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ABSTRACT

Extracting small objects from remote sensing imagery plays a vital role in var-
ious applications, including urban planning, environmental monitoring, and dis-
aster management. While current research primarily focuses on small object de-
tection, instance segmentation for small objects remains underexplored, with no
dedicated datasets available. This gap stems from the technical challenges and
high costs of pixel-level annotation for small objects. While the Segment Any-
thing Model (SAM) demonstrates impressive zero-shot generalization, its perfor-
mance on small-object segmentation deteriorates significantly, largely due to the
coarse 1/16 feature resolution that causes severe loss of fine spatial details. To
this end, we propose SOPSeg, a prompt-based framework specifically designed
for small object segmentation in remote sensing imagery. It incorporates a region-
adaptive magnification strategy to preserve fine-grained details, and employs a
customized decoder that integrates edge prediction and progressive refinement for
accurate boundary delineation. Moreover, we introduce a novel prompting mech-
anism tailored to the oriented bounding boxes widely adopted in remote sensing
applications. SOPSeg outperforms existing methods in small object segmentation
and facilitates efficient dataset construction for remote sensing tasks. We further
construct a comprehensive small object instance segmentation dataset based on
SODA-A, and will release both the model and dataset to support future research.

1 INTRODUCTION

Remote sensing imagery plays a critical role in a wide range of real-world applications, including
urban planning, environmental monitoring, and precision agriculture. Among the targets of interest
in these applications, small objects such as vehicles, plane, and ships typically occupy no more
than 32×32 pixels in high-resolution imagery, yet they convey essential semantic and operational
information for downstream tasks. Consequently, accurately extracting small objects is of great
importance, but remains a highly challenging task due to their limited size and complex visual
characteristics.

Benchmarks such as SODA-A Cheng et al. (2023) have significantly advanced small object detection
in remote sensing imagery. However, they provide only bounding box annotations, which constrain
models to coarse localization and fail to capture precise object shapes. Consequently, most exist-
ing works focus on object detection rather than instance segmentation, limiting fine-grained scene
understanding.

Instance segmentation for small objects remains largely underexplored, primarily due to the lack
of suitable datasets. Constructing such datasets is highly labor-intensive, error-prone, and requires
substantial domain expertise. Although the Segment Anything Model (SAM) Kirillov et al. (2023),
trained on over one billion masks, demonstrates strong zero-shot generalization capabilities, its di-
rect application to high-resolution remote sensing imagery leads to notable performance degradation
for small objects. We attribute this limitation to the architectural design of SAM: its vision trans-
former encoder downsamples input images to 1/16 of the original resolution to reduce computational
cost. While effective for typical object sizes, this aggressive downsampling results in the loss of fine-
grained details that are critical for accurately identifying small targets.

To this end, we propose SOPSeg (Small Object Prompted Segmentation), a novel framework that
adapts SAM for robust small-object instance segmentation in remote sensing imagery. Our approach

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

introduces three key innovations: (1) Region-adaptive magnification, which adaptively crops and re-
sizes object regions to preserve fine details lost in downsampling, enabling accurate segmentation of
small instances with minimal overhead; (2) An edge-aware decoder, which integrates boundary pre-
diction and progressive multi-scale refinement to produce sharper and more accurate object masks;
(3) An oriented prompting mechanism, which enables the use of rotated bounding boxes common
in aerial imagery, improving SAM’s ability to handle objects at arbitrary orientations.

We train and validate SOPSeg on the iSAID dataset Waqas Zamir et al. (2019), selecting 7 out of
15 categories that best represent small object challenges in remote sensing imagery. Generalization
ability is further evaluated on the NWPU-VHR10 Su et al. (2019) and SAT-MTB Li et al. (2023)
benchmarks. Experimental results show that SOPSeg significantly outperforms the original SAM
and other prompt-based segmentation methods across all datasets.

Figure 1: Overview of the SOPSeg Framework. The input remote sensing image is first proceseed
by RAM to get multiple patches of uniform size. These patches are then fed into the SAM image
encoder, where Position Embedding Interpolation (PEI) is applied to support arbitrary input sizes.
An oriented prompt, consisting of a horizontal bounding box and three keypoints aligned with the
orientation of the object, is encoded via the SAM prompt encoder to guide segmentation. Coarse
masks and edges are generated and refined progressively to yield accurate high-resolution segmen-
tation. Fd and Fs denote deep image features from decoder and shallow image features from image
encoder.

To demonstrate its practical utility, we further apply SOPSeg to assist in constructing a small object
instance segmentation dataset. Specifically, we automatically generate approximately 709k instance
masks for small objects based on images and oriented bounding boxes from the SODA-A dataset,
followed by manual filtering to remove a small number of abnormal annotations. The resulting
dataset ReSOS (Remote Sensing Small Object Segmentation), represents the first large-scale in-
stance segmentation benchmark focused on small objects in remote sensing imagery. We plan to
publicly release both the model and the dataset to provide training and evaluation resources for
future research on small object analysis.

In summary, our contributions are threefold:

• We propose SOPSeg, a prompt-based framework that adapts SAM for small object instance
segmentation, integrating region-adaptive magnification and edge-aware refinement decod-
ing to enhance mask accuracy.

• We develop an oriented prompting mechanism enabling accurate segmentation of objects
at arbitrary orientations.

• We construct and release ReSOS dataset, the first large-scale instance segmentation dataset
specifically designed for small objects in remote sensing. It contains pixel-level annotations
for over 709k instances and aims to support future research.

2 RELATED WORK

Small Object Detection and Segmentation in Remote Sensing. Small object analysis in re-
mote sensing has attracted significant research interest due to its practical importance. Early de-
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tection methods relied on hand-crafted features and traditional machine learning classifiers Cheng
& Han (2016). However, these approaches struggled with the complex backgrounds and varying
scales characteristic of aerial imagery. Ding Ding et al. (2019) proposed a rotation-invariant de-
tector specifically designed for aerial images, while Yang Yang et al. (2019) introduced SCRDet to
handle the multi-scale and multi-orientation challenges. Recent methods have focused on feature
enhancement strategies. RMSIN Liu et al. (2024) employs interaction modules to effectively cap-
ture complex spatial scales and orientations for accurate segmentation in remote sensing imagery.
For instance, FCOS-RS Li et al. (2020) adapts the anchor-free FCOS detector for remote sensing
by incorporating multi-scale feature fusion. Similarly, Oriented R-CNN Xie et al. (2021) extends
Faster R-CNN Ren et al. (2016) with oriented region proposals to better capture arbitrarily oriented
objects. Despite progress in detection, instance segmentation of small objects remains largely un-
explored. The few existing works primarily focus on specific object categories. Zhang Zhang et al.
(2017) developed a ship instance segmentation method using polar coordinates, while Zhao Zhao
et al. (2021) proposed building extraction techniques. UGBS Yang et al. (2024) explored interactive
user guidance mechanisms to achieve more accurate building segmentation from high-resolution re-
mote sensing images, demonstrating the potential of human-in-the-loop approaches. However, these
category-specific approaches do not generalize to diverse small objects. The scarcity of segmenta-
tion methods stems from the lack of appropriate datasets and the inherent difficulty of obtaining
pixel-level annotations for tiny objects.

Segment Anything Model and Applications. The Segment Anything Model (SAM) Kirillov et al.
(2023) represents a paradigm shift in image segmentation through its foundation model approach.
SAM’s versatility stems from its flexible prompting mechanism. Users can specify objects of inter-
est through points, bounding boxes, or coarse masks, enabling interactive segmentation workflows.
Recent works have explored SAM’s potential in remote sensing applications. SAMRS Wang et al.
(2023) leverages SAM to automatically convert object detection datasets into instance segmentation
datasets, demonstrating its utility for large-scale annotation tasks. SAM2 Ravi et al. (2024) enhanced
segmentation accuracy on both images and videos. RSPrompter Chen et al. (2023a) introduces aux-
iliary prompts specifically designed for remote sensing imagery to improve SAM’s performance.
SAM-Adapter Chen et al. (2023b) proposes lightweight adapters to adapt SAM for domain-specific
tasks while preserving its zero-shot capabilities. ROS-SAM Shan et al. (2025) specifically targets
moving object segmentation in remote sensing videos by leveraging LoRA-based adaptation and a
context-aware decoder. It primarily focuses on objects with sufficient motion patterns rather than ad-
dressing the challenges of small object segmentation. HQ-SAM Ke et al. (2023) addresses the issue
of coarse mask boundaries in the original SAM by introducing a learnable High-Quality Output To-
ken. Matting Anything Li et al. (2024) extends SAM to the image matting task by predicting precise
alpha channels for objects with complex boundaries. Nevertheless, constrained by the resolution of
low-level features, existing approaches exhibit limited performance in small object segmentation —
a key challenge that this study seeks to systematically tackle.

3 METHODOLOGY

To bridge the gap between generic segmentation models and the unique demands of small object
segmentation in remote sensing, we propose SOPSeg, a prompt-based framework that introduces
three key improvements over SAM: a region-adaptive magnification strategy, an oriented prompt
mechanism, and an enhanced decoder with integrated edge prediction. The overall architecture is
illustrated in Figure 1.

3.1 REGION-ADAPTIVE MAGNIFICATION STRATEGY

The core challenge in small object segmentation lies in preserving spatial details during feature
extraction. SAM’s vanilla image encoder processes images at a fixed resolution, downsampling
features to 1/16 of the original size. For small objects occupying only 32× 32 pixels, this results in
feature representations of merely 2× 2 pixels, causing severe information loss.

Our region-adaptive magnification strategy addresses this limitation through adaptive region extrac-
tion and resizing. Given an input image and the bounding box b = (x, y, w, h) of a instance, we
extract a square local region with boundaries (xs, ys, S, S), where the size S is determined by the
object size d = max(w, h). Each region is then resized to a fixed resolution of Sin × Sin before
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Figure 2: (a) The relationship between the extracted region size S and object dimension d =
max(w, h). (b) Illustration of the oriented prompting mechanism for rotated objects. The final
prompt points include P1, C, and P2.

being fed into the model. The relationship between S and d is formulated as:

S =

{
k0 · d, if d < m

k · d+ (k0 − k) ·m, if d ≥ m
(1)

where: k = Smax−k0·m
Smax−m and satisfies the boundary condition S = Smax when d = Smax. A visual

illustration is provided in Fig. 2(a). We empirically set m = 32, k0 = 2, and Smax = 1024. Here,
k0 represents the initial region expand factor for objects smaller than the threshold m. Since all
regions are resized to a fixed input size Sin, the object magnification is Sin/S. Smaller S yields
larger magnification, which benefits small objects by enhancing fine details. For objects larger than
the threshold, appropriately reducing surrounding context increases their magnification while still
retaining essential context. This adaptive design balances detail preservation for small instances and
contextual integrity for large ones.

We compute the top-left coordinates (xs, ys) based on the desired region size:[
xs

ys

]
=

[
x
y

]
−

[
ax(S − w)
ay(S − h)

]
(2)

where ax and ay control the object’s position within the extracted region. During training, we set
ax, ay ∈ [0.3, 0.7] randomly to improve generalization capability, ensuring objects appear at various
positions rather than always centered.

SAM’s default 1024 × 1024 input resolution is designed for processing entire images containing
objects of various sizes. However, when focusing on small objects through region extraction, this
high resolution becomes computationally wasteful—most pixels represent irrelevant background
rather than the target object. Thus we set the input size to Sin = 256, which preserves sufficient
detail for accurate segmentation while significantly reducing computational overhead. For instance,
if a small object originally spans 32× 32 pixels, the extracted region size S = 64, and the object is
effectively magnified by a factor of Sin/S = 4.

Position Embedding Interpolation. Since SAM’s positional embedding weights are input-size
dependent, the pretrained embeddings trained on 1024× 1024 inputs cannot be directly reused. We
address this through bilinear interpolation:

PEtarget = Interpolate(PE1024, Sin, Sin) (3)

where Sin = 256 for small object processing. This interpolation preserves the relative spatial pat-
terns while adapting to the new resolution.

The combination of region extraction, magnification, and reduced input resolution creates an effi-
cient pipeline: small objects are first magnified to an adequate size, then processed at lower input
size without losing critical details.

3.2 ORIENTED PROMPT MECHANISM

Remote sensing objects frequently appear at arbitrary orientations, posing challenges for standard
segmentation models. To this end, we propose a strategy that encodes object orientation using
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strategically placed points, thereby enabling the original SAM—designed for axis-aligned bounding
boxes—to effectively handle rotated objects in aerial imagery, all without requiring any modifica-
tions to its architecture.

For each oriented bounding box, we extract three key geometric points: the geometric center C,
and the midpoints C1 and C2 of the two shorter sides. The line segment C1C2 naturally defines the
object’s principal axis. Apart from C, we generate two prompt points along the principal axis:

P1 =
C + C1

2
, P2 =

C + C2

2
(4)

Fig. 2(b) illustrates our oriented prompt mechanism on a real example from aerial imagery.

These points encode both spatial and directional information:

• The vector
−−−→
P1P2 implicitly represents the object’s orientation.

• The distance ||P1 − P2|| correlates with the object’s length along its principal axis.
• All points remain well within object boundaries, ensuring reliable prompting.

The three points (P1, C, P2) are directly processed through SAM’s pretrained point encoder:

Epoints = PointEncoder([P1, C, P2]) (5)

Combined with the horizontal bounding box prompt, this provides comprehensive spatial guidance:

Eprompt = Concat(BoxEncoder(bhorizontal), Epoints) (6)

This design maintains full compatibility with SAM’s pretrained weights while effectively handling
arbitrary orientations. The approach is particularly well-suited for elongated objects prevalent in
remote sensing, such as vehicles and ships, where the short-edge midpoints naturally capture the
object’s dominant direction.

3.3 ENHANCED DECODER WITH EDGE PREDICTION

Despite the region magnification strategy, small objects in remote sensing imagery still suffer from
boundary ambiguity due to complex backgrounds. We introduce an auxiliary edge prediction path
and progressive refinement, enhancing fine-grained delineation of small instances.

Stage 1: Parallel Edge Prediction. We augment the SAM decoder with a learnable edge token
Tedge, which collaborates with the original mask tokens Tmask to capture boundary-specific informa-
tion. The Tedge, Tmask, and prompt tokens perform bidirectional attention with the image features,
resulting in updated representations: T

(1)
edge, T(1)

mask, and Fd. These are then used to generate two
parallel outputs:

M0 = MLPmask(T
(1)
mask) ·Omask(Fd) (7)

E0 = MLPedge(T
(1)
edge) ·Oedge(Fd) (8)

Here, MLPedge and Oedge follow the same architectural design as the mask prediction modules in
SAM. M0 and E0 denote the initial mask and edge predictions at a resolution of 1/4 input size.

Stage 2: Progressive Refinement. Initial predictions capture basic structure but lack fine details
critical for small objects. We employ multi-scale refinement that gradually improves both masks
and edges through iterative processing. The refinement takes four inputs: deep image features Fd

after attention from the decoder, shallow features Fs from the image encoder, the original image I,
and the initial predictions P0 = [M0;E0] from Stage 1.

Both the shallow and deep image features first undergo 2× upsampling and channel dimension
reduction mapping for efficient processing. The shallow features F16s (Fs) are processed through
convolution, normalization, and 2× upsampling to produce F8s. Similarly, decoder features F16d

(Fd) are mapped and upscaled to F8d.

5
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Multi-Scale Refinement. The refinement operates across three spatial scales: 1/8 → 1/4 →
1/2 → 1/1, progressively enhancing both mask and edge predictions.

• Scale 1/8 to 1/4. We concatenate the upsampled features F8s and F8d with the downsam-
pled image I8 and predictions P8 downsampled from P0, and pass them through the first
residual refinement block R1:

X4 = R1([F8s;F8d; I8;P8]) (9)
The refined feature X4 is then mapped to updated predictions P4 = [M4;E4] via the
output head ϕ1:

P4 = ϕ1(X4) (10)
• Scales 1/4 to 1/2 to 1/1. We apply the same refinement pattern iteratively. At each scale
i ∈ {4, 2}, we use a residual refinement block Rj and an output head ϕj to generate
updated predictions:

Xi/2 = Rj([Xi; Ii;Pi]), Pi/2 = ϕj(Xi/2) (11)
where Ii is the image downsampled to resolution 1/i, while Pi is the output from last
iteration.

• IoU Prediction. At the final stage, the refined feature X1 is also used to predict the mask
quality score piou via a lightweight head consisting of a convolutional layer, ReLU activa-
tion, adaptive average pooling, and linear projection:

piou = IoU(X1) (12)

Optimization Objective. As a whole, we adopt a multi-task loss function that jointly supervises
mask prediction, edge localization, and mask quality estimation:

L =
∑

i∈{1,2,4}

(
Li

mask + Li
edge

)
+ λiouLiou (13)

Here, both Li
mask and Li

edge are composed of a sum of Binary Cross-Entropy (BCE) and DICE Mil-
letari et al. (2016) losses between the predicted outputs and the ground truth at scale i. The ground-
truth edge map is derived from the binary mask annotations and smoothed using a 3 × 3 Gaussian
filter to mitigate aliasing artifacts.

The term Liou employs a Smooth L1 loss between the predicted IoU score and the actual IoU com-
puted from the original-resolution mask, guiding the model to produce accurate mask quality esti-
mations. The hyperparameter λiou balances the contributions of different loss components. In our
implementation, we set λiou = 5.0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct prompted instance segmentation experiments —where the bounding box is
provided and the corresponding instance mask is predicted— on three representative remote sensing
datasets: iSAID Waqas Zamir et al. (2019), NWPU-VHR10 Su et al. (2019), and SAT-MTB Li
et al. (2023). The iSAID dataset is used for both training and evaluation, while NWPU-VHR10 and
SAT-MTB serve as benchmarks for assessing the generalization ability of our method.

To focus on typical small object categories prevalent in remote sensing scenarios, we select specific
classes from each dataset. For iSAID, we include: ship, plane, helicopter, small vehicle, large
vehicle, storage tank, and swimming pool. For NWPU-VHR10, we consider: ship, airplane, vehicle,
and storage tank. For SAT-MTB, we evaluate on ship and plane.

Evaluation Metrics. We evaluate segmentation performance using mean Intersection over Union
(mIoU) and boundary IoU (BIoU) Cheng et al. (2021) across all instances.

Implementation Details. We use the image encoder and prompt encoder from SAM-Large and
freeze their parameters during training. The enhanced decoder, initialized from SAM-Large weights,
trained with learning rates of 5× 10−5. The progressive refinement module is trained from scratch
with learning rates of 1 × 10−3. The model is trained for 32 epochs using the AdamW optimizer
and a cosine annealing learning rate schedule, with a batch size of 24.
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Table 1: Comparison of IoU (%) for different methods on the iSAID dataset. We report GFLOPs
(of 10 instance on a image), model parameters, and per-class IoU. Abbreviations: UP2(2× image
upsampling), ST (Storage Tank), LV (Large Vehicle), SV (Small Vehicle), HC (Helicopter), SP
(Swimming Pool).

Method GFLOPs Params Per-class IoU (%) mIoU
Ship ST LV SV HC SP Plane

SAM 1342 308M 79.86 74.62 75.53 62.14 61.52 72.77 75.13 71.65
SAM Up2 5368 308M 81.63 79.94 78.93 73.64 60.85 76.24 78.16 75.63
SAM Up4 21472 308M 82.93 81.69 80.36 77.59 62.58 79.58 79.74 77.78
HQ-SAM 1376 309.3M 79.20 72.73 74.50 59.06 61.22 71.65 76.94 70.76
ROS-SAM 1594 359.7M 81.61 81.41 78.94 72.35 61.31 79.10 76.52 75.89
UGBS 2172 79.4M 84.82 86.85 85.06 81.77 66.04 82.69 78.83 80.87
SOPSeg 1244 311M 87.14 88.54 87.23 85.28 67.55 84.34 80.63 82.96

4.2 COMPARISON WITH OTHER METHODS

Table 1 compares SOPSeg with several representative prompt-based segmentation methods fine-
tuned on the iSAID dataset. We include SAM Kirillov et al. (2023) as the foundational interactive
segmentation model, and additionally report its performance under 2× and 4× image upsampling.
For SAM enhancement approaches, we consider HQ-SAM Ke et al. (2023) and ROS-SAM Shan
et al. (2025). For CNN-based prompt segmentation method in remote sensing, we compare with
UGBS Yang et al. (2024). Since UGBS relies on one instance region as input, we adopt our pro-
posed RAM strategy to extract the surrounding regions, enabling a fair evaluation. The results show
that SOPSeg outperforms all competing methods across all categories, while incurring the lowest
computational overhead, requiring only 3M additional parameters beyond the SAM backbone.

The figure 3 shows visualization results of small object prompt-based segmentation on the iSAID
dataset, with all instances overlaid. Due to aggressive feature downsampling, SAM suffers from
object adhesion, especially on small targets like cars. ROS-SAM and UGBS partially alleviate
this issue but still struggle with boundary precision and object separation. In the first row, ROS-
SAM also incorrectly segments non-aircraft regions. Our method accurately preserves object shapes
across various scenes, with clear boundaries and well-separated instances, achieving results closest
to the ground truth.

Figure 3: Visualization results of small object segmentation methods on iSAID dataset.

Generalization testing. Table 2 evaluates method generalization on NWPU-VHR10 and SAT-MTB
datasets. SOPSeg consistently outperforms all baselines. Compared with the strongest baseline

7
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UGBS, SOPSeg yields larger improvements on SAT-MTB than NWPU, likely due to its stronger
robustness to cross-dataset distribution shifts.

Table 2: Generalization results on NWPU and SAT-
MTB datasets.

Method NWPU SAT-MTB
IoU BIoU IoU BIoU

SAM 78.70 68.56 58.72 57.49
HQ-SAM 79.47 69.46 58.57 57.4
ROS-SAM 82.84 75.09 68.43 67.26
UGBS 86.13 79.33 70.32 69.54
SOPSeg 86.55 80.49 73.38 72.56

Table 3: Evaluation on different decoder
architectures.

Method IoU BIoU

SAM 84.17 80.54
MatAnything 84.74 81.02
HQ-SAM 85.06 81.62
Our Decoder 85.38 81.98

Table 4: Ablation study results on the iSAID dataset. RAM: Region-Adaptive Magnification; OPM:
Oriented Prompt Mechanism; EDE: Enhanced Decoder with Edge Prediction. Abbreviations: ST
(Storage Tank), LV (Large Vehicle), SV (Small Vehicle), SP (Swimming Pool).

Method Ship ST LV SV Helicopter SP Plane mIoU

Base 79.86 74.62 75.53 62.14 61.52 72.77 75.13 71.65
+RAM 83.43 85.90 83.08 79.46 64.91 80.45 78.59 79.40
+RAM+OPM 85.64 88.17 86.02 83.98 65.33 84.22 78.47 81.69
+RAM+OPM+EDE 87.14 88.54 87.23 85.28 67.55 84.34 80.63 82.96

4.3 ABLATION STUDY

Effectiveness of Different Modules. Table 4 presents the ablation results on the iSAID dataset. We
progressively incorporate each component of the SOPSeg framework into a baseline model, which
fine-tunes the original SAM decoder using horizontal box prompts. Adding the Region-Adaptive
Magnification (RAM) module improves performance by 7.84% mIoU. The RAM module benefits
small vehicle and storage tank, where spatial details are often lost during standard downsampling.
The oriented prompt mechanism adds 2.29% over the RAM-only configuration. Finally, our en-
hanced decoder contributes an additional 1.27% improvement. This gain is more evident for classes
like plane and helicopter, which exhibit complex boundaries and fine structural details. These results
demonstrate that each module brings consistent performance gains, and their combination yields the
best overall segmentation performance.

Decoder Component Analysis. As shown in Table 3, we evaluate different decoder designs by
replacing our decoder with various alternatives. Our enhanced decoder achieves the best overall
performance, outperforming the original SAM decoder by 1.44% in BIoU and 1.21% in IoU. These
results demonstrate that incorporating edge prediction effectively preserves fine-grained details and
improves boundary accuracy for small object segmentation.

Input Resolution Analysis. Figure 4 analyzes the impact of different input sizes on both segmenta-
tion performance and computational efficiency. We evaluate four input resolutions—128, 256, 384,
and 512—to determine the optimal configuration for small object segmentation.

Figure 4(a) shows the per-category performance across different input sizes. An input resolution of
256 achieves the best overall performance across most categories, with particularly strong results
for ship, swimming pool, and small vehicle. In contrast, an input resolution of 128 significantly
degrades performance for categories like helicopter and plane, which rely heavily on fine-grained
spatial details for precise boundary delineation. Interestingly, storage tank performs best at 128
resolution, possibly due to its inherently simple and compact structure, which may become over-
smoothed or misrepresented when additional detail is introduced at higher resolutions. Larger input
sizes, such as 384 and 512, do not lead to proportional improvements over 256. Although marginal
improvements are observed in the plane category, these come at the cost of significantly higher
computational demands.
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Table 5: IoU results under different k0 settings
and magnification strategies in RAM across in-
stance sizes. Abbreviation: Up2(2× image up-
sampling).

Tiny
<16

Small
16∼32

Middle
>32

All

k0 = 1.2 79.7 85.1 86.7 84.7
k0 = 2 80.7 85.7 87.3 85.4
k0 = 4 79.9 84.8 86.9 84.8

w/o adaptive, Up2 77.4 84.5 86.8 84.1
w/o adaptive, Up4 78.7

(+1.3)
84.9

(+0.4)
86.9

(+0.1)
84.6

(+0.5)
w/ adaptive 80.7

(+2.0)
85.7

(+0.8)
87.3

(+0.4)
85.4

(+0.8)

Figure 4: The impact of input size on (a) class-
wise IoU and (b) mean class IoU and computa-
tional cost.

Figure 4(b) presents the computational analysis. The mIoU curve peaks at a resolution of 256,
confirming it as the optimal choice in terms of accuracy. Meanwhile, GFLOPs (for one instance)
increase dramatically with higher resolution.

Effect of Magnification Strategies. As shown in Table 5, we further divide instances into three
groups according to their bounding-box size, defined by the maximum side length. Smaller k0 values
correspond to higher magnification but reduced context. A moderate setting (k0 = 2) achieves the
best balance. The lower part in Table 5 shows that adaptive magnification consistently achieves
the highest IoU across all size ranges, with particularly notable improvements for Tiny and Small
objects.

4.4 EVALUATION ON THE CONSTRUCTED DATASET

Leveraging the strong small object segmentation capability of the proposed SOPSeg, combined
with manual filtering, we constructed the ReSOS (Remote Sensing Small Object Segmentation)
dataset based on images and oriented bounding boxes from SODA-A Cheng et al. (2023), containing
pixel-level annotations for over 709k instances. This dataset provides a solid foundation for the
evaluation and advancement of small object segmentation techniques. Due to page constraints, a
detailed description of the dataset is provided in the appendix.

Table 6: Comparison of instance segmentation results (AP, %) on our constructed dataset. Abbrevi-
ations: ST (Storage Tank), LV (Large Vehicle), SV (Small Vehicle), SP (Swimming Pool).

Method Plane Helicopter SV LV Ship Container ST SP AP

SparseInst 8.6 0.1 6.6 8.3 8.7 10.8 26.7 36.9 13.3
Mask2Former 25.0 2.2 8.4 12.1 13.6 15.2 33.5 23.8 16.7
MaskDINO 41.0 13.1 22.9 35 36.7 40.1 46.5 45.6 35.1

We evaluated three methods on ReSOS(Table 6), where MaskDINO achieved the highest Average
Precision (AP). Results show large objects segment better, while small vehicles and helicopters
remain most challenging, underscoring the need for improved small object segmentation.

5 CONCLUSION

We proposed SOPSeg, a prompt-based framework with region-adaptive magnification, oriented
prompts, and an edge-aware multi-scale refinement decoder for accurate small object segmenta-
tion in remote sensing imagery. Together with the new ReSOS dataset, SOPSeg provides a strong
benchmark and resource to advance future research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Keyan Chen, Chenyang Liu, Hao Chen, Haotian Zhang, Wenyuan Li, Zhengxia Zou, and Zhenwei
Shi. Rsprompter: Learning to prompt for remote sensing instance segmentation based on visual
foundation model. arXiv preprint arXiv:2306.16269, 2023a.

Tianrun Chen, Lanyun Zhu, Chaotao Ding, Runlong Cao, Yan Wang, Zhihui Li, Lina Sun, Peng
Mao, and Yao Zang. Sam-adapter: Adapting segment anything in underperformed scenes. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 3359–
3368, 2023b.

Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C Berg, and Alexander Kirillov. Boundary
iou: Improving object-centric image segmentation evaluation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 15334–15342, 2021.

Gong Cheng and Junwei Han. A survey on object detection in optical remote sensing images. ISPRS
Journal of Photogrammetry and Remote Sensing, 117:11–28, 2016.

Gong Cheng, Xiang Yuan, Xiwen Yao, Kebing Yan, Qinghua Zeng, Xingxing Xie, and Junwei
Han. Towards large-scale small object detection: Survey and benchmarks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(11):13467–13488, 2023. doi: 10.1109/TPAMI.
2023.3290594.

Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu. Learning roi transformer for oriented
object detection in aerial images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2849–2858, 2019.

Lei Ke, Mingqiao Ye, Martin Danelljan, Yu-Wing Tai, Chi-Keung Tang, Fisher Yu, et al. Segment
anything in high quality. Advances in Neural Information Processing Systems, 36:29914–29934,
2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Chengzheng Li, Chunyan Xu, Zhen Cui, Dan Wang, Tong Zhang, and Jian Yang. Feature-attentioned
object detection in remote sensing imagery. In 2020 IEEE International Conference on Image
Processing (ICIP), pp. 3886–3890, 2020.

Jiachen Li, Jitesh Jain, and Humphrey Shi. Matting anything. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1775–1785,
June 2024.

Shengyang Li, Zhuang Zhou, Manqi Zhao, Jian Yang, Weilong Guo, Yixuan Lv, Longxuan Kou,
Han Wang, and Yanfeng Gu. A multitask benchmark dataset for satellite video: Object detection,
tracking, and segmentation. IEEE transactions on geoscience and remote sensing, 61:1–21, 2023.

Sihan Liu, Yiwei Ma, Xiaoqing Zhang, Haowei Wang, Jiayi Ji, Xiaoshuai Sun, and Rongrong Ji.
Rotated multi-scale interaction network for referring remote sensing image segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 26658–26668, June 2024.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural net-
works for volumetric medical image segmentation. In 2016 fourth international conference on
3D vision (3DV), pp. 565–571. Ieee, 2016.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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