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Abstract
To further preserve model weight privacy and
improve model performance in Federated Learn-
ing (FL), FL via Over-the-Air Computation (Air-
Comp) scheme based on dynamic power control
is proposed. The edge devices (EDs) transmit the
signs of local stochastic gradients by activating
two adjacent orthogonal frequency division multi-
plexing (OFDM) subcarriers, and majority votes
(MVs) at the edge server (ES) are obtained by
exploiting the energy accumulation on the subcar-
riers. Then, we propose a dynamic power control
algorithm to further offset the biased aggregation
of the MV aggregation values. We show that the
whole scheme can mitigate the impact of the time
synchronization error, channel fading and noise.
The theoretical convergence proof of the scheme
is re-derived.

1. Introduction
With the substantial increase in computation ability and
storage capacity of modern intelligent terminals, distributed
FL is utilized the most widely, which provides a promising
learning paradigm for the current privacy computation. By
pushing model training locally (McMahan et al., 2023), FL
is able to build global models without directly sharing data.
This mechanism largely protects the privacy and security
(Chen et al., 2021a) of users and addresses the potential for
data leakage in the context of large amounts of data.

However, there are still numerous key challenges in deploy-
ing practical FL applications in the real world due to re-
source constraints (Chen et al., 2021b) and privacy concerns
in wireless networks. Several works (Melis et al., 2019)
show that if the model parameters or gradients exchanged
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Table 1. The communication cost of different gradient compression
schemes, when training a D-dimensional model with M EDs.

ALGORITHM BITS PER ITERATION

SGD 64MD
QSGD (2 + LOG(2M+ 1))MD
TERNGRAD (2 + LOG(2M+ 1))MD
SIGNSGD WITH MV 2MD

between EDs and ES are attacked, sensitive information
about local data is still exposed. In addition, a large num-
ber of model parameters need to be repeatedly transmitted
over wireless channels (Li et al., 2020), thus requiring huge
communication resources, which is a significant bottleneck.

1.1. Related Work

Gradient compression: To overcome the above problems,
a prospective solution is gradient quantization, such as
SignSGD, QSGD (Alistarh et al., 2017), and cpSGD (Agar-
wal et al., 2018). But transmitting the gradients can also
have some privacy leakage (Zhu et al., 2019), so deeper
compression methods should be considered more. In (Bern-
stein et al., 2018), it is shown that actually gradients are
really useful in terms of the direction rather than size. Thus,
SignSGD considers to quantize gradients, achieving a 32
times data compression. Also, based on the FL scheme, it is
difficult to recover the data information used in the model by
hijacking the gradient direction due to reducing the transmis-
sion of information (Akoun & Meyer, 2022), thus ensuring
the privacy and security of the data information.

Over-the-air Computation: The second option to con-
sider is to adopt the weight superposition over the air, i.e.,
AirComp (Liu et al., 2020). This combination of communi-
cation and computation reduces the latency and bandwidth
requirements (Goldenbaum et al., 2013). However, the usual
AirComp scheme requires channel state information (CSI)
at the EDs or the ES. To alleviate the channel estimation
burden, (Zhu et al., 2021) considered that EDs use truncated-
channel inversion (TCI) to transmit orthogonal phase shift
keying (QPSK) symbols on the orthogonal frequency divi-
sion multiplexing (OFDM) subcarrier instead of transmit-
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ting the gradient or the direction of the gradient directly,
which corresponds to a double layer of privacy encryption
protection and guarantees absolute security of model weight
privacy during communication.

Dynamic Power Control: In the context of the above ap-
proach, the privacy security as well as communication over-
head issues are effectively addressed, but the multi-user
parameter aggregation produces discrepancies on training
process of the global model, which has become the focus of
the research. Therefore, we consider to adjust transmitting
power (Li et al., 2022) with EDs in order to offset the impact
of the user parameters on the whole model in the opposite
direction of the model convergence during the parameter
aggregation, thus achieving better model accuracy.

1.2. Contributions

All the contributions can be listed as follows:

(1) By considering FL training based on SignSGD with
Majority Vote (MV), an Over-the-Air Computation scheme
is utilized in which symbols (i.e., directions) of random
gradients are transmitted by using OFDM symbols. The
MV is obtained by energy detection on the ES, so that CSI
is not required at the EDs and ES.

(2) We design a dynamic power control scheme that trades
off MV and the transmitting signs of each ED to offset
the effect of the EDs parameters on the whole model in
the opposite direction of the model convergence when the
parameters are aggregated.

(3) Then, we re-derive the theoretical convergence proof of
the proposed scheme, when MVs are obtained by employing
the FL scheme. The experiment results can prove that the
proposed scheme is robust to time synchronization errors
because it does not encode signs of local stochastic gradients
into the phase of the transmitted symbols.

A figure demonstrating the training process is given in Ap-
pendix A.

2. Overview of Our Approach
2.1. Federated Learning With Majority Vote

We consider an FL system comprising a single edge server
coordinating the learning process across M EDs. The aim
of FL can be represented as finding an optimal model pa-
rameter vector w∗ that minimizes F (w), i.e.,

w∗ = min
w∈Rq

F (w) = min
w∈Rq

1

|D|
∑

∀(x,y)∈D

f(w;x, y), (1)

where D =
⋃M

m=1 {Dm} is the global dataset set and
f(w,x, y) is the sample-wise loss function indicating the
prediction error, for example, (x, y) with the FL model pa-

Algorithm 1 signSGD-MV based on AirComp
Input: learning rate η, current received global model
w(n), M EDs each with ḡ

(n)
m , initialize w(0).

repeat
On Each Edge Device:
calculate the sign ḡ

(n)
m of stochastic gradients.

update w(n+1) = w(n) − ηv(n).
On Edge Server:
pull the sign ḡ

(n)
m from m ED with non-coherent energy

detection via AirComp.
broadcast v(n) = sign(

∑M
m=1 ḡ

(n)
m ) to all the EDs.

until reach convergence

rameters w = [w1, . . . , wq]
T ∈ Rq , and q is the number of

model parameters.

In the training process, EDs exploit a mini-batch stochastic
gradient descent method to calculate local gradient g̃(n)

m ≜
[g̃

(n)
m,1, . . . , g̃

(n)
m,q]T with respect to the current received global

model w(n) as

g̃(n)
m = ∇Fm

(
w(n)

)
=

1

db

∑
∀(xℓ,yℓ)∈D̃m

∇f
(
w(n),xℓ, yℓ

)
,

(2)
where D̃m ⊂ Dm is selected data batch from local data
set and db = |D̃m| as the batch size. In the context of
FL processing, SignSGD with the majority vote approach
(Bernstein et al., 2018) is investigated to solve above prob-
lems. The trained real stochastic gradients are converted
into sign values by one-bit quantization scheme, which are
denoted as ḡ(n)

m,i ≜ sign(g̃
(n)
m,i). Thus, the parameter MV of

the ith global gradient estimate at the ES would be enforced
as follows:

v
(n)
i = sign

(
M∑

m=1

ḡ
(n)
m,i

)
. (3)

Afterwards, the ES pushes v(n) = [v
(n)
1 , . . . , v

(n)
q ]T to the

EDs, and the models at the EDs are updated as:

w(n+1) = w(n) − ηv(n). (4)

This procedure is repeated consecutively until a predeter-
mined convergence criterion is achieved. Combining above
process, the corresponding scheme is Algorithm 1.

2.2. Transmitter Design - Dynamic Power Control on
FSK-MV

We concentrate on uplink communication process based on
the MV with AirComp (i.e., FSK-MV (Sahin et al., 2021)).
At the nth communication round, the superposed symbol on
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the lth subcarrier of mth OFDM symbol can be given by:

y
(n)
l,s =

M∑
m=1

√
P

(n)
m H

(n)
m,l,st

(n)
m,l,s + n

(n)
l,s , (5)

where H
(n)
m,l,s ∈ C is the channel coefficient with identi-

cal Rayleigh distribution, and t(n)m,l,s ∈ C is the transmit-

ted symbol, and n
(n)
l,s is an additive white Gaussian noise

vector on the lth subcarrier for l ∈ {0, 1, . . . , A − 1} and
s ∈ {0, 1, . . . , S − 1}. The EDs perform a low-complexity
operation that each ED activates one of the two adjacent
subcarriers determined by the time-frequency index pairs
to transmit the signs of the gradients. To express this en-
coding operation rigorously, let f be a bijective function that
maps i ∈ {1, 2, . . . , q} to the distinct pairs (s+, l+) and
(s−, l−). Thus, the mth ED determines the following bins
of modulation symbol t(n)m,l+,s+and t

(n)
m,l−,s− , ∀i, as

t
(n)
m,l+,s+ =

√
E0s

(n)
m,iI

[
ḡ
(n)
m,i ≜ sign(g̃

(n)
m,i) = 1

]
, (6)

and

t
(n)
m,l−,s− =

√
E0s

(n)
m,iI

[
ḡ
(n)
m,i ≜ sign(g̃

(n)
m,i) = −1

]
, (7)

where E0 = 2 is a factor to normalize the OFDM symbol
energy, s(n)m,i is a randomization symbol on the unit circle,
and I is the indicate function. As a special case of the
mapping function f, if s− = s+ and l− = l+ + 1, which
holds for all i, then the adjacent subcarriers of m+th OFDM
symbol is used for the voting scenario, which corresponds
to frequency-shift keying (FSK) on the OFDM subcarriers.

Dynamic Power Control: Based on the above analysis of
the communication process, we consider the provision of a
larger proportion of biased gradient symbols and larger EDs
with Gaussian white noise. Therefore, we formulate the
dynamic power control design problem in the direction of
convergence of the balanced global model in the following
form as:

P (n)
m = P (n−1)

m +

∣∣∣∣∣1q
q∑

i=1

[
I
ḡ
(n)
m,i=v

(n)
i

− I
ḡ
(n)
m,i ̸=v

(n)
i

]∣∣∣∣∣ , (8)

where v(n)i and ḡ
(n)
m,i is form of model parameter aggregation

when channel transmission is not considered and the ith
parameter of the vector shared by mth ED, respectively.
Specially, the initialized transmission power is P

(0)
m = 1.

The above power control scheme is adopted to be able to
achieve the convergence direction convergence with the
global model. See the proof in Appendix F.

2.3. Receiver Design - Non-coherent Energy Detection

Based on above theory, we choose to use a non-coherent en-
ergy detection (Adeli & Şahin, 2022) approach to obtain the

MV. At the receiver ES, we first identify the pairs (s+, l+)
and (s−, l−), and observe the superposed symbols, which
are expressed as:

r
(n)
l+,s+ =

√
E0

∑
∀m,ḡ

(n)
m,i=1

√
P

(n)
m h

(n)
m,l+,s+s

(n)
m,i + n

(n)
l+,s+ ,

(9)
and

r
(n)
l−,s− =

√
E0

∑
∀m,ḡ

(n)
m,i=−1

√
P

(n)
m h

(n)
m,l−,s−s

(n)
m,i + n

(n)
l−,s− .

(10)
Subsequently, we exploit an energy detector to obtain the
MV for the ith gradient as

v
(n)
i = sign

(
∆

(n)
i

)
, (11)

where ∆(n)
i is the sum energy to detect the votes and ∆

(n)
i =

e+i −e−i , whose derivation process is shown in Appendix B.
Also, e+i and e−i are the energies of the superposed symbols
on adjacent subcarriers.

3. Error Probability Analysis and
Convergence Rate Performance

To facilitate subsequent analysis of convergence as well as
error probability, several standard assumptions (Shi et al.,
2022) are shown as Appendix C.

3.1. Error Probability Analysis

Received Signal Power of MV: The above scheme deter-
mines the correct MV by comparing e+i and e−i directly.
Also, let M+

i and M−
i be the number of EDs that vote for

ḡ
(n)
m,i = 1 and ḡ

(n)
m,i = −1, respectively. Then, we obtain the

expressions of the average received signal power as µ+
i and

µ−
i with the following lemma:

Lemma 3.1. For the given M+
i and M−

i , µ+
i and µ−

i can
be calculated as

µ+
i ≜ E

[
e+i
]
= E0M

+
i ϑ+ σ2

n, (12)

and
µ−
i ≜ E

[
e−i
]
= E0M

−
i ϑ+ σ2

n, (13)

respectively. The parameter ϑ is the average value of trans-
mission power for all i, which is equivalent to a constant.
The proof is given in Appendix B.

Bit Error Probability Analysis: Based on several assump-
tions provided in Appendix C, we proceed to analyze the
error probability in the sign aggregation process. Accord-
ing to the Appendix F, the performance of our scheme is
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bounded by probability of misidentifying the correct sign
for the ith gradient, which is obtained by:

P err
i ≜ Pr

(
sign

(
∆

(n)
i

)
̸= sign

(
g
(n)
i

))
, (14)

which is determined by the level of noise introduced by the
data-stochasticity and wireless channel. For a more accurate
formalization, P err

i for MV can be obtained as follows:
Lemma 3.2. (Error probability for MV). Under the dynamic
power control method, we derive that stochasticity-induced
error in the wireless fading channel for all i is bounded as:

P err
i ≤

K
2 ·

√
2/(3Ri)

K + 2/β
+

1/β

K + 2/β
, (15)

where Ri =
√
db

|g(n)
i |
σi

is defined as the gradient-signal-
to-data-noise ratio (Zhu et al., 2021). Also, the resultant
gradient variance reduces from σ2

i to σ2
i /db according to

Assumption C.5 and Equation (2). We provide the proof in
Appendix D. And Lemma 3.2 implies the following results:
Corollary 3.3. (Legitimate EDs). For qi < pi, X must be
larger than K/2, meanwhile must satisfying P err

i < 1/2.

3.2. Convergence Rate over Fading Channel

It is obvious that the proposed scheme maintains the con-
vergence of the original MV. Based on this, we re-derive
the theoretical convergence performance of the proposed
scheme as follows:
Theorem 3.4. Consider a FL system based on the proposed
scheme, for the mini-batch size db = N/γ and the learn-
ing rate η = 1/

√
∥L∥1db, the convergence rate in fading

channel is given by

E

[
1

N

N−1∑
n=0

∥∥∥g(n)
∥∥∥
1

]
≤ 1√

N

(
τ
√

∥L∥1
(
F (w(0))− F ∗ +

γ

2

)
+

2
√
2

6

√
γ∥σ∥1

)
,

(16)

where γ is a positive integer, τ=
(
1 + 2

βK

)
1√
γ , and β ≜

E0ϑ
σ2
n

. More details of the convergence analysis are shown in
Appendix F. The detailed convergence rate analysis can be
found in Appendix G.
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4. Experiments
For experiments, we investigate benchmark image dataset:
MNIST. We run our experiments with 31 normal EDs, and
partition the training dataset according to the labels. For fair
comparison, we set the same hyper-parameters (batch size
as 128, local epoch as 1, and learning rate as 0.004). We
compare our proposed scheme with two baseline algorithms:
SignSGD, FedAvg and FSK-MV to obtain performance
results.

In FSK-MV and the proposed algorithm, we configure the
arrival time of the EDs signal to be different. In the ex-
periments on the MNIST dataset, we compare in indepen-
dent identically distributed (iid) as well as non-independent
identically distributed (non-iid) data to demonstrate more
precisely the performance advantages and disadvantages of
the algorithm compared to existing designs.

Figure 1. Test accuracy versus communication round under iid
setting on the MNIST dataset.

Figure 2. Test accuracy versus communication round under non-iid
setting on the MNIST dataset.

In Figures 1 and 2, we provide the test accuracy results for
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iid/non-iid data by taking time-synchronization errors. For
two baseline algorithms, simple noise-free aggregation is
not otherwise optimized, and the aggregation of parameters
leads to slightly worse error accuracy than the proposed
algorithm. Also, the results about the proposed scheme
and FSK-MV indicate that both have a high level of test
accuracy with the time synchronization error.

Due to the dynamic power control scheme, our test results
are still superior to the FSK-MV even under the terrible
environmental conditions. Also the usage of non-coherent
detection causes high test accuracy without the utilization
of CSI at the ED. The ultimate experimental results indi-
cate that the whole scheme can mitigate the impact of time
synchronization error, channel fading and noise.
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A. Training Process of Federated Learning via Non-Coherent Over-the-air Computation
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Figure 3. The FL system of the proposed scheme comprising of M EDs coordinated by an ES.

B. Details of Non-Coherent Energy Detection
After exploiting the modulation and power control scheme at the transmitter side, we complete the symbol transmission
through the Aircomp scheme. Then, we can obtain the model parameters for uplink aggregation at the receiver ES side and
we assume that CSI is not available at this time.

It is known that ∆(n)
i = e+i −e−i is the sum of the energy values for which the detection vote is 1 or -1, where e+i ≜ |r(n)l+,m+ |22

and e−i ≜ |r(n)l+,m+ |22 , ∀i. At the receiver side, it is not expected to recover the sign of the local stochastic gradient, since we
need the vote summation, and do not exploit any method to resolve the interference introduced by the channel. Instead, the
choice is to exploit the interference for aggregation and to compare the energy magnitude on two different subcarriers to
detect the MV in (11).

Here the interference usage for aggregation means that we incorporate the transmitting power, noise power and other channel
factors together into the subcarriers energy magnitude. This operation is equivalent to using the interference term as the
standard content of the detection, and then performing an one-bit quantization scheme.

The Proof of Lemma 3.1: According to the above description, the specific proof details are obtained as follows. We assume
that the multipath channels between the EDs and the ES are independent. To simplify the notation, we omit the index n.
Since (9) is a weighted summation of independent complex Gaussian random variables with zero mean and unit variance
(i.e., channel coefficients), t(n)l+,m+ is a zero mean random variable, where its variance is

µ+
i = E

[
e+i
]
= E

[∣∣∣r(n)l+,m+

∣∣∣2
2

]
= E

E0

∑
s̄
(n)
∀m,i=1

Pm + σ2
n


= E0M

+
i E [Pm] + σ2

n = E0M
+
i ϑ+ σ2

n.

(17)

The same analysis can be done for µ−
i .
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As given in Lemma 3.1, µ+
i and µ−

i are linear functions of M+
i and M−

i . Also, we obtain the correct MV because the
symbols energy may not coherently add up. However, the detection performance depends on the parameter ϑ that has an
efficient trade-off about the direction of convergence of the global model on e+i and e−i .

C. Assumptions for The Subsequent Analysis
In this work, we consider the well-known Lipschitz continuity utilized to explain some of the assumptions. Moreover,
in order to make the developed theory applicable to neural networks rather than assuming a convex loss function, we
require a lower bound. Specially, it is worth noting that the minimum assumption required to guarantee convergence to the
stabilization point.
Definition C.1. A function f is L-Lipschitz over a set s with respect to a norm ∥ · ∥ if there exist a real constant L > 0 such
that ∥f(y)− f(x)∥ ≤ L∥y − x∥,∀x,y ∈ S.
Lemma C.2. (Lemma 1.2.3 (Allen-Zhu, 2018)). For a differentiable function f : RQ → R, let ∇f be L-Lipschitz on RQ

with respect to norm ∥ · ∥2. Then, for any y,y from RQ,∣∣f(y)− f(x)−∇f(x)T(y − x)
∣∣ ≤ L

2
∥y − x∥22. (18)

Assumption C.3. (Bounded Loss Function). For all parameter vectors w, the lower bound of the associated loss function is
some value F ∗, F (w) ≥ F ∗,∀w.

Assumptions C.3 and C.4 as follow, on the Lipschitz smoothness and bounded variance, respectively, are standard in the
stochastic optimization literature.
Assumption C.4. (Smoothness). Let g denote the gradient of the loss function F (w) evaluated at w. For all w and w′, the
expression from (21) is given by

|F (w′)− (F (w)− gT(w′ −w))| ≤ 1

2

q∑
i=1

Li (w
′
i − wi)

2
, (19)

where we can assume that there exists a vector of non-negative constants L = [L1, . . . , Lq]
T.

Assumption C.5. (Variance bound). The stochastic gradient estimates g̃k = [g̃k,1, . . . , g̃k,q]
T
= ∇Fk

(
w(n)

)
,∀k are

independent and unbiased estimates of g=[g1, . . . ,gq]
T=∇F (w) (the true gradient) with a coordinate bounded variance,

i.e.,
E [g̃k] = g,∀k, (20)

E
[
(g̃k,i − gi)

2
]
≤ σ2

i /db,∀k, i, (21)

where σ = [σ1, . . . , σq]
T is a non-negative constant vector, g̃k,i and gi denote the ith element of g̃k and g.

After these analysis above, another significant assumption is that the data-stochasticity induced gradient noise. Meanwhile,
this assumption causes the discrepancy between g̃k and g, which is unimodal and symmetric as verified by experiments in
(Bernstein et al., 2018) and formally described as follow.
Assumption C.6. (Unimodal, symmetric gradient noise). For any given w, each elements of the vector g̃k,∀k, has a
unimodal distribution that is also symmetric around its mean.

At this time, it can be obviously appreciated that Gaussian noise is a special case. Noting that even for small batches of
other magnitudes, we expect the central limit theorem to be in effect and to bring the typical gradient noise distribution close
to a Gaussian distribution.
Assumption C.7. (Independent, identical, and unbiased gradients). The local stochastic gradient estimates are independent
and unbiased, i.e., ED̃m

[
g̃
(t)
m,i

]
= g

(n)
i ,∀m, i.

Assumption C.8. (Exponential probability distribution). For given M+
i and M−

i , e+i and e−i are exponential random
variables, where their means are µ+

i and µ−
i , respectively.

Assumption C.7 does not claim that the local stochastic gradients are unbiased estimates of the global gradients. Therefore,
they are accommodated to heterogeneous data distribution scenarios where the sum of local stochastic gradients is unbiased.

7
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D. The proof of Lemma 3.2

We consider the establishment of equivalent mathematical events sign(∆(n)
i ) = sign(g

(n)
i ) described by a well-defined

random variable with known distribution. To address this, assume that sign(g(n)i ) = 1 as a standard. Let X denote the
number of edge devices with correct sign at the ith element of the gradient vector, namely, with sign(g̃

(n)
m,i) = sign(g

(n)
i ),

i.e., sign(g(n)i ) = 1. For the scenario, the random variable X can then be model as the sum of K independent Bernoulli trials,
and binomial with success probability and failure probability denoted by:

pi ≜ P
[
sign

(
g̃
(n)
m,i

)
= sign

(
g
(n)
i

)]
, (22)

and
qi ≜ P

[
sign

(
g̃
(n)
m,i

)
̸= sign

(
g
(n)
i

)]
, (23)

where pi + qi = 1. They are intuitively determined by the randomness of the data.

The Proof of Error Probability: Regarding the bounds on stochasticity-induced error, we mainly deal with the term of
P err
i . Through the previous descriptions, the following treatment is available for (14), for all m. This implies that

P err
i =

M∑
M+

i =0

P
[
sign

(
∆

(n)
i

)
̸= 1 | X = M+

i

]
P
[
X = M+

i

]
. (24)

According to the properties of Bernoulli distribution, the second term on the right side of the equation can be expressed as
follow:

P
[
X = K+

i

]
=

(
K
K+

i

)
p
K+

i
i q

K−K+
i

i . (25)

To calculate P
[
sign(∆

(n)
i ) ̸= 1 | X = M+

i

]
, we need to derive the probability problem in dynamic power control, which

can be shown as
P
(
sign(∆i) ̸= sign(g

(n)
i )

)
= perr

i ,

P
(
sign(∆i) = sign(g

(n)
i )

)
= 1− perr

i ,

P
(
sign(g̃

(n)
k,i ) ̸= sign(q

(n)
i )

)
= qi,

P
(
sign(g̃

(n)
k,i ) = sign(g

(n)
i )

)
= 1− qi.

(26)

Also, we can obtain the probability of the dynamic power control term as [(1− peri ) (1− qi)]− (perri · qi) = (1−perri −qi).
Based on the similarity analysis in (Şahin et al., 2022), it is simple to prove that e+i and e−i are exponential random variables.
And we derive the dynamic power control term in terms of energy detection (i.e., probabilistic representation) as

P
[
sign(∆

(n)
i ) ̸= 1 | X = M+

i

]
=

(1− P err
i − qi)K

−
i E0ϑ+ σ2

n

KE0ϑ+ 2σ2
n

. (27)

Then, further combining the terms in (27) to simplify, an upper bound on P err
i can be completed as

P err
i ≤

K∑
K+

i =0

K−
i (1− qi)E0ϑ+ σ2

n

KE0ϑ+ 2σ2
n

·
(

K
K+

i

)
p
K+

i
i q

K−K+
i

i

=

K∑
K+

i =0

(
K −K+

i

)
· piE0ϑ+ σ2

n

KE0ϑ+ 2σ2
n

·
(

K
K+

i

)
p
K+

i
i q

K−K+
i

i .

(28)

Analysis of (28) shows that the right-hand side of the inequality can be split into two parts and solved for separately by
utilizing the properties of binomial coefficients.

8



Submission and Formatting Instructions for FL-ICML 2023

(1) The-first-part can be obtained as

K∑
K+

i =0

(
K −K+

i

)
piE0ϑ

KE0ϑ+ 2σ2
n

(
K
K+

i

)
p
K+

i
i q

K−K+
i

i

=
K · pi

K + 2/β
(pi + qi)

K −
K∑

K+
i =0

pi ·K+
i

k + 2/β

(
K
K+

i

)
p
K+

i
i q

K−K+
i

i

=
Kpi

K + 2/β
−

piE
(
K+

i

)
K + 2/β

=
Kpi (1− pi)

K + 2/β
=

K (1− qi) qi
K + 2/β

.

(29)

(2) The-second-part can be obtained as

K∑
K+

i

σ2
n

KE0ϑ+ 2σ2
n

(
K
K+

i

)
p
K+

i
i q

K−K+
i

i

=
1/β

K + 2/β

(
K
K+

i

)
p
K+

i
i q

k−k+
i

i

=
1/β

K + 2/β
(pi + qi)

K
=

1/β

K + 2/β
.

(30)

Thus, this upper bound on P err
i can be obtained after combining (29) with (30) as

P err
i ≤ Kqi (1− qi) + 1/β

K + 2β
. (31)

Expecting to obtain a more accurate upper bound, we further scale for qi (1− qi), and an established fact is qi < 1/2.

y(a) = a(1− a)− ba
(
0 < a < 1

2 , 0 < b < 1
)
, (32)

where a is substituted with qi, and b represents the slope of the function. Then we need to process (32) with y′(a) =
(1− b)− 2a = 0, and get a = (1− b)/2 ∈

(
0, 1

2

)
. Under the analysis of function monotonicity, it is necessary to ensure

that y(a) > 0 holds, which gives 0 < b < 1/2. Ultimately, we can rewrite (31) in the form as follow:

P err
i ≤ Kqi/2

K + 2/β
+

1/β

K + 2/β
. (33)

To proceed with, we need a bound on qi that can be associated with the signal-to-noise ratio of a component of the stochastic
gradient as Si, which is defined in Lemma 3.2.

Under the unimodal symmetric gradient noise assumption mentioned in Assumption C.6, we can obtain the following bound
on qi. The failure probability for the sign bit of a single ED is exploited by the following Lemma D.1.

Lemma D.1. (Failure probability under conditions of unimodal symmetric gradient noise). Based on several previous
assumptions, the failure probability satisfies:

qi = P
[
sign

(
g̃
(n)
k,i

)
̸= sign

(
g
(n)
i

)]
≤

{
2
9

1
R2

i
, if Ri >

2√
3

1
2 − Ri

2
√
3
, otherwise,

(34)

which is less than 1/2 for all cases.

The proof process relies on the properties of certain probability distributions, which is captured in Appendix E. Under the
symmetry assumption, by exploiting the derivations in Lemma D.1, qi ≤

√
2σi

3|g(n)
i |√nb

still holds true. Then, we combine the

upper bound on qi with (33) to complete the proof of Lemma 3.2.

9
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E. The Proof of Lemma D.1
The Proof of Failure Probability: Under the background of Assumption C.5 and Assumption C.6, for a unimodal symmetric
random variable Y with mean µ and variance σ2, the following Gauss’ inequality holds:

P[|Y − µ| > y] ≤

{
4
9
σ2

y2 , if y
σ > 2√

3

1− y√
3σ

, otherwise.
(35)

Then applying symmetry followed by Gauss’ inequality, the failure probability can be obtained by

P
[
sign(g̃

(n)
k,i ) ̸= sign(gi)

]
= P

[
g̃
(n)
k,i − gi ≥ |gi|

]
=

1

2
P
[
|g̃(n)k,i − gi| ≥ |gi|

]
≤


2
9

σ2
i

db|g(n)
i |2

, if |g(n)
i |

σi/
√
nb

> 2√
3

1
2 − |g(n)

i |
2
√
3σi/

√
db
, otherwise.

(36)

Eventually, we complete the proof, which is utilised to infer Lemma 3.2.

F. The Proof of Theorem 3.4
Note that the OFDM symbols may non-coherently add up and their amplitudes may not be aligned in fading channel. Hence,
the MV calculated in (11) is different from the original MV given in (3). Then, we provide a complete overview of the
convergence performance. Firstly, we define the convergence rate (Zhu et al., 2021) as the rate at which the expected value
of average norm of the gradient of F (w) diminishes as the number of total communication rounds N and M, when the
training is done in the presence of the proposed scheme.

The Proof of Convergence Rate Analysis: The proof is carried out following widely-adopted strategy of the norm of
gradient with respect to the expected improvement made in a single algorithm step. And we compare this with total possible
improvement under Assumption C.3.

To begin with, we firstly bound the improvement of the objective for the data-stochasticity induced noise based on
Assumption C.4. For processing, we exploit the contents of (4) in our inference process as a way to decompose (the data and
the channel) stochasticity-induced error that we need to analyze. Thus, by utilising Assumption C.4 and (4), we can write as

F (w(n+1))− F (w(n)) ≤ g(n)T
(
w(n+1) −w(n)

)
+

1

2

q∑
i=1

Li

(
w

(n+1)
i − w

(n)
i

)2
.

(37)

Then, we exploit (4) to make a substitution with (ṽ
(n)
i )2 = 1 whether it is +1 or −1. Therefore, we have

F (w(n+1))− F (w(n)) ≤ −ηg(n)T ṽ(n) +
1

2

q∑
i=1

Li(ηṽ
(n)
i )2

=− η
∥∥∥g(n)

∥∥∥
1
sign

(
∆

(n)
i

)
+

η2

2
∥L∥1.

(38)

The first term on the right side of the equation can be analyzed to know that the value of sign(·) cannot be determined, so

10
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the term will have a randomness error. Thus, we then proceed to obtain as

F (w(n+1))− F (w(n)) ≤ −ηg(n)Tv(n) +
η2

2
∥L∥1

=− η∥g(n)∥1 +
η2

2
∥L∥1

+ 2η

q∑
i=1

|g(n)
i |I

[
sign

(
∆

(n)
i

)
̸= sign

(
g
(n)
i

)]
.

(39)

Thus, the expected improvement of the left term can be written as an inequality as follows.

E
[
F (w(n+1)) −F (w(n)) | w(n)

]
≤ −η∥g(n)∥1 +

η2

2
∥L∥1

+2η

q∑
i=1

|g(n)
i |P

[
sign

(
∆

(n)
i

)
̸= sign

(
g
(n)
i

)]
︸ ︷︷ ︸

≜P err
i︸ ︷︷ ︸

Stochasticity-induced error

. (40)

For the analysis of the above equation, the main challenge is to obtain an upper bound on the error term in (40). The bound
is a function of the stochasticity of the local gradients and the detection performance of the proposed scheme.

Accordingly, based on Lemma 3.1 and several definitionins Theorem 3.4, an upper bound on the stochasticity-induced error
can be represented by the proof related to Appendix D as follows:

q∑
i=1

|g(n)i |perri ≤
q∑

i=1

|g(n)i |
K
2 ·

√
2/(3Ri)

K + 2/β

+

q∑
i=1

|g(n)i | 1/β

K + 2/β
.

(41)

Then, substituting Lemma 3.2 into (41), this specific upper bound is written as

q∑
i=1

|g(n)i |perri ≤
q∑

i=1

K
2 · |g(n)i |
K + 2/β

·
√
2|σ(n)

i |
3|g(n)i |

√
db

+

q∑
i=1

|g(n)i | 1/β

K + 2/β
.

(42)

Now, after a series of collations, we can obtain as follow:

q∑
i=1

|g(n)i |perri ≤ K

K + 2/β
·

√
2

6
√
db

∥σ∥1 +
1/β

K + 2/β
∥g(n)∥1. (43)

Then, under considering Assumption C.3, we perform a telescoping sum over the iterations and calculate the expectation

11
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over the randomness in the trajectory as

F (w(0))− F ∗ ≥ F (w(0))− F (w(N))

=E

[
N−1∑
n=0

F (w(n))− F (w(n+1))

]

≥E

[
N−1∑
n=0

((
η − 2η · 1/β

K + 2/β

)
∥g(n)∥1 −

η2

2
∥L∥1

− 2η ·K
K + 2/β

·
√
2

6
√
db

· ∥σ∥1

)]

=E

[
N−1∑
n=0

(
Kη · ∥g(n)∥1
K + 2/β

− η2∥L∥1
2

− 2
√
2Kη · ∥σ∥1

6(K + 2/β)
√
db

)]
.

(44)

In order to derive the term of required convergence rate, we rearrange (44) and use the expressions for db and η, while
conducting a series of simplifications to obtain as follow:

E

[
1

N

N−1∑
n=0

∥g(n)∥1

]
≤ (1 +

2

Kβ
)

√
γ

2
√
N

·
√

∥L∥1

+(1 +
2

Kβ
) ·
√

∥L∥1
√
N

N
√
γ

(F (w(0))− F ∗(w)) +
2
√
2
√
γ∥σ∥1

6
√
N

).

(45)

Finally, by replacing pertinent term with some expressions in Theorem 3.4, the proof process is completed and (16) is
reached.

G. The Relevant Conclusions of Convergence Rate
Based on the above derivation, proof process and the visual representation of Theorem 3.4, we can infer the followings:

• In connection with a larger SNR (i.e., a larger 1/σ2
n ) and a large number of EDs (i.e., a larger K), the convergence rate

with FSK-MV in fading channel improves since τ decreases.

• The dynamic power control account for a better convergence in this scenario rate since ϑ increases with a state. It is
higher equivalence degree of the sign between edge device gradient parameters and aggregation gradient parameters.

• Under ideal power control, the convergence rate becomes similar to SignSGD in an ideal channel [(Zhu et al., 2020),
Theorem 1] gradually.

Note that the proposed scheme has no impact in terms of convergence, since the interference of channel fading and noise is
used for energy aggregation by the usage of a non-coherent detection scheme at the receiver side.

H. Performance Comparison about The Proposed Scheme
The discussion in the above part of this section has adequately addressed the actual performance performance regarding such
problems. And there is a stark contrast related to the problems that can be solved in the uplink and downlink communications
of FL. The communication issues solved are mainly focused on the following two areas:

• Resistance to Time-Varying Fading Channel: In contrast to the approaches in (Zhu et al., 2020), the proposed
scheme does not utilize the CSI for TCI at the EDs. It is therefore compatible with time-varying channels and does not
lose the gradient information that we need during transmission owing to TCI. Because of the advantages mentioned
above, a shown trade-off is that it quadruples the amount of time-frequency resources required in AirComp compared
to OBDA in (Zhu et al., 2021). More importantly, with addition of dynamic power control, interference from fading
channels and noise can be addressed effectively.

12
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• Resistance to Time-Synchronization Errors: It is worth noting that our holistic comprehensive scheme greatly
enhances the resistance capability to time-synchronization errors. The obvious reason is that the time misalignment
among the EDs or the uncertainty in receiver synchronization within the CP window lead to phase rotation in the
frequency domain. while the comprehensive scheme does not encode information on the amplitude or phase, it does
not use any channel-dependent information in the EDs and ES. Therefore, the considered process is more robust to
time-synchronization errors compared to OBDA scheme.
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