0.5 0.5

1
0.50.5

0.50.5

(a) Dynamics under action 0.

0

1

2

3

4

5

1

0.5 0.5

0.5 0.5

1
0.50.5

0.50.5

(b) Dynamics under action 1.

Figure 2: The model for Ex. 1, where states which have the same
color give the same observation; the green edges give a reward of
+1 and blue edges give a reward of +0.5.

In this section, we present a numerical
example to highlight the salient fea-
tures of our results. We use the follow-
ing POMDP model.
Example 1 Consider a POMDP with
S = {0, 1, . . . , 5}, A = {0, 1}, Y =
{0, 1} and γ = 0.9. The dynamics are
as shown in Fig. 2. The observation is
0 in states {0, 1, 2} which are shaded
white and is 1 in states {3, 4, 5} which
are shaded gray. The transitions shown in green give a reward of +1; those in in blue give a reward
of +0.5; others give no reward.

We consider a family of models, denoted by M(p), p ∈ [0, 1], which are similar to Ex. 1 except the
controlled state transition matrix is pI + (1− p)P , where P is the controlled state transition matrix
of Ex. 1 shown in Fig. 2. In the results reported below, we use p = 0.01. The hyperparameters for
the experiments are provided in App. H.

Convergence of PASQL with L = 2. We assume that the agent state Zt = Yt and take period L =
2. We consider three behavioral policies: µk = (µ0

k, µ
1
k), k ∈ K := {1, 2, 3}, where µℓ

k : {0, 1} →

6

𝜇1

𝜇2

𝜇3

Figure 3: PASQL iterates for different behavioral policies (in blue) and the limit predicted by Thm. 1 (in red).

∆({0, 1}), ℓ ∈ {0, 1}. The policy µk is completely characterized by four numbers which we write
in matrix form as: [µ0

k(0|0), µ1
k(0|0);µ0

k(0|1), µ1
k(0|1)]. With this notation, the three policies are

given by µ1 := [0.2, 0.8; 0.8, 0.2] , µ2 := [0.5, 0.5; 0.5, 0.5] , µ3 := [0.8, 0.2; 0.2, 0.8] .

For each behavioral policy µk, k ∈ K, run PASQL for 25 random seeds. The median + interquantile
range of the iterates {Qℓ

t(z, a)}t≥1 as well as the theoretical limits Qµk
(z, a) (computed using

Thm. 1) are shown in Fig. 3. The salient features of these results are as follows:

• PASQL converges close to the theoretical limit predicted by Thm. 1.
• As highlighted earlier, the limiting value Qℓ

µk
depends on the behavioral policy µk.

• When the aperiodic behavior policy µ2 is used, the Markov chain {(St, Yt, Zt, At)}t≥1 is aperi-
odic, and therefore the limiting distribution ζℓµ2

and the corresponding Q-functions Qℓ
µ2

do not
depend on ℓ. This highlights the fact that we have to choose a periodic behavioral policy to
converge to a non-stationary policy (PASQL-policy).

Table 1: Performance of converged
periodic policies.

J⋆
2 Jπµ1 Jπµ2 Jπµ3

6.793 6.793 1.064 0.532

Comparison of converged policies. Finally, we compute the pe-
riodic greedy policy πµk

= (π0
µk
, π1

µk
) given by (PASQL-policy),

k ∈ K, and compute its performance Jπµk via policy evaluation
on the product space S×Z (see App. G). We also do a brute force
search over all L = 2 periodic deterministic agent-state policies
to compute the optimal performance J⋆

2 over all such policies.
The results, displayed in Table 1, illustrate the following:

• The greedy policy πµk
depends on the behavioral policy. This is not surprising given the fact that

the limiting value Qℓ
µk

depends on µk.
• The policy πµ1

achieves the optimal performance, whereas the policies πµ2
and πµ3

do not per-
form well. This highlights the importance of starting with a good behavioral policy. See Sec. 5
for a discussion on variants such as ϵ-greedy.

Table 2: Performance of converged
stationary policies.

J⋆
1 Jπµ̄1 Jπµ̄2 Jπµ̄3

2.633 0.0 1.064 2.633

Advantage of learning periodic policies. As stated in the in-
troduction, the main motivation of PASQL is that it allows us to
learn non-stationary policies. To see why this is useful, we run
ASQL (which is effectively PASQL with L = 1). We again con-
sider three behavioral policies: µ̄k, k ∈ K := {1, 2, 3}, where
µ̄k : {0, 1} → ∆({0, 1}), where (using similar notation as for
L = 2 case) µ̄1 := [0.2; 0.8] , µ̄2 := [0.5; 0.5] , µ̄3 := [0.8; 0.2] .

For each behavioral policy µ̄k, k ∈ K, run ASQL for 25 random seeds. The results are shown
in App. A.1. The performance of the greedy policies πµ̄k

and the performance of the best period

7

L = 1 deterministic agent-state-based policy computed via brute force is shown in Table 2. The key
implications are as follows:

• As was the case for PASQL, the greedy policy πµ̄k
depends on the behavioral policy. As men-

tioned earlier, this is a fundamental consequence of the fact that the agent state is not an informa-
tion state. Adding (or removing) periodicity does not change this feature.

• The best performance of ASQL is worse than the best performance of PASQL. This highlights
the potential benefits of using periodicity. However, at the same time, if a bad behavioral policy
is chosen (e.g., policy µ3), the performance of PASQL can be worse than that of ASQL for a
nominal policy (e.g., policy µ̄2). This highlights that periodicity is not a magic bullet and some
care is needed to choose a good behavioral policy. Understanding what makes a good periodic
behavioral policy is an unexplored area that needs investigation.

4 Related work

Policy search for agent state policies. There is a rich literature on planning with agent state-based
policies that build on the policy evaluation formula presented in App. G. See [KWW22] for review.
These approaches rely on the system model and cannot be used in the RL setting.

State abstractions for POMDPs are related to agent-state based policies. Some frameworks for
state abstractions in POMDPs include predictive state representations (PSR) [RGT04; BSG11;
HFP14; KJS15b; KJS15a; JKS16], approximate bisimulation [CPP09; Cas+21], and approximate
information states (AIS) [Sub+22] (which is used in our proof of Thm. 2). Although there are various
RL algorithms based on such state abstractions, the key difference is that all these frameworks focus
on stationary policies in the infinite horizon setting. Our key insight that non-stationary/periodic
policies improve performance is also applicable to these frameworks.

ASQL for POMDPs. As stated earlier, ASQL may be viewed as the special case of PASQL when
L = 1. The convergence of the simplest version of ASQL was established in [SJJ94] for Zt = Yt

under the assumption that the actions are chosen i.i.d. (and do not depend on zt). In [PP02] it
was established that Q0

µ is the fixed point of (ASQL), but convergence of {Qt}t≥1 to Q0
µ was

not established. The convergence of ASQL when the agent state is a finite window memory was
established in [KY22]. These results were generalized to general agent-state models in [Sey+23].
The regret of an optimistic variant of ASQL was presented in [DVZ22]. However, all of these papers
focus on stationary policies.

Our analysis is similar to the analysis of [KY22; Sey+23] with two key differences. First, their
convergence results were derived under the assumption that the learning rates are the reciprocal of
visitation counts. We relax this assumption to the standard learning rate conditions of Assm. 1 using
ideas from stochastic approximation. Second, their analysis is restricted to stationary policies. We
generalize the analysis to periodic policies using ideas from time-periodic Markov chains.

Q-learning for non-Markovian environments. As highlighted earlier, a key challenge in under-
standing the convergence of PASQL is that the agent-state is not Markovian. The same conceptual
difficulty arises in the analysis of Q-learning for non-Markovian environments [MH+18; Cha+24;
DY24]. Consequently, our analysis has stylistic similarities with the analysis in [MH+18; Cha+24;
DY24] but the technical assumptions and the modeling details are different. And more importantly,
they restrict attention to stationary policies. Given our results, it may be worthwhile to explore if
periodic policies can help in non-Markovian environments as well.

Continual learning and non-stationary MDPs. Non-stationarity is an important consideration in
continual learning (see [Abe+24] and references therein). However, in these settings, the environ-
ment is non-stationary. Our setting is different: the environment is stationary, but non-stationary
policies help because the agent state is not Markov.

Hierarchical learning. The options framework [Pre00; SPS99; Die00; BHP17] is a hierarchical
approach that learns temporal abstractions in MDPs and POMDPs. Due to temporal abstraction, the
policy learned by the options framework is non-stationary. The same is true for other hierarchical
learning approaches proposed in [WS97; CSL21; Vez+17]. In principle, PASQL could be considered
as a form of temporal abstraction where time is split into trajectories of length L and then a policy of
length L is learned. However, the theoretical analysis for options is mostly restricted to MDP setting

8

and the convergence guarantees for options in POMDPs are weaker [Ste+18; Qia+18; LVC18].
Nonetheless, the algorithmic tools developed for options might be useful for PASQL as well.

Double Q-learning. The update equation of PASQL are structurally similar to the update equations
used in double Q-learning [Has10; VGS16]. However, the motivation and settings are different: the
motivation for Double Q-learning is to reduce overestimation bias in off-policy learning in MDPs,
while the motivation for PASQL is to induce non-stationarity while learning in POMDPs. Therefore,
the analysis of the two algorithms is very different. More importantly, the end goals differ: double
Q-learning learns a stationary policy while PASQL learns a periodic policy.

Use of non-stationary/periodic policies in MDPs is investigated in [SL12; LS15; Ber13] in the
context of approximate dynamic programming (ADP). Their main result was to show that using
non-stationary or periodic policies can improve the approximation error in ADP. Although these
results use periodic policies, the setting of ADP in MDPs is very different from ours.

5 Discussion
Deterministic vs. stochastic policies. In this work, we restricted attention to periodic deterministic
policies. In principle, we could have also considered periodic stochastic policies. For stationary
policies (i.e., when period is one), stochastic policies can outperform deterministic policies [SJJ94]
as illustrated by Ex. 3 in App. A.3. However, we do not consider stochastic policies in this work be-
cause we are interested in understanding Q-learning with agent-state and Q-learning results in a de-
terministic policy. There are two options to obtain stochastic policies: using regularization [GSP19],
which changes the objective function; or using policy gradient algorithms [Sut+99; BB01], which
are a different class of algorithms than Q-learning.

However, as illustrated in the motivating Ex. 2 presented in the introduction, non-stationary policies
can do better than stationary stochastic policies as well. So, adding non-stationarity via periodicity
remains an interesting research direction when learning stochastic policies as well.

PASQL is a special case of ASQL with state augmentation. In principle, PASQL could be consid-
ered as a special case of ASQL with an augmented agent state Z̄t = (Zt, JtK). However, the conver-
gence analysis of ASQL in [KY22; Sey+23] does not imply the convergence of PASQL because the
results of [KY22; Sey+23] are derived under the assumption that Markov chain {(St, Yt, Zt, At)}t≥1

is irreducible and aperiodic, while we assume that the Markov chain is periodic. Due to our weaker
assumption, we are able to establish convergence of PASQL to time-varying periodic policies.

2𝑛 cells

g1

s 1 2 3 ⋯ ⋯ ⋯ 2𝑛 t

g2

Figure 4: A T-shaped grid world. Agent
starts at S, where it learns whether the
goal state is G1 or G2. It has to go
through the corridor {1, . . . , 2n}, with-
out knowing where it is, reach T and go
up or down to reach the goal state.

Non-stationary policies vs. memory augmentation. Non-
stationarity is a fundamentally different concept than memory
augmentation. As an illustration, consider the T-shaped grid
world (first considered in [Bak01]) shown in Fig. 4, which
has a corridor of length 2n. In App. A.4, we show that for
this example, a stationary policy which uses a sliding window
of past m observations and actions as the agent state needs a
memory of at least m > 2n to reach the goal state. In con-
trast, a periodic policy with period L = 3 can reach the goal
state for every n. This example shows that periodicity is a dif-
ferent concept from memory augmentation and highlights the
fact that mechanisms other than memory augmentation can
achieve optimal behavior.

The analysis of this paper is applicable to general memory augmented policies, so we do not need to
choose between memory augmentation and periodicity. Our main message is that once the agent’s
memory is fixed based on practical considerations, adding periodicity could improve performance.

Choice of the period L. If the agent state Zt is a good approximation to the belief state, then ASQL
(or, equivalently, PASQL with L = 1) would converge to an approximately optimal policy. So, using
PASQL a period L > 1 is useful when the agent state is not a good approximation of the belief state.

As shown by Ex. 2 in the introduction, the performance of the best periodic policy does not increase
monotonically with the period L. However, if we consider periods in the set {n! : n ∈ N}, then
the performance increases monotonically. However, PASQL does not necessarily converge to the
best periodic policy. The quality of the converged policy (PASQL-policy) depends on the behavior

9

policy µ. The difficulty of finding a good behavioral policy increases with L. In addition, increasing
the period increases the memory required to store the tuple (Q0, . . . , QL) and the number of samples
needed to converge (because each component is updated only once every L samples). Therefore, the
choice of the period L should be treated as a hyperparameter that needs to be tuned.

Choice of the behavioral policy. The behavioral policy impacts the converged limit of PASQL,
and consequently it impacts the periodic greedy policy that is learned. As we pointed out in the
discussion after Thm. 1, this dependence is a fundamental consequence of using an agent state
that is not Markov and cannot be avoided. Therefore, it is important to understand how to choose
behavioral policies that lead to convergence to good policies.

Generalization to other variants. Our analysis is restricted to tabular off-policy Q-learning where a
fixed behavioral policy is followed. Our proof fundamentally depends on the fact that the behavioral
policy induces a cyclic limiting distribution on the periodic Markov chain {(St, Yt, Zt, At)}t≥1.
Such a condition is not satisfied in variants such as ϵ-greedy Q-learning and SARSA. Generalizing
the technical proof to cover these more practical algorithms (including function approximation) is
an important future direction.

Acknowledgments

The work of AS and AM was supported in part by a grant from Google’s Institutional Research
Program in collaboration with Mila. The numerical experiments were enabled in part by support
provided by Calcul Québec and Compute Canada.

10

References
[Abe+24] David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado P van Hasselt,

and Satinder Singh. “A definition of continual reinforcement learning”. In: Advances
in Neural Information Processing Systems 36 (2024).

[Åst65] K.J Åström. “Optimal Control of Markov Processes with Incomplete State Infor-
mation”. In: Journal of Mathematical Analysis and Applications 10.1 (Feb. 1965),
pp. 174–205. ISSN: 0022247X.

[BHP17] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The option-critic architecture”. In:
Proceedings of the AAAI conference on artificial intelligence. Vol. 31. 1. 2017.

[Bak01] Bram Bakker. “Reinforcement Learning with Long Short-Term Memory”. In: Ad-
vances in Neural Information Processing Systems. Ed. by T. Dietterich, S. Becker, and
Z. Ghahramani. Vol. 14. MIT Press, 2001. URL: https://proceedings.neurips.
cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-
Paper.pdf.

[BB01] Jonathan Baxter and Peter L Bartlett. “Infinite-horizon policy-gradient estimation”. In:
Journal of Artificial Intelligence Research 15 (2001), pp. 319–350.

[BMP12] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and
stochastic approximations. Vol. 22. Springer Science & Business Media, 2012.

[BT96] Dimitri Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scien-
tific, 1996.

[Ber13] Dimitri P Bertsekas. Abstract Dynamic Programming. Athena Scientific, 2013.
[BP24] Shalabh Bhatnagar and L.A. Prashanth. Personal communication. 2024.
[BSG11] Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon. “Closing the learning-planning

loop with predictive state representations”. In: The International Journal of Robotics
Research 30.7 (2011), pp. 954–966.

[Bor08] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint. Hindustan
Book Agency, 2008.

[CLZ97] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. “Incremental pruning:
A simple, fast, exact method for partially observable Markov decision processes”. In:
Uncertainty in Artificial Intelligence. 1997.

[CKL94] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. “Acting opti-
mally in partially observable stochastic domains”. In: AAAI Conference on Artificial
Intelligence. Vol. 94. 1994, pp. 1023–1028.

[Cas98] Anthony Rocco Cassandra. “Exact and approximate algorithms for partially observable
Markov decision processes”. PhD thesis. Brown University, 1998.

[Cas+21] Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. “Mico:
Improved representations via sampling-based state similarity for Markov decision pro-
cesses”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 30113–
30126.

[CPP09] Pablo Samuel Castro, Prakash Panangaden, and Doina Precup. “Equivalence Relations
in Fully and Partially Observable Markov Decision Processes”. In: International Joint
Conference on Artificial Intelligence. 2009, pp. 1653–1658.

[Cha+24] Siddharth Chandak, Pratik Shah, Vivek S Borkar, and Parth Dodhia. “Reinforcement
learning in non-Markovian environments”. In: Systems & Control Letters 185 (2024),
p. 105751.

[CSL21] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. “Goal-conditioned reinforce-
ment learning with imagined subgoals”. In: International Conference on Machine
Learning. PMLR. 2021, pp. 1430–1440.

[Cha07] Joseph Chang. Stochastic Processes. Unpublished. Availale at http://www.stat.
yale.edu/~pollard/Courses/251.spring2013/Handouts/Chang-notes.pdf.
2007.

[DY24] Ali Devran Kera and Serdar Yüksel. “Q-Learning for Stochastic Control under Gen-
eral Information Structures and Non-Markovian Environments”. In: Transactions on
Machine Learning Research (2024).

11

https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
http://www.stat.yale.edu/~pollard/Courses/251.spring2013/Handouts/Chang-notes.pdf
http://www.stat.yale.edu/~pollard/Courses/251.spring2013/Handouts/Chang-notes.pdf

[Die00] Thomas G Dietterich. “Hierarchical reinforcement learning with the MAXQ value
function decomposition”. In: Journal of Artificial Intelligence Research 13 (2000),
pp. 227–303.

[DRZ22] Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. “Simple Agent, Complex Envi-
ronment: Efficient Reinforcement Learning with Agent States”. In: Journal of Machine
Learning Research 23.255 (2022), pp. 1–54.

[DVZ22] Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. “Simple agent, complex envi-
ronment: Efficient reinforcement learning with agent states”. In: Journal of Machine
Learning Research 23.255 (2022), pp. 1–54.

[Dur19] Rick Durrett. Probability: Theory and Examples. Cambridge University Press, Apr.
2019. ISBN: 9781108473682. DOI: 10.1017/9781108591034.

[GSP19] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. “A theory of regularized markov
decision processes”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 2160–2169.

[Gru+18] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc G. Bellemare, and Alex Graves.
“The Reactor: A Sample-Efficient Actor-Critic Architecture”. In: Proceedings of the
International Conference on Learning Representations (ICLR). 2018. URL: https:
//arxiv.org/abs/1704.04651.

[Haf+20] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. “Dream to
Control: Learning Behaviors by Latent Imagination”. In: International Conference on
Learning Representations. 2020.

[Haf+21] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. “Mastering
Atari with Discrete World Models”. In: International Conference on Learning Repre-
sentations. 2021.

[HFP14] William Hamilton, Mahdi Milani Fard, and Joelle Pineau. “Efficient learning and plan-
ning with compressed predictive states”. In: The Journal of Machine Learning Re-
search 15.1 (2014), pp. 3395–3439.

[Han98] Eric A. Hansen. “Solving POMDPs by searching in policy space”. In: Uncertainty in
Artificial Intelligence. Madison, Wisconsin, 1998, pp. 211–219. ISBN: 155860555X.

[Has10] Hado Hasselt. “Double Q-learning”. In: Advances in neural information processing
systems 23 (2010).

[HS15] Matthew Hausknecht and Peter Stone. “Deep recurrent Q-learning for partially observ-
able MDPs”. In: AAAI Fall Symposium Series. 2015.

[Hau97] Milos Hauskrecht. “Planning and control in stochastic domains with imperfect infor-
mation”. PhD thesis. Massachusetts Institute of Technology, 1997.

[Hau00] Milos Hauskrecht. “Value-function approximations for partially observable Markov
decision processes”. In: Journal of artificial intelligence research 13 (2000), pp. 33–
94.

[JSJ94] Tommi Jaakkola, Satinder Singh, and Michael Jordan. “Reinforcement Learning Al-
gorithm for Partially Observable Markov Decision Problems”. In: Advances in Neural
Information Processing Systems. Vol. 7. MIT Press, 1994, pp. 345–352.

[JKS16] Nan Jiang, Alex Kulesza, and Satinder P Singh. “Improving Predictive State Repre-
sentations via Gradient Descent.” In: AAAI Conference on Artificial Intelligence. 2016,
pp. 1709–1715.

[Kap+19] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos.
“Recurrent Experience Replay in Distributed Reinforcement Learning”. In: Interna-
tional Conference on Learning Representations. 2019.

[KY22] Ali Devran Kara and Serdar Yüksel. “Convergence of Finite Memory Q Learning for
POMDPs and Near Optimality of Learned Policies Under Filter Stability”. In: Mathe-
matics of Operations Research (Nov. 2022). ISSN: 1526-5471. DOI: 10.1287/moor.
2022.1331.

[KWW22] Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. Algorithms for decision
making. MIT press, 2022.

[KJS15a] Alex Kulesza, Nan Jiang, and Satinder Singh. “Low-rank spectral learning with
weighted loss functions”. In: Artificial Intelligence and Statistics. 2015, pp. 517–525.

12

https://doi.org/10.1017/9781108591034
https://arxiv.org/abs/1704.04651
https://arxiv.org/abs/1704.04651
https://doi.org/10.1287/moor.2022.1331
https://doi.org/10.1287/moor.2022.1331

[KJS15b] Alex Kulesza, Nan Jiang, and Satinder P Singh. “Spectral Learning of Predictive State
Representations with Insufficient Statistics.” In: AAAI Conference on Artificial Intelli-
gence. 2015, pp. 2715–2721.

[KY97] Harold J. Kushner and G. George Yin. Stochastic Approximation Algorithms and Ap-
plications. Springer New York, 1997. DOI: 10.1007/978-1-4899-2696-8.

[LVC18] Tuyen P Le, Ngo Anh Vien, and TaeChoong Chung. “A deep hierarchical reinforce-
ment learning algorithm in partially observable Markov decision processes”. In: Ieee
Access 6 (2018), pp. 49089–49102.

[LS15] Boris Lesner and Bruno Scherrer. “Non-Stationary Approximate Modified Policy It-
eration”. In: International Conference on Machine Learning. Vol. 37. Proceedings of
Machine Learning Research. Lille, France: PMLR, July 2015, pp. 1567–1575.

[Lit96] Michael Lederman Littman. “Algorithms for sequential decision-making”. PhD thesis.
Brown University, 1996.

[Lu+23] Xiuyuan Lu, Benjamin Van Roy, Vikranth Dwaracherla, Morteza Ibrahimi, Ian Os-
band, Zheng Wen, et al. “Reinforcement learning, bit by bit”. In: Foundations and
Trends in Machine Learning 16.6 (2023), pp. 733–865.

[MH+18] Sultan Javed Majeed, Marcus Hutter, et al. “On Q-learning Convergence for Non-
Markov Decision Processes.” In: IJCAI. Vol. 18. 2018, pp. 2546–2552.

[Mni+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing atari with deep reinforce-
ment learning”. In: arXiv preprint arXiv:1312.5602 (2013).

[Mül97] Alfred Müller. “Integral probability metrics and their generating classes of functions”.
In: Advances in Applied Probability 29.2 (1997), pp. 429–443.

[Nor98] James R Norris. Markov chains. Cambridge University Press, 1998.
[PP02] Theodore J. Perkins and Mark D. Pendrith. “On the Existence of Fixed Points for Q-

Learning and Sarsa in Partially Observable Domains”. In: International Conference
on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2002, pp. 490–497.

[PGT+03] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. “Point-based value iteration: An
anytime algorithm for POMDPs”. In: International Joint Conference on Artificial In-
telligence. Vol. 3. 2003, pp. 1025–1032.

[Pla77] Loren Kerry Platzman. “Finite Memory Estimation and Control of Finite Probabilistic
Systems.” PhD thesis. Massachusetts Institute of Technology, 1977.

[PB24] L.A. Prashanth and Shalabh Bhatnagar. Gradient-based algorithms for zeroth-order
optimization. Now publishers, 2024. URL: http : / / www . cse . iitm . ac . in /

~prashla/bookstuff/GBSO_book.pdf.
[Pre00] Doina Precup. Temporal abstraction in reinforcement learning. University of Mas-

sachusetts Amherst, 2000.
[Qia+18] Zhiqian Qiao, Katharina Muelling, John Dolan, Praveen Palanisamy, and Priyantha

Mudalige. “Pomdp and hierarchical options mdp with continuous actions for au-
tonomous driving at intersections”. In: 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC). IEEE. 2018, pp. 2377–2382.

[Rii65] Jens Ove Riis. “Discounted Markov Programming in a Periodic Process”. In: Oper-
ations Research 13.6 (Dec. 1965), pp. 920–929. ISSN: 1526-5463. DOI: 10.1287/
opre.13.6.920.

[RM51] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The
Annals of Mathematical Statistics 22.3 (1951), pp. 400–407.

[RGT04] Matthew Rosencrantz, Geoff Gordon, and Sebastian Thrun. “Learning low dimensional
predictive representations”. In: International Conference on Machine Learning. 2004.

[Sch16] Bruno Scherrer. On Periodic Markov Decision Processes. European Workshop on Re-
inforcement Learning. Dec. 2016. URL: https://ewrl.files.wordpress.com/
2016/12/scherrer.pdf.

[SL12] Bruno Scherrer and Boris Lesner. “On the use of non-stationary policies for station-
ary infinite-horizon Markov decision processes”. In: Advances in Neural Information
Processing Systems 25 (2012).

13

https://doi.org/10.1007/978-1-4899-2696-8
http://www.cse.iitm.ac.in/~prashla/bookstuff/GBSO_book.pdf
http://www.cse.iitm.ac.in/~prashla/bookstuff/GBSO_book.pdf
https://doi.org/10.1287/opre.13.6.920
https://doi.org/10.1287/opre.13.6.920
https://ewrl.files.wordpress.com/2016/12/scherrer.pdf
https://ewrl.files.wordpress.com/2016/12/scherrer.pdf

[Sey+23] Erfan SeyedSalehi, Nima Akbarzadeh, Amit Sinha, and Aditya Mahajan. “Approxi-
mate information state based convergence analysis of recurrent Q-learning”. In: Euro-
pean conference on reinforcement learning. 2023. URL: https://arxiv.org/abs/
2306.05991.

[Sil+16] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529 (2016), pp. 484–489.

[SJJ94] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. “Learning without state-
estimation in partially observable Markovian decision processes”. In: Machine Learn-
ing. Elsevier, 1994, pp. 284–292.

[SS73] Richard D. Smallwood and Edward J. Sondik. “The Optimal Control of Partially Ob-
servable Markov Processes over a Finite Horizon”. In: Operations Research 21.5 (Oct.
1973), pp. 1071–1088. DOI: 10.1287/opre.21.5.1071.

[SS04] Trey Smith and Reid Simmons. “Heuristic search value iteration for POMDPs”. In:
Conference on Uncertainty in Artificial Intelligence. Banff, Canada, 2004, pp. 520–
527.

[SV05] Matthijs TJ Spaan and Nikos Vlassis. “Perseus: Randomized point-based value itera-
tion for POMDPs”. In: Journal of Artificial Intelligence Research 24 (2005), pp. 195–
220.

[Ste+18] Denis Steckelmacher, Diederik Roijers, Anna Harutyunyan, Peter Vrancx, Hélène Plis-
nier, and Ann Nowé. “Reinforcement learning in POMDPs with memoryless options
and option-observation initiation sets”. In: Proceedings of the AAAI conference on ar-
tificial intelligence. Vol. 32. 1. 2018.

[Sub+22] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. “Approx-
imate information state for approximate planning and reinforcement learning in par-
tially observed systems”. In: Journal of Machine Learning Research 23.12 (2022),
pp. 1–83.

[Sut+99] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Policy gra-
dient methods for reinforcement learning with function approximation”. In: Advances
in Neural Information Processing Systems. Vol. 12. 1999.

[SPS99] Richard S Sutton, Doina Precup, and Satinder Singh. “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning”. In: Artificial
intelligence 112.1-2 (1999), pp. 181–211.

[SB08] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, 2008.

[VGS16] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 30. 1. 2016.

[Vez+17] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. “Feudal networks for hierarchical rein-
forcement learning”. In: International conference on machine learning. PMLR. 2017,
pp. 3540–3549.

[WS94] Chelsea C White III and William T Scherer. “Finite-memory suboptimal design for
partially observed Markov decision processes”. In: Operations Research 42.3 (1994),
pp. 439–455.

[WS97] Marco Wiering and Jürgen Schmidhuber. “HQ-learning”. In: Adaptive behavior 6.2
(1997), pp. 219–246.

[Wie+07] Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. “Solving
deep memory POMDPs with recurrent policy gradients”. In: International Conference
on Artificial Neural Networks (ICANN). Springer. 2007, pp. 697–706.

[Wie+10] Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. “Recurrent
policy gradients”. In: Logic Journal of the IGPL 18.5 (2010), pp. 620–634.

[Wit75] Hans S Witsenhausen. “On policy independence of conditional expectations”. In: In-
formation and Control 28.1 (1975), pp. 65–75.

[Zha09] H. Zhang. “Partially Observable Markov Decision Processes: A Geometric Technique
and Analysis”. In: Operations Research (2009).

14

https://arxiv.org/abs/2306.05991
https://arxiv.org/abs/2306.05991
https://doi.org/10.1287/opre.21.5.1071

Contents of Appendix

A Illustrative examples 16

A.1 Ex. 1: Learning curves for ASQL . 16

A.2 Ex. 2: non-stationary policies can outperform stationary policies 16

A.3 Ex. 3: stochastic policies can outperform deterministic policies 17

A.4 Ex. 4: conceptual difference between state-augmentation and periodic policies . . . 18

B Periodic Markov chains 19

B.1 Time-homogeneous Markov chains and their properties 19

B.2 Time-varying with periodic transition matrix . 20

B.3 Constructing an equivalent time-homogeneous Markov chain 21

B.4 Limiting behavior of periodic Markov chain . 22

C Periodic Markov decision processes 24

D Stochastic Approximation with Markov noise 24

E Thm. 1: Convergence of periodic Q-learning 26

E.1 Step 1: State splitting of the error function . 26

E.2 Step 2: Convergence of component Xℓ,0
t . 26

E.3 Step 3: Convergence of component Xℓ,1
t . 27

E.4 Step 4: Convergence of component Xℓ,2
t . 28

E.5 Putting everything together . 30

F Thm. 2: Sub-optimality gap 30

G Policy evaluation of an agent-state based policy 31

H Reproducibility information 31

15

A Illustrative examples

A.1 Ex. 1: Learning curves for ASQL

For each behavioral policy µ̄k, k ∈ K, we run PASQL for 25 random seeds. The median + in-
terquantile range of the iterates {Qt(z, a)}t≥1 as well as the theoretical limits Qµ̄k

(z, a) (computed
as per Thm. 1 for L = 1) are shown in Fig. 5. These curves show that the result of Thm. 1 is valid
for the stationary case (L = 1) as well.

̅𝜇1

̅𝜇2

̅𝜇3

Figure 5: ASQL iterates for different behavioral policies (in blue) and the limit predicted by Thm. 1 (in red).

A.2 Ex. 2: non-stationary policies can outperform stationary policies

Example 2 Consider a POMDP with S = Z>0, A = {0, 1}, and Y = {0, 1}. The system starts
in an initial state s1 = 1 and has deterministic dynamics. To describe the dynamics and the reward
function, we define D0 := {n(n+1)/2+1 : n ∈ Z≥0}, D1 = N\D0, and D = D0×{0}∪D1×{1} ⊂
S× A. Then, the dynamics, observations, and rewards are given by

st+1 =

{
st + 1, (st, at) ∈ D,

1, otherwise,
yt =

{
0, st is odd,
1, st is even,

r(s, a) =

{
+1, (s, a) ∈ D,

−1 otherwise.

Thus, the state is incremented if the agent takes action 0 when the state is in D0 and takes action 1
when the state is in D1. Taking these actions yield a reward of +1. Not taking such an action results
in a reward of −1 and resets the state to 1. The agent does not observe the state, but only observes
whether the state is odd or even. A graphical representation of the model is shown in Fig. 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Figure 1: Graphical representation of Ex. 2. The cells indicate the state of the environment. Cells with the
same background color have the same observation. The cells with a thick red boundary correspond to elements
of the set D0 := {n(n + 1)/2 + 1 : n ∈ N}, where the action 0 gives a reward of +1 and moves the state to
the right, while the action 1 gives a reward of −1 and resets the state to 1. The cells with a thin black boundary
correspond to elements of the set D1 = N \D0, where the action 1 gives the reward of +1 and moves the state
to the right while the action 0 gives a reward of −1 and resets the state to 1. Discount factor γ = 0.9.

For policy class ΠBD (the class of all belief-based deterministic policies), since the system starts
in a known initial state and the dynamics are deterministic, the agent can compute the current state

16

(thus, the belief is a delta function on the current state). Thus, the agent can always choose the
correct action depending on whether the state is in D0 and D1. Hence J⋆

BD = 1/(1 − γ), which is
the highest possible reward.

For policy class ΠSD (the class of all agent-state based deterministic policies), there are four
possible deterministic policies. For odd observations, the agent may take action 0 and 1. Similarly,
for even observations, the agent may take action 0 or 1. Note that the system starts in state 1, which
is in D0. Therefore, if the agent chooses action 1 when the observation is odd, it receives a reward
of −1 and stays at state 1. Therefore, the discounted total reward is −1/(1 − γ), which is the
least possible value. Therefore, any policy that chooses 1 on odd observations cannot be optimal.
Therefore, the optimal (deterministic) action on odd observations is to pick action 0. Thus, there are
two policies that we need to evaluate.

• If the agent chooses action 0 at both odd and even observations, the state cycles between 1 →
2 → 3 → 1 → 2 → 3 · · · with the reward sequence (+1,+1,−1,+1,+1,−1, . . .). Thus, the
cumulative total reward of this policy is (1 + γ − γ2)/(1− γ3).

• If the agent chooses action 0 at odd observations and action 1 at even observations, the state
cycles between 1 → 2 → 1 → 2 · · · with the reward sequence (+1,−1,+1,−1, . . .). Thus, the
cumulative total reward of this policy is 1/(1 + γ).

It is easy to verify that for γ ∈ (0, 1), 1/(1 + γ) < (1 + γ − γ2)/(1− γ3). Thus,

J⋆
SD =

1 + γ − γ2

1− γ3
.

We also consider policy class ΠSS: the class of all stationary stochastic agent-state based poli-
cies. For policy class ΠSS, the policy is characterized by two numbers (p0, p1) ∈ [0, 1]2, where py
denotes the probability of choosing action 1 when the observation is y, y ∈ {0, 1}. We compute the
approximately optimal policy by doing a brute force search over (p0, p1) by discretizing them two
decimal places and for each choice, running a Monte Carlo simulation of length 1, 000 and averag-
ing it over 100 random seeds. We find that there is negligible difference between the performance
of stochastic and deterministic policies.

Finally, we consider policy class ΠL, which is the class of periodic deterministic agent-state based
policies. A policy π ∈ ΠL is characterized by two vectors p0, p1 ∈ {0, 1}L, where py,ℓ denotes
the action chosen when t mod L = ℓ and the observation is y. We do an exhaustive search over all
deterministic policies of length L, L ∈ {1, . . . , 10} to compute the numbers shown in the main text.

A.3 Ex. 3: stochastic policies can outperform deterministic policies

When the agent state is not an information state, the optimal stochastic stationary policy will perform
better than (or equal to) the optimal deterministic stationary policy as observed in [SJJ94]. Here is
an example to illustrate this for a simple toy POMDP.

0 1 2

0.5 0.5

1 1

(a) Dynamics under action 0

0 1 2

0.5 0.5

0.5 0.51

(b) Dynamics under action 1

Figure 6: The dynamics for Ex. 3.

Example 3 Consider a POMDP with S = {0, 1, 2}, A = {0, 1} and Y = {0}. The system starts
at an initial state s1 = 0 and the dynamics under the two actions are shown in Fig. 6. The agent
does not observe the state, i.e., Yt ≡ 0. The rewards under action 0 are r(·, 0) = [−1, 0, 2] and the
rewards under action 1 are r(s, 1) = −0.5, for all s ∈ S.

17

Figure 7: Performance of stationary stochastic policies
πp for p ∈ [0, 1] for Ex. 3.

We consider agent state Zt = Yt. Let ΠSS

denote the of all stationary stochastic policies
and ΠSD denote the class of of all stationary
deterministic policic A policy π ∈ ΠSS is pa-
rameterized by a single parameter p ∈ [0, 1],
which indicates the probability of choosing ac-
tion 1. We denote such a policy by πp. Note that
p ∈ {0, 1}, πp ∈ ΠSD. Let (Pa, ra) denote the
probability transition matrix and reward func-
tion when a ∈ A is chosen and let (Pp, rp) = (1 − p)(P0, r0) + p(P1, r1). Then, the performance
of policy πp is given by Jπp = [(1− γPp)

−1rp]0. The performance for all p ∈ [0, 1] for γ = 0.9 is
shown in Fig. 7, which shows that the best performance is achieved by the stochastic policy πp with
p ≈ 0.39.

Thus, stochastic policies can outperform deterministic policies.

A.4 Ex. 4: conceptual difference between state-augmentation and periodic policies

2𝑛 cells

g1

s 1 2 3 ⋯ ⋯ ⋯ 2𝑛 t

g2

Figure 4: A T-shaped grid world for Ex. 4. In state S, the agent learns about the goal state. In states
{1, 2, . . . , 2n}, the agent simply knows that it is in the gray corridor, but does not know which cell it is in.
In state T, it knows that it has reached the end of corridor and must decide whether to go up or down. The agent
gets a reward of +1 for reaching the correct goal state and a reward of −1 for reaching the wrong goal state.

Example 4 Consider a T-shaped grid world showed in Fig. 4 with state space P × G, where P =
{S, 1, 2, . . . , 2n, T} is the position of the agent and G = {G1, G2} is the location of the goal. The
observation space is Y = {0, 1, 2, 3}. The observation is a deterministic function of the state and is
given as follows:

• At state (S, Gi), i ∈ {1, 2}, the observation is i and reveals the location of the goal state to the
agent.

• At states {1, . . . , 2n} × G, the observation is 0, so the agent cannot distinguish between these
states.

• At states {T} × G, the observation is 3, so the agent knows when it reaches the T state.

The action space depends on the current state: actions {LEFT, RIGHT, STAY} are available when the
agent is at {S, 1, . . . , 2n} and actions {UP, DOWN} are available at position T.

The agent receives a reward of +1 if it reaching the goal state and −1 if it reaches the wrong goal
state state (i.e., reaches G2 when the goal state is G1). The discount factor γ = 1.

We consider two classes of policies:
(i) ΠSD(m): Stationary policies with agent state equal to a sliding window of the last m observations

and actions.
(ii) ΠL: Periodic policies with agent state equal to the last observation and periodic L.

It is easy to see that as long as the window length m ≤ 2n, any policy in ΠSD(m) yields an average
return of 0; for window lengths m > 2n, the agent can remember the first observation, and therefore
it is possible to construct a policy that yields a return of +1.

We now consider a deterministic periodic policy with period L = 3 given as follows:6 π =
(π0, π1, π2) where πℓ : Y → A. We denote each πℓ as a column vector, where the y-th compo-
nent indicates the action πℓ(y), where – means that the choice of the action for that observation is

6For the ease of notation, we start the system at time t = 0.

18

irrelevant for performance. The policy is given by

π0 =

RIGHT
RIGHT
STAY
STAY

 , π1 =

RIGHT
–

RIGHT
UP

 , π2 =

 STAY
–
–

DOWN

 .

It is easy to verify if the system starts in state (0, G1), then by following policy (π0, π1, π2), the
agent reaches state G1 at time 3n + 3. Moreover, when the system starts in state (0, G2), then by
following the policy (π0, π1, π2), the agent reaches G2 at time 3n + 4. Thus, in both cases, the
policy (π0, π1, π2) yields the maximum reward of +1.

B Periodic Markov chains

In most of the standard reference material on Markov chains, it is assumed that the Markov chain is
aperiodic and irreducible. In our analysis, we need to work with periodic Markov chains. In this ap-
pendix, we review some of the basic properties of Markov chains and then derive some fundamental
results for periodic Markov chains.

Let S be a finite set. A stochastic process {St}t≥0, St ∈ S, is called a Markov chain if it satisfies
the Markov property: for any t ∈ Z≥0 and s1:t+1 ∈ St+1, we have

P(St+1 = st+1 | S1:t = s1:t) = P(St+1 = st+1 | St = st). (4)

If is often convenient to assume that S = {1, . . . , n}. We can define an n× n transition probability
matrix Pt given by [Pt]ij = P(St+1 = j | St = i). Then, all the probabilistic properties of the
Markov chain is described by the transition matrices (P0, P1, . . .).

In particular, suppose the Markov chain starts at the initial PMF (probability mass function) ξ0 and
let ξt denote the PMF at time t. We will view ξt as a n-dimensional row vector. Then, Eq. (4)
implies ξt+1 = ξtPt and, therefore,

ξt+1 = ξ0P0P1 · · ·Pt.

B.1 Time-homogeneous Markov chains and their properties

A Markov chain is said to be time-homogeneous if the transition matrix Pt is the same for all time t.
In this section, we state some standard results for time-homogeneous Markov chains [Nor98].

B.1.1 Classification of states

The states of a time-homogeneous Markov chain can be classified as follows.

1. We say that a state j is accessible from i (abbreviated as i ⇝ j) if there is exists an m ∈ Z≥0

(which may depend on i and j) such that [Pm]ij > 0. The fact that [Pm]ij > 0 implies that
there exists an ordered sequence of states (i0, . . . , im) such that i0 = i and im = j such that
Pikik+1

> 0; thus, there is a path of positive probability from state i to state j.
Accessibility is an transitive relationship, i.e., if i⇝ j and j ⇝ k implies that i⇝ k.

2. Two distinct states i and j are said to communicate (abbreviated to i↭ j) if i is accessible from
j (i.e., j ⇝ i) and j is accessible from i (i⇝ j). Alternatively, we say that i and j communicate
if there exist m,m′ ∈ Z≥0 such that [Pm]ij > 0 and [Pm′

]ji > 0.
Communication is an equivalence relationship, i.e., it is reflexive (i↭ i), symmetric (i↭ j if
and only if j↭ i), and transitive (i↭ j and j↭ k implies i↭ k).

3. The states in a finite-state Markov chain can be partitioned into two sets: recurrent states and
transient states. A state is recurrent if it is accessible from all states that are from it (i.e., i is
recurrent if i⇝ j implies that j ⇝ i). States that are not recurrent are transient.
It can be shown that a state i is recurrent if and only if

∞∑
t=1

[P t]ii = ∞.

19

4. States i and j are said to belong to the same communicating class if i and j communicate.
Communicating classes form a partition the state space. Within a communicating class, all states
are of the same type, i.e., either all states are recurrent (in which case the class is called a recurrent
class) or all states are transient (in which case the class is called a transient class).
A Markov chain with a single communicating class (thus, all states communicate with each other
and are, therefore, recurrent) is called irreducible.

5. The period of a state i, denoted by d(i), is defined as

d(i) = gcd{t ∈ Z≥1 : [P t]ii > 0}.

If the period is 1, the state is aperiodic, and if the period is 2 or more, the state is periodic. It
can be shown that all states in the same class have the same period.
A Markov chain is aperiodic, if all states are aperiodic. A simple sufficient (but not necessary)
condition for an irreducible Markov chain to be aperiodic is that there exists a state i such that
Pii > 0. In general, for a finite and aperiodic Markov chain, there exists a positive integer T such
that

[P t]ii > 0, ∀t ≥ T, i ∈ S.

B.1.2 Limit behavior of Markov chains

We now state some special distributions for a time-homogeneous Markov chain.

1. A PMF ζ on S is called a stationary distribution if ζ = ζP . Thus, if a (time-homogeneous)
Markov chain starts in a stationary distribution, it stays in a stationary distribution.
A finite irreducible Markov chain has a unique stationary distribution. Moreover, when the
Markov chain is also aperiodic, the stationary distribution is given by ζ(j) = 1/mj , where
mj is the expected return time to state j.

2. A PMF ζ on S is called a limiting distribution if

lim
t→∞

[P t]ij = ζ(j), ∀i, j ∈ S.

A finite irreducible Markov chain has a limiting distribution if and only if it is aperiodic. There-
fore, for an aperiodic Markov chain, the limiting distribution is the same as the stationary distri-
bution.

Theorem 3 (Strong law of large numbers for Markov chains, Theorem 5.6.1 of [Dur19])
Suppose {St}t≥1 is an irreducible Markov chain that starts in state i ∈ S. Then,

lim
T→∞

1

T

T−1∑
t=0

1{St = j} =
1

mj
.

Therefore, for any function h : S → R,

lim
T→∞

1

T

T−1∑
t=0

h(St) =
∑
j∈S

h(j)

mj
. (5)

If, in addition, the Markov chain {St}t≥1 is aperiodic, and has a limiting distribution ζ, then we
have that

lim
T→∞

1

T

T−1∑
t=0

h(St) =
∑
j∈S

ζ(j)h(j). (6)

B.2 Time-varying with periodic transition matrix

In this section, we consider time-varying Markov chains where the transition matrices (P0, P1, . . .)
are periodic with period L. Let JtK = (t mod L) and L = {0, . . . , L − 1}. Then, the transition
matrix Pt is the same as PJtK. Thus, the system dynamics are completely described by the transition
matrices {Pℓ}ℓ∈L. With a slight abuse of notation, we will call such a Markov chain as L-periodic
Markov chain. We will show later that the notion of time-periodicity that we are considering is
equivalent to the notion of state-periodicity for time-homogeneous Markov chains defined earlier.

20

B.3 Constructing an equivalent time-homogeneous Markov chain

Since the Markov chain is not time-homogeneous, the classification and results of the previous
section are not directly applicable. There are two ways to construct a time-homogeneous Markov
chain: using state augmentation or viewing the process after every L steps.

B.3.1 Method 1: State augmentation

The original time-varying Markov chain {St}t≥0 is equivalent to the time-homogeneous Markov
chain {(St, JtK)}t≥0 defined on S× L with transition matrix P̄ given by

P̄ ((s′, ℓ′) | (s, ℓ)) = Pℓ(s
′ | s)1{ℓ′ = Jℓ+ 1K}.

Example 5 Consider a 2-periodic Markov chain with state space S = {1, 2} and transition matrices

P0 =

[
1
4

3
4

1
2

1
2

]
and P1 =

[
3
4

1
4

1
4

3
4

]
.

The time-periodic Markov chain of Ex. 5 may be viewed as a time-homogeneous Markov chain with
state space {1, 2} × {0, 1} and transition matrix

P̄ =



(1,0) (2,0) (1,1) (2,1)

(1,0) 0 0 1
4

3
4

(2,0) 0 0 1
2

1
2

(1,1) 3
4

1
4 0 0

(2,1) 1
4

3
4 0 0

 =

[
0 I
I 0

] [
P0 0
0 P1

]

where 0 denotes the all zero matrix and I denotes the identity matrix (both of size 2× 2). Note that
the time-homogeneous Markov chain is periodic.

Define the following:

• L block diagonal matrices Λ0, . . . ,ΛL−1 ∈ RnL×nL as follows:

Λ0 = blkdiag(P0, P1, . . . , PL−1), Λ1 = blkdiag(PL−1, P0, . . . , PL−2), etc.

• A permutation matrix Π ∈ {0, 1}nL×nL as follows

Π =


0 I · · · 0
...

.
...

0 0 · · · I
I 0 · · · 0


where each block is n× n.

The permutation matrix Π satisfies the following properties (which can be verified by direct algebra):

(P1) ΠΠ⊺ = I and therefore Π−1 = Π⊺.

(P2) ΠL = I .

(P3) ΛℓΠ = ΠΛJℓ+1K, ℓ ∈ L.

In general, the transition matrix of the Markov chain {(St, JtK)}t≥0 is

P̄ =


0 P0 · · · 0
...

.
...

0 0 · · · PL−2

PL−1 0 · · · 0


nL×nL

= Λ0Π.

21

B.3.2 Method 2: Viewing the process every L steps

The original Markov chain viewed every L-steps, i.e., the process {SkL+ℓ}k≥0, ℓ ∈ L, is a time-
homogeneous Markov chain with transition probability matrix Pℓ given by

Pℓ = PJℓKPJℓ+1K · · ·PJℓ+L−1K

that is,
P0 = P0P1 · · ·PL−2PL−1, P1 = P1P2 · · ·PL−1P0, etc.

B.3.3 Relationship between the two constructions

The two constructions are related as follows.
Proposition 1 We have that P̄L = blkdiag(P0, . . . ,PL).

PROOF From (P3), we get that P̄ = ΠΛ1. Therefore,

P̄ 2 = Λ0ΠΛ0Π = Λ0Λ1Π
2

Similarly
P̄ 3 = Λ0ΠP̄ 2 = Λ0ΠΛ0Λ1Π

2 = Λ0Λ1ΠΛ1Π
2 = Λ0Λ1Λ2Π

3

Continuing this way, we get

P̄L = Λ0Λ1 . . .ΛL−1Π
L = Λ0Λ1 . . .ΛL−1.

where the last equality follows from (P2). The result then follows from the definitions of Λℓ and Pℓ,
ℓ ∈ L. 2

B.4 Limiting behavior of periodic Markov chain

In the subsequent discussion, we consider the following assumptions.
Assumption 3 Every {Pℓ}, ℓ ∈ L, is irreducible and aperiodic

Suppose Assm. 3 holds. Define ζℓ to be the unique stationary distribution for Markov chain Pℓ,
ℓ ∈ L, i.e., ζℓ is the unique PMF that satisfies ζℓ = ζℓPℓ.
Proposition 2 The PMFs {ζℓ}ℓ∈L satisfy

ζℓPℓ = ζJℓ+1K, ℓ ∈ L.

PROOF We prove the result for ℓ = 0. The analysis is the same for general ℓ. By assumption, we
have that

ζ0 = ζ0P0 = ζ0P0P1 · · ·PL−1.

Let ζ̄1 := ζ0P0. Then, we have

ζ̄1 = ζ0P0 = ζ0P0P1 · · ·PL−1P0 = ζ̄1P1 · · ·PL−1P0 = ζ̄1P1.

Thus ζ̄1 is a stationary distribution. Since P1 is irreducible, the stationary distribution is unique,
hence ζ̄1 must equal ζ1. 2

We can verify this result for Ex. 5. For this model, we have

P0 = P0P1 =

[
3
8

5
8

1
2

1
2

]
and P1 = P1P0 =

[
5
16

11
16

7
16

9
16

]
.

Thus,
ζ0 =

[
4
9

5
9

]
and ζ1 =

[
7
18

11
18

]
And we can verify that ζ0P0 = ζ1 and ζ1P1 = ζ0.
Proposition 3 Under Assm. 3, the limiting distribution of the Markov chain {St}t≥0 is cyclic. In
particular, for any initial distribution ξ0,

lim
k→∞

ξkL+ℓ = ζℓ (7)

22

Furthermore,

lim sup
K→∞

1

K

K−1∑
k=0

1{SkL+ℓ = i} = [ζℓ]i, ∀i ∈ S, ℓ ∈ S.

Consequently, for any function h : S → R,

lim sup
K→∞

1

K

K−1∑
k=0

h(SkL+ℓ) =
∑
s∈S

h(s)[ζℓ]s, ℓ ∈ S. (8)

PROOF The results follow from standard results for the time-homogeneous Markov chain
{SkL+ℓ}k≥0. 2

PROOF (ALTERNATIVE) We present an alternative proof that uses the state augmented Markov
chain P̄ . We first prove that under Assm. 3, the chain P̄ is irreducible periodic with period L.

The proof of irreducibility relies on two observations.

1. Fix an ℓ ∈ L and consider i, j ∈ S. Since Pℓ is irreducible, we have that there exists a positive
integer m (depending on i, j, and ℓ) such that [Pm

ℓ]ij > 0. Note that Prop. 1 implies that
[P̄mL](i,ℓ),(j,ℓ) = [Pℓ]ij > 0. Therefore, in the Markov chain P̄ , states (i, ℓ) ⇝ (j, ℓ). Since i
and j were arbitrary, all states S× {ℓ} belong to the same communicating class.

2. Now consider two ℓ, ℓ′ ∈ L. Suppose we start at some state (i, ℓ) ∈ S×{ℓ}, then in [ℓ′− ℓ] steps,
we will reach some state (j, ℓ′) ∈ S × {ℓ′}. Thus, (j, ℓ′) is accessible from (i, ℓ). But, we have
already argued that all states in S × {ℓ} belong to the same communicating class, therefore all
states in S×{ℓ′} are accessible from all states in S×{ℓ}. By interchanging the roles of ℓ and ℓ′,
we have that all states in S× {ℓ} are accessible from all starts in S× {ℓ′}. Therefore, the states
S× {ℓ} and S× {ℓ′} belong to the same communicating class. Since ℓ and ℓ′ were arbitrary, we
have that all states of P̄ belong to the same communicating class. Hence, P̄ is irreducible.

We now show that P̄ is periodic. First observe that the Markov chain starting in the set S×{ℓ} does
not return to the same set for the first L− 1 steps. Thus, [P̄ t](i,ℓ),(i,ℓ) = 0 for t ∈ {1, 2, . . . , L− 1}.
Therefore, the only possible values of t for which [P̄ t](i,ℓ),(i,ℓ) > 0 are those that are multiples of
L. Hence, for any (i, ℓ) ∈ S× L,

d(i, ℓ) = gcd{t ∈ Z≥1 : [P̄ t](i,ℓ),(i,ℓ) > 0} = L gcd{k ∈ Z≥1 : [Pk
ℓ]ii > 0} (9)

Moreover, since Pℓ is aperiodic, gcd{k ∈ Z≥1 : [Pk
ℓ]ii > 0} = 1. Substituting in (9), we get that

d(i, ℓ) = L for all (i, ℓ). Thus, all states have a period of L.

Now, from Prop. 1, we know that P̄L = blkdiag(P0, . . . ,PL−1). Therefore

lim
k→∞

[P̄ kL](i,ℓ),(j,ℓ) = [ζℓ]j , (i, ℓ) ∈ S× L.

Consequently, if we start with an initial distribution ξ̄0 such that ξ̄0(S× {0}) = 1, then,

lim
k→∞

ξ̄kL = vec(ζ0, 0, . . . , 0)

where the 0 vectors are of size n. Consequently, Prop. 2 implies that

lim
k→∞

ξ̄kL+ℓ = vec(0, . . . , 0, ζℓ, 0, . . . , 0), ∀ℓ ∈ L

where ζℓ is the ℓ-th place. This completes the proof of (7).

Now consider the function h̄ : S × L → R defined as h̄(s, ℓ′) = h(s)1{ℓ′ = ℓ}. Then, by taking
T = KL, we have

lim
K→∞

1

K

K−1∑
t=0

h(SkL+ℓ) = lim
T→∞

L

T

T−1∑
t=0

h̄(St, JtK) = L
∑
s∈S

h(s)

m(s,ℓ)

where the last equation uses (5) from Thm. 3. Now, (8) follows from observing that mean return
time to state (s, ℓ) in Markov chain P̄ is L times the mean-return time to state s in Markov chain
Pℓ, which equals 1/[ζℓ]s since Pℓ is irreducible and aperiodic. 2

23

C Periodic Markov decision processes

Periodic MDPs are a special class time non-stationary MDPs where the dynamics and rewards are
periodic. In particular, let M be a time-varying MDP with state space S, action space A, and
dynamics and reward at time t given by Pt : S× A → ∆(S) and rt : S× A → R.

As before, we use JtK to denote t mod L and L to denote {0, . . . , L− 1}. The MDP M is periodic
with period L if there exist (P ℓ, rℓ), ℓ ∈ L such that for all t:

Pt(St+1 | St, At) = P JtK(St+1 | St, At) and rt(St, At) = rJtK(St, At).

Periodic MDPs were first considered in [Rii65]. Periodic MDPs may be viewed as stationary MDPs
by considering the augmented state (St, JtK). By this equivalence, it can be shown that there is
no loss of optimality in restricting attention to periodic policies. In particular, let (V 0, . . . , V L−1)
denote the fixed point of the following system of equations

V ℓ(s) = max
a∈A

{
rℓ(s, a) + γ

∑
s′∈S

P ℓ(s′|s, a)V Jℓ+1K(s′)
}
, ∀(ℓ, s, a) ∈ L× S× A. (10)

Define πℓ
⋆(s) to be the arg-max or the right hand side of (10). Then the time-varying policy π =

(π1, π2, . . .) given by πt = π
JtK
⋆ is optimal.

See [Sch16] for a discussion of how to modify standard MDP algorithms to solve periodic dynamic
program (10).

D Stochastic Approximation with Markov noise

We now state a generalization of Thm. 3 to stochastic approximation style iterations.
Theorem 4 Let {St}t≥1, S, be an irreducible and aperiodic finite Markov chain with unique limit-
ing distribution ζ. Let Ft denote the natural filtration w.r.t. {St}t≥1 and {αt}t≥1 be a non-negative
real-valued process adapted to {Ft} that satisfies∑

t≥1

αt = ∞ and
∑
t≥1

α2
t < ∞. (11)

Let {Mt+1}t≥1 be a square-integrable margingale difference sequence w.r.t. {Ft}t≥1 such that
E[M2

t+1 | Ft] ≤ K(1 + ∥Xt∥2) for some constant K. Consider the iterative process {Xt}t≥1,
where X1 is arbitrary and for t ≥ 1, we have

Xt+1 = (1− αt)Xt + αt

[
h(St) +Mt+1

]
. (12)

Then, the sequence {Xt}t≥1 converges almost surely to limit. In particular,

lim
T→∞

XT =
∑
s∈S

h(s)ζ(s), a.s. (13)

Eq. (12) is similar to standard stochastic approximation iteration [RM51; KY97; Bor08], which the
“noise sequence” h(St) is assumed to be a martingale difference sequence. The setting considered
above is sometimes referred to as stochastic approximation with Markov noise. In fact, more general
version of this result where the noise sequence is allowed to depend on the state Xt are typically
established in the literature [BMP12; Bor08; KY97; PB24]. For the sake of completeness, we will
show that Thm. 4 is a special case of these more-general results.

Before presenting the proof, we point out that Thm. 4 is a generalization of Thm. 3, Eq. (6). In
particular, suppose the learning rates are αt = 1/(1 + t). Then, simple algebra shows that

XT =
1

T

T∑
t=1

h(St).

Then, (6) of Thm. 3 implies that the limit is given by the right had side of (13). Therefore, Thm. 4
is a generalization of Thm. 3 to general learning rates which satisfy (11).

24

PROOF To establish the result, we will show that the iteration {Xt}t≥1 satisfies the assumptions
for the convergence of stochastic approximation with (state dependent) Markov noise and stochastic
recursive inclusions given in [PB24, Theorem 2.7]. The proof is due to [BP24]. In particular, we
can rewrite (12) as

Xt+1 = Xt + αtg(Xt, St)
where g(x, s) = −x+ h(s). Moreover, for ease of notation, define h̄ =

∑
s∈S h(s)ζ(s). Then, we

have

• g(x, s) is Lipschtiz continuous in the first argument, so A2.14 of [PB24] holds.

• From (6), the ergodic occupation measure of {h(St)}t≥1 is {h̄}, which is compact and convex.
So, A2.15 of [PB24] is satisfied.

• The conditions on the martingale noise sequence {Mt}t≥1 imply that A2.16 of [PB24] holds.

• Eq. (11) is equivalent to A2.17 of [PB24].

• To check A2.18 of [PB24], for any measure ν on S, define

h̃(x, ν) =

∫
g(x, s)ν(ds) = −x+ h̄.

Also define

h̃c(x, ν) =
h̃(cx, cν)

c
= −x+

h̄

c
Let h̃∞(x, ν) = limc→∞ hc(x, ν) = x. Thus, the differential inclusion in A2.18(ii) is actually
an ODE

ẋ = −x
which has origin as the unique global asymptotically stable equilibrium point. Thus, A2.18
of [PB24] is satisfied.

Therefore, all assumptions of Theorem 2.7 of [PB24] are satisfied. Therefore, by that result, the
iterates {Xt}t≥1 converge to solution of the ODE (note that the differential inclusion in Theorem 2.7
of [PB24] is an ODE in our setting)

ẋ = −x+ h̄. (14)
Note that x = h̄ is the unique asymptotically stable attractor of the ODE (14). Therefore, Theo-
rem 2.7 of [PB24] implies (13). 2

Thm. 4 also implies the following generalization of Prop. 3.
Proposition 4 Suppose {St}t≥1 is a time-periodic Markov chain with period L that satisfies
Assm. 3 with the unique limiting distribution {ζℓ}ℓ∈L. Let {Ft}t≥1 denote the natural filtration
w.r.t. {St}t≥1 and {αℓ

t}t≥1, ℓ ∈ L, be non-negative real-valued processes adapted to {Ft}t≥1 such
that αℓ

t = 0 when ℓ ̸= JtK and ∑
t≥1

αℓ
t = ∞ and

∑
t≥1

(αℓ
t)

2 < ∞.

Let {Mt+1}t≥1 be a square-integrable margingale difference sequence w.r.t. {Ft}t≥1 such that
E[M2

t+1 | Ft] ≤ K(1 + ∥Xt∥2) for some constant K. Fix any ℓ ∈ L, Consider the iterative process
{Xℓ

k}k≥1, where X1 is arbitrary and for k ≥ 1, we have

Xℓ
t+1 = (1− αℓ

t)X
ℓ
t + αℓ

t

[
h(St) +Mt+1

]
. (15)

Then, the sequence {Xℓ
t }t≥1 converges almost surely to the following limit

lim
t→∞

Xℓ
t =

∑
s∈S

h(s)ζℓ(s), a.s.

PROOF Note that the learning rates used here can be viewed as the learning rates of L separated
stochastic iterations on a common timescale t. Each separate stochastic iteration ℓ ∈ L is actually
only updated once every L steps on the timescale t. Because of the condition αℓ

t = 0 when ℓ ̸= JtK,
each update is followed by L−1 “pseudo”-updates where the learning rate is 0. Therefore, each Xℓ

is updated only once every L steps on timescale t.

The result then follows immediately from Thm. 4 by considering the process {St}t≥1 every L steps
for each ℓ ∈ L. 2

25

E Thm. 1: Convergence of periodic Q-learning

The high-level idea of the proof is similar to [KY22] for ASQL when the agent state is a finite
window of past observations and action. The key observation of [KY22] is the following: Consider
an iterative process Xt+1 = (1 − αt)Xt + αtUt with the learning rates αt = 1/(1 + t). Then,
Xt+1 = (X0 +

∑t
τ=1 Ut)/(1 + t). Then, if the process {Ut}t≥1 has an ergodic limit (e.g., when

{Ut}t≥1 is a function of a Markov chain, see Thm. 3), the process {Xt}t≥1 converges to the ergodic
limit of {Ut}t≥1. We follow a similar idea but with the following changes:

• Instead of assuming “averaging” learning rates (i.e., reciprocal of the number of visits), we allow
for general learning rates of Assm. 1.

• We account for the fact that that the “noise” is periodic.

The rest of the analysis then follows along the standard argument of convergence of Q-
learning [JSJ94; KY22; DY24].

Define the error function ∆ℓ
t+1 := Qℓ

t+1 − Qℓ
µ, for all ℓ ∈ L. To prove Thm. 1, it suffices to prove

that ∥∆ℓ
t∥ → 0 for all ℓ ∈ L, where ∥·∥ is the supremum-norm. The proof proceeds in three steps.

E.1 Step 1: State splitting of the error function

Define V ℓ
t (z) := maxa∈A Qℓ

t(z, a) and V ℓ
µ (z) := maxa∈A Q

ℓ
µ(z, a), for all ℓ ∈ L, z ∈ Z. We can

combine (PASQL), (1), and (2) as follows

∆ℓ
t+1(z, a) = (1− αℓ

t(z, a))∆
ℓ
t(z, a) + αℓ

t(z, a)
[
U ℓ,0
t (z, a) + U ℓ,1

t (z, a) + U ℓ,2
t (z, a)

]
(16)

where

U ℓ,0
t (z, a) :=

[
r(St, At)− rℓµ(z, a)

]
1{Zt=z,At=a},

U ℓ,1
t (z, a) :=

[
γV Jℓ+1K

µ (Zt+1)− γ
∑
z′∈Z

P ℓ
µ(z

′|z, a)V Jℓ+1K
µ (z′)

]
1{Zt=z,At=a},

U ℓ,2
t (z, a) := γV

Jℓ+1K
t (Zt+1)− γV Jℓ+1K

µ (Zt+1).

Note that we have added extra indicator functions in the U ℓ,i
t (z, a) terms, i ∈ {0, 1}. This does not

change the value of αℓ
t(z, a)U

ℓ,i
t (z, a) because the learning rates have the property that αℓ

t(z, a) = 0
if (ℓ, z, a) ̸= (JtK, zt, at) (see Assm. 1).

For each ℓ ∈ L, Eq. (16) may be viewed as a linear system with state ∆ℓ
t+1 and three inputs U ℓ,0

t ,U ℓ,1
t

and U ℓ,2
t . We exploit the linearity of the system and split the state into three components: ∆ℓ

t+1 =

Xℓ,0
t+1 +Xℓ,1

t+1 +Xℓ,2
t+1, where the three components evolve as follows:

Xℓ,i
t+1(z, a) = (1− αℓ

t(z, a))X
ℓ,i
t (z, a) + αℓ

t(z, a)U
ℓ,i
t (z, a), i ∈ {0, 1, 2} (17)

Linearity implies that (16) is equivalent to (17). We will now separately show that ∥Xℓ,0
t ∥ → 0,

∥Xℓ,1
t ∥ → 0 and ∥Xℓ,2

t ∥ → 0.

E.2 Step 2: Convergence of component Xℓ,0
t

Fix (ℓ, z◦, a◦) ∈ L× Z× A and define

hr(St, Zt, At; ℓ, z◦, a◦) =
[
r(St, At)− rℓµ(z◦, a◦)

]
1{Zt=z◦,At=a◦}.

Then the process {Xℓ,0
t (z◦, a◦)}t≥1 is given by the stochastic iteration

Xℓ,0
t+1(z◦, a◦) = (1− αℓ

t(z◦, a◦))X
ℓ,0
t (z◦, a◦) + αℓ

t(z◦, a◦)hr(St, Zt, At; ℓ, z◦, a◦),

which is of the form (15). The process {(St, Zt, At)}t≥1 is a periodic Markov chain and the learning
rates {αℓ

t(z◦, a◦)}t≥1 satisfy the conditions of Prop. 4 due to Assm. 1. Therefore, Prop. 4 implies

26

that {Xℓ,0
t (z◦, a◦)}t≥1 converges a.s. to the following limit

lim
t→∞

Xℓ,0
t (z◦, a◦) =

∑
s,z,a∈S×Z×A

ζℓµ(s, z, a)hr(s, z, a; ℓ, z◦, a◦)

=
∑

s,z,a∈S×Z×A

ζℓµ(s, z, a)1{z=z◦,a=a◦}
[
r(s, a)− rℓµ(z◦, a◦)

]
=

[∑
s∈S

ζℓµ(s, z◦, a◦)r(s, a◦)

]
− ζℓµ(z◦, a◦)r

ℓ
µ(z◦, a◦)

=

[∑
s∈S

ζℓµ(s, z◦, a◦)r(s, a◦)

]
−
[∑
s∈S

ζℓµ(z◦, a◦)ζ
ℓ
µ(s|z◦)r(s, a◦)

]
=

[∑
s∈S

ζℓµ(s, z◦)µ(a◦|z◦)r(s, a◦)
]
−

[∑
s∈S

ζℓµ(z◦)µ(a◦|z◦)ζℓµ(s|z◦)r(s, a◦)
]

= 0

Hence, for all (ℓ, z◦, a◦), the process {Xℓ,0
t (z◦, a◦)}t≥1 converges to zero almost surely.

E.3 Step 3: Convergence of component Xℓ,1
t

Let Wt denote the tuple (St, Zt, At, St+1, Zt+1, At+1). Note that {Wt}t≥1 is also a periodic
Markov chain and converges to a cyclic limiting distribution ζ̄ℓµ, where

ζ̄ℓµ(s, z, a, s
′, z′, a′) = ζℓµ(s, z, a)

∑
y′∈Y

P (s′, y′|s, a)1{z′=ϕ(z,y′,a)}µ(a
′|z′).

We use ζ̄µ
ℓ
(s, z, a, S,Z,A) to denote the marginalization over the “future states” and a similar

notation for other marginalizations. Note that ζ̄µ
ℓ
(s, z, a, S,Z,A) = ζℓµ(s, z, a).

Fix (ℓ, z◦, a◦) ∈ L× Z× A and define

hP (Wt; ℓ, z◦, a◦) =
[
γV Jℓ+1K

µ (Zt+1)− γ
∑
z̄∈Z

P ℓ
µ(z̄|z◦, a◦)V Jℓ+1K

µ (z̄)
]
1{Zt=z◦,At=a◦}

Then the process {Xℓ,1
t (z, a)}t≥1 is given by the stochastic iteration

Xℓ,1
t+1(z◦, a◦) = (1− αℓ

t(z◦, a◦))X
ℓ,1
t (z◦, a◦) + αℓ

t(z◦, a◦)hP (Wt; ℓ, z◦, a◦).

which is of the form (15). As argued earlier, the process {Wt}t≥1 is a periodic Markov chain. Due
to Assm. 1, the learning rate αℓ

t(z◦, a◦) is measurable with respect to the sigma-algebra generated by
(Z1:t, A1:t) and is therefore also measurable with respect to the sigma-algebra generated by W1:t.
Combining this with Prop. 4 implies that the learning rates {αℓ

t(z◦, a◦)}t≥1 satisfy the conditions of
Prop. 4. Therefore, Prop. 4 implies that {Xℓ,1

t (z◦, a◦)}t≥1 converges a.s. to the following limit

lim
t→∞

Xℓ,1
t (z◦, a◦)

=
∑

s,z,a∈S×Z×A
s′,z′,a′∈S×Z×A

ζ̄ℓµ(s, z, a, s
′, z′, a′)hP (s, z, a, s

′, z′, a′; ℓ, z◦, a◦)

=
∑

s,z,a∈S×Z×A
s′,z′,a′∈S×Z×A

ζ̄ℓµ(s, z, a, s
′, z′, a′)

[
γV Jℓ+1K

µ (z′)− γ
∑
z̄∈Z

P ℓ
µ(z̄|z◦, a◦)V Jℓ+1K

µ (z̄)
]
1{z=z◦,a=a◦}

= γ

[∑
z′∈Z

ζ̄ℓµ(S, z◦, a◦,S, z
′,A)V Jℓ+1K

µ (z′)

]
−

[
γζ̄ℓµ(S, z◦, a◦,S,Z,A)

∑
z̄∈Z

P ℓ
µ(z̄|z◦, a◦)V Jℓ+1K

µ (z̄)

]
= 0

where the last step follows from the fact that ζ̄ℓµ(S, z◦, a◦,S,Z,A) = ζℓµ(z◦, a◦) and
ζ̄ℓµ(S, z◦, a◦,S, z

′,A) = ζℓµ(z◦, a◦)P
ℓ
µ(z

′|z◦, a◦).

27

E.4 Step 4: Convergence of component Xℓ,2
t

The remaining analysis is similar to corresponding step in the standard convergence proof of Q-
learning and its variations [JSJ94; KY22; DY24]. In this section, we use ∥·∥ to denote the supremum
norm, i.e., ∥·∥∞.

In the previous step, we have shown that ∥Xℓ,i
t ∥ → 0 a.s., for i ∈ {0, 1}. Thus, we have that

∥Xℓ,0
t + Xℓ,1

t ∥ → 0 a.s. Arbitrarily fix an ϵ > 0. Therefore, there exists a set Ω1 of measure one
and a constant T (ω, ϵ) such that for ω ∈ Ω1, all t > T (ω, ϵ), and (ℓ, z, a) ∈ L× Z× A, we have

Xℓ,0
t (z, a) +Xℓ,1

t (z, a) < ϵ. (18)

Now pick a constant C such that

κ := γ

(
1 +

1

C

)
< 1 (19)

Suppose for some t > T (ω, ϵ), maxℓ∈L∥Xℓ,2
t ∥ > Cϵ. Then, for (z, a) ∈ Z× A,

U ℓ,2
t (z, a) = γV

Jℓ+1K
t (Zt+1)− γV Jℓ+1K

µ (Zt+1)

= γmax
a∈A

Q
Jℓ+1K
t (Zt+1, a)−max

a′∈A
γQJℓ+1K

µ (Zt+1, a
′)

≤ γmax
a∈A

{
Q

Jℓ+1K
t (Zt+1, a)− γQJℓ+1K

µ (Zt+1, a)
}

(a)

≤ γ∥QJℓ+1K
t −QJℓ+1K

µ ∥ = γ∥∆Jℓ+1K
t ∥

≤ γ∥XJℓ+1K,0
t +X

Jℓ+1K,1
t ∥+ γ∥XJℓ+1K,2

t ∥
(b)

≤ γϵ+ γ∥XJℓ+1K,2
t ∥ (20a)

(c)

≤ γ

(
1 +

1

C

)
max
ℓ∈L

∥Xℓ,2
t ∥ (d)

= κmax
ℓ∈L

∥Xℓ,2
t ∥

(d)
< max

ℓ∈L
∥Xℓ,2

t ∥. (20b)

where (a) follows from the fact that an upper bound is obtained by maximizing over all realizations
of Zt+1, (b) follows from (18), (c) follows from the fact that maxℓ∈L∥Xℓ,2

t ∥ > Cϵ, (d) follows
from (19). Thus, for any t > T (ω, ϵ) and maxℓ∈L∥Xℓ,2

t ∥ > Cϵ, we have

Xℓ,2
t+1(z, a) = (1− αℓ

t(z, a))X
ℓ,2
t (z, a) + αℓ

t(z, a)U
ℓ,2
t (z, a) < max

ℓ∈L
∥Xℓ,2

t ∥

=⇒ max
ℓ∈L

∥Xℓ,2
t+1∥ < max

ℓ∈L
∥Xℓ,2

t ∥.

Hence, when maxℓ∈L∥Xℓ,2
t ∥ > Cϵ, it decreases monotonically with time. Hence, there are two

possibilities: either (i) maxℓ∈L∥Xℓ,2
t ∥ always remains above Cϵ; or (ii) it goes below Cϵ at some

stage. We consider these two possibilities separately.

E.4.1 Possibility (i): maxℓ∈L∥Xℓ,2
t ∥ always remains above Cϵ

We will show that maxℓ∈L∥Xℓ,2
t ∥ cannot remain above Cϵ forever. We first start with a basic result

for random iterations. This is a self-contained result, so we reuse some of the variables used in the
rest of the paper.
Lemma 2 Let {Xt}t≥1, {Yt}t≥1, and {αt}t≥1 be non-negative sequences adapted to a filtration
{Ft}t≥1 that satisfy the following:

Xt+1 ≤ (1− αt)Xt, (21a)
Yt+1 ≤ (1− αt)Yt + αtc, (21b)

where c is a constant. Suppose
∞∑
t=1

αt = ∞ (22)

Then, the sequence {Xt}t≥1 converges to zero almost surely and the sequence {Yt}t≥1 converges
to c almost surely.

28

PROOF The iteration (21a) implies that

Xt+1 ≤
[
(1− α1) · · · (1− αt)

]
X1

Condition (22) implies that the term in the square brackets converges to zero. Therefore, Xt → 0.

Observe that the iteration (21b) can be rewritten as

Yt+1 − c ≤ (1− αt)(Yt − c)

which is of the form (21a). Therefore, Yt − c → 0. 2

We will now prove that maxℓ∈L∥Xℓ,2
t ∥ cannot remain above Cϵ forever. The proof is by con-

tradiction. Suppose maxℓ∈L∥Xℓ,2
t ∥ remains above Cϵ forever. As argued earlier, this implies

that maxℓ∈L∥Xℓ,2
t ∥, t ≥ T (ω, ϵ), is a strictly decreasing sequence, so it must be bounded from

above. Let B(0) be such that maxℓ∈L∥Xℓ,2
t ∥ ≤ B(0) for all t ≥ T (ω, ϵ). Eq. (20b) implies that

∥U ℓ,2
t ∥ < κB(0). Then, we have that

max
ℓ∈L

Xℓ,2
t+1(z, a) ≤ (1− αℓ

t(z, a))max
ℓ∈L

∥Xℓ,2
t ∥+ αℓ

t(z, a)max
ℓ∈L

∥U ℓ,2
t ∥

≤ (1− αℓ
t(z, a))max

ℓ∈L
∥Xℓ,2

t ∥+ αℓ
t(z, a)κmax

ℓ∈L
∥Xℓ,2

t ∥

which implies that maxℓ∈L∥Xℓ,2
t ∥ ≤ ∥M ℓ,(0)

t ∥, where {M ℓ,(0)
t }t≥T (ω,ϵ) is a sequence given by

M
ℓ,(0)
t+1 (z, a) ≤ (1− αℓ

t(z, a))M
ℓ,(0)
t (z, a) + αℓ

t(z, a)κB
(0), ∀(z, a) ∈ Z× A.

Lem. 2 implies that M ℓ,(0)
t (z, a) → κB(0) and hence ∥M ℓ,(0)

t ∥ → κB(0). Now pick an arbitrary
ϵ̄ ∈ (0, (1 − κ)Cϵ). Thus, there exists a time T (1) = T (1)(ω, ϵ, ϵ̄) such that for all t > T (1),
∥M ℓ,(0)

t ∥ ≤ B(1) := κB(0) + ϵ̄. Since maxℓ∈L∥Xℓ,2
t ∥ is bounded by ∥M ℓ,(0)

t ∥, this implies that
for all t > T (1), maxℓ∈L∥Xℓ,2

t ∥ ≤ B(1) and, by (20b), ∥U ℓ,2
t ∥ ≤ κB(1). By repeating the above

argument, there exists a time T (2) such that for all t ≥ T (2),

max
ℓ∈L

∥Xℓ,2
t ∥ ≤ B(2) := κB(1) + ϵ̄ = κ2B(0) + κϵ̄+ ϵ̄,

and so on. By (19), κ < 1 and ϵ̄ is chosen to be less than Cϵ. So eventually, B(m) := κmB(0) +

κm−1ϵ̄+ · · ·+ ϵ̄ must get below Cϵ for some m, contradicting the assumption that maxℓ∈L∥Xℓ,2
t ∥

remains above Cϵ forever.

E.4.2 Possibility (ii): maxℓ∈L∥Xℓ,2
t ∥ goes below Cϵ at some stage

Suppose that there is some t > T (ω, ϵ) such that maxℓ∈L∥Xℓ,2
t ∥ < Cϵ. Then (20a) implies that

∥U ℓ,2
t ∥ ≤ γ∥XJℓ+1K,0

t +X
Jℓ+1K,1
t ∥+ γ∥XJℓ+1K,2

t ∥ ≤ γϵ+ γCϵ < Cϵ

where the last inequality uses (19). Therefore,

max
ℓ∈L

Xℓ,2
t+1(z, a) ≤ (1− αℓ

t(z, a))max
ℓ∈L

∥Xℓ,2
t ∥+ αℓ

t(z, a)max
ℓ∈L

∥U ℓ,2
t ∥ < Cϵ

where the last inequality uses the fact that both ∥U ℓ,2
t ∥ and maxℓ∈L∥Xℓ,2

t+1∥ are both below Cϵ.
Thus, we have that

max
ℓ∈L

Xℓ,2
t+1(z, a) < Cϵ.

Hence, once maxℓ∈L∥Xℓ,2
t+1∥ goes below Cϵ, it stays there.

E.4.3 Implication

We have show that for sufficiently large t > T (ω, ϵ), maxℓ∈L X
ℓ,2
t (z, a) < Cϵ. Since ϵ is arbitrary,

this means that for all realizations ω ∈ Ω1, maxℓ∈L∥Xℓ,2
t ∥ → 0. Thus,

lim
t→∞

max
ℓ∈L

∥Xℓ,2
t ∥ = 0, a.s. (23)

29

E.5 Putting everything together

Recall that we defined ∆ℓ
t = Qℓ

t−Qµ and in Step 1, we split ∆ℓ
t = Xℓ,0

t +Xℓ,1
t +Xℓ,2

t . Steps 2 and
3 together show that ∥Xℓ,0

t +Xℓ,1
t ∥ → 0, a.s. and Step 3 (23) shows us that maxℓ∈L∥Xℓ,2

t ∥ → 0,
a.s. Thus, by the triangle inequality,

lim
t→∞

∥∆ℓ
t∥ ≤ lim

t→∞
∥Xℓ,0

t +Xℓ,1
t ∥+ lim

t→∞
∥Xℓ,2

t ∥ = 0,

which establishes that Qℓ
t → Qµ, a.s.

F Thm. 2: Sub-optimality gap

The high-level idea of proving Thm. 2 is as follows. Thm. 1 shows that PASQL converges to a
cyclic limit, which is the solution to a periodic MDP. Thus, the question of characterizing the sub-
optimality gap is equivalent to the following. Given a PODMP P , let M be a periodic agent-state
based model that approximates the reward and the dynamics of P (in the sense of an approximate
information state, as defined in [Sub+22]). Let π̂⋆ be the optimal policy of model M. What is the
sub-optimality gap when π̂⋆ is used in the original POMDP P?

To answer such questions, a general framework of approximate information states was developed
in [Sub+22] for both finite and infinite horizon models. However, we cannot directly used the results
of [Sub+22] because the infinite horizon results there were restricted to stationary policies, while we
are interested in the sub-optimality gap of periodic policies.

Nonetheless, Thm. 2 can be proved by building on the existing results of [Sub+22]. In particu-
lar, we start by looking at finite horizon model rather than infinite horizon model. Then, as per
[Sub+22, Definition 7], the agent state process may be viewed as an approximate information state
with approximation errors {(εt, δt)}t≥1, where

εt = sup
ht,at

∣∣∣E[Rt | ht, at]−
∑
s∈S

r(s, a)ζJtK
µ (s | z, a)

∣∣∣,
δt = sup

ht,at

dF(P(Zt+1 = · | ht, at), P
JtK
µ (Zt+1 = ·|σt(ht), at)).

Let V π⃗
t,T (ht) = E

π⃗
[∑T

τ=t γ
τ−1Rτ | ht

]
denote the value function of policy π⃗ for the finite horizon

model starting at history ht at time t. Let V ⋆
t,T (ht) := supπ⃗ V

π⃗
t,T (ht) denote the optimal value

function, where the optimization is over all history dependent policies. Moreover, let V̂t,T (zt) denote
the optimal value function for the periodic MDP model constructed in Thm. 1. Let π⃗µ denote the
history-based policy defined in Sec. 2.4.

Then, from [Sub+22, Theorem 9] we have

sup
ht

[
V ⋆
t,T (ht)− V

π⃗µ

t,T (ht)
]
≤ 2

T∑
τ=t

γτ−t
[
ετ + γδτρF(V̂τ+1,T)

]
(24)

where we set V̂T+1,T (z) ≡ 0 for convenience.

The following hold when we let T → ∞.

• Since Rt is uniformly bounded, V ⋆
t,T (ht) → V ⋆

t (ht) as T → ∞.

• By the same argument, V π⃗µ

t,T (ht) → V
π⃗µ

t (ht) as T → ∞.

• By standard results for periodic MDPs (see App. C), V̂t,T → V
JtK
µ as T → ∞.

• By definition, εt ≤ ε
JtK
t and δt ≤ δ

JtK
t .

Therefore, by taking T → ∞ in (24), we get

sup
ht

[
V ⋆
t (ht)− V

π⃗µ

t (ht)
]
≤ 2

∞∑
τ=t

γτ−t
[
εJτK
τ + γδJτK

τ ρF(V̂
Jτ+1K)

]
.

The result then follows from observing that for τ ∈ T(t, ℓ), ϵℓt and δℓt are non-decreasing sequences.

30

G Policy evaluation of an agent-state based policy

The performance of any agent-state based policy can be evaluated via a slight generalization of
“cross-product MDP” method originally presented in [Pla77]. This method has been rediscovered
in slightly different forms multiple times [Lit96; Cas98; Hau97; Han98].

The key intuition is Lem. 1. Thus, for any agent-state based policy, {(St, Zt)}t≥1 is a Markov chain.
The only difference in our setting is that the Markov chain is time-periodic. Thus, for any periodic
agent-state based policy (π0, . . . , πL−1), we can identify the periodic rewards (r̄0, . . . , r̄

L−1) and
periodic dynamics (P̄ 0, . . . , P̄L−1) (which depend on π but we are not carrying that dependence in
our notation) as follows:

r̄ℓ(s, z) =
∑
a∈A

πℓ(a|z)r(s, a),

P̄ ℓ(s′, z′|s, z) =
∑

(y,a)∈Y×A

πℓ(a|z)P (s′, y′|s, a)1{z′=ϕ(z,y′,a)}.

We can then evaluate the performance of this time-periodic Markov chain via performance evalua-
tion formulas for periodic MDPs (App. C). In particular, define

r̃ = r̄0 + γP̄ 0r̄1 + · · ·+ γL−1P̄ 0P̄ 1 · · · P̄L−2r̄L−1,

P̃ = P̄ 0P̄ 1 · · · P̄L−1,

to be the L-step cumulative rewards and dynamics for the time-periodic Markov chain. Then define

Ṽ = (1− γLP̃)−1r̃.

Thus, Ṽ (s, z) gives the performance of periodic policy π when starting at initial state (s, z). If the
initial state is stochastic, we can average over the initial distribution.

H Reproducibility information

The hyperparameters for the numerical experiments presented in Sec. 3 are shown in Table 3. The
experiments were run on a computer cluster by running jobs that requested 2-CPU nodes with <
8GB memory. Each seed typically took less than 10 minutes to execute.

Table 3: Hyperparameters used in Ex. 1

Parameter Value

Training steps 106

Start learn rate 10−3

End learn rate 10−5

Learn rate schedule Exponential
Exponential decay rate 1.0
Number of random seeds 25

31

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made have been proved theoretically in detail in the appendix.
Illustrative examples have also been shown to provide more clarity on the ideas involved.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes the limitations in the discussion section (Sec. 5).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably
to provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover lim-
itations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in de-
veloping norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

32

Justification: We provide the theoretical results in an organized manner with numbered and cross-
referenced equations, theorems, lemmas, assumptions etc. We have considered the proofs in
rigorous detail and explain all the details in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information needed to reproduce the main experimental results of the paper are
disclosed in further detail in App. G and App. H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be nec-
essary to either make it possible for others to replicate the model with the same dataset, or
provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

33

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We intend to make the code open access after the review process is complete.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new pro-
posed method and baselines. If only a subset of experiments are reproducible, they should
state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The main details are provided in the paper. Additional details are provided in the
appendix (app. H).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental mate-

rial.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The example mentioned in the main text is run with 25 random seeds and the median
and interquantile range are plotted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for ex-
ample, train/test split, initialization, random drawing of some parameter, or overall run with
given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the exper-
iments?
Answer: [Yes]
Justification: The relevant information about compute resources is provided in the appendix
(App. H).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual exper-

imental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make
it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with every aspect of the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a devi-

ation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: The research conducted in this paper is foundational research that focuses on de-
veloping theoretical results and as such, does not directly have a societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

35

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer:[NA]

Justification: Since the paper is based on foundational research, it does not pose any direct risks
that require safeguarding.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with neces-

sary safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets

36

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if ap-
plicable), such as the institution conducting the review.

37

	Illustrative examples
	Ex. 1: Learning curves for ASQL
	Ex. 2: non-stationary policies can outperform stationary policies
	Ex. 3: stochastic policies can outperform deterministic policies
	Ex. 4: conceptual difference between state-augmentation and periodic policies

	Periodic Markov chains
	Time-homogeneous Markov chains and their properties
	Time-varying with periodic transition matrix
	Constructing an equivalent time-homogeneous Markov chain
	Limiting behavior of periodic Markov chain

	Periodic Markov decision processes
	Stochastic Approximation with Markov noise
	Thm. 1: Convergence of periodic Q-learning
	Step 1: State splitting of the error function
	Step 2: Convergence of component first component
	Step 3: Convergence of component second component
	Step 4: Convergence of component third component
	Putting everything together

	Thm. 2: Sub-optimality gap
	Policy evaluation of an agent-state based policy
	Reproducibility information

