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A B S T R A C T 

The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterization. Ho we ver, se veral big 

challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific 
method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence 
of stellar spots. The current practice in the literature is identifying the effects of spots visually and correcting them manually or 
discarding the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit 
depths from transit light curves in the presence of stellar spots. The primary focus of the paper is to present in detail a diverse 
arsenal of methods for doing so. The methods and results we present were obtained in the context of the 1st Machine Learning 

Challenge organized for the European Space Agency’s upcoming Ariel mission. We first present the problem, the simulated 

Ariel -like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, 
we present the solutions obtained by the top five winning teams, provide their code, and discuss their implications. Successful 
solutions either construct highly non-linear (w.r.t. the raw data) models with minimal pre-processing – deep neural networks and 

ensemble methods – or amount to obtaining meaningful statistics from the light curves, constructing linear models on which 

yields comparably good predictive performance. 

Key words: Machine Learning – Data Methods – Exoplanets – Transit Photometry – Light Curves – Stellar Spots. 
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.  I N T RO D U C T I O N  

n the coming decade, exoplanet atmospheric spectroscopy will 
ndergo a revolution with a number of upcoming space and ground- 
ased instruments providing unprecedented amounts of high-quality 
ata. Most notable are of course the Extremely Large Telescopes (e.g. 
ilmozzi & Spyromilio 2007 ; Nelson & Sanders 2008 ; Johns et al.
012 ) on the ground and the JWST (Gardner et al. 2006 ) and the
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riel space telescope (Tinetti et al. 2016a ). One of the outstanding
hallenges to high-precision spectrophotometry of exoplanets is the 
resence of stellar noise. Here, we will address in particular the
resence of occulted star-spots in the spectrophotometric light curves 
f the Ariel space mission. The chromatic dependence of spots and
aculae can adversely affect the measured exoplanetary transmission 
pectrum (through a biasing of the derived transit depth) as well as
ffect other light-curve parameters, such as limb-darkening and the 
id-transit times. This is discussed in detail in references (e.g. Rabus

t al. 2009 ; Nikolov et al. 2013 ; McCullough et al. 2014 ; Sing et al.
015 ; Zellem et al. 2017 ; Rackham, Apai & Giampapa 2018 , 2019 ;
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yer & Line 2020 , and references therein). There exists a large body of
iterature on modelling star-spot signatures in photometric and radial
elocity data (e.g. Dumusque et al. 2011 ; Lanza et al. 2011 ; Aigrain,
ont & Zucker 2012 ; Boisse, Bonfils & Santos 2012 ; Dumusque,
oisse & Santos 2014 ; Herrero et al. 2016 ; Gilbertson et al. 2020 ;
isogorskyi et al. 2020 ; Zhao & Tinney 2020 ). Recently, Rosich et al.
 2020 ) proposed a correction of the chromatic effects using Bayesian
nverse modelling of long duration spectrophotometric time-series
ata with promising results. Carter et al. ( 2008 ) and Morris et al.
 2018 ) propose detecting star-spots on transit light curves using
ethods based on Fisher information and the ratio of the ingress

uration to total transit duration, respectively. To our knowledge,
here exists no method designed to directly correct light curves of
ransits with crossing stellar spots. 

In this publication, we explore the use of machine learning (ML)
echniques to detect and correct for spot crossings in simulated data of
he Ariel space mission. In particular, we report on the top five results
f the 1st Ariel Mission ML Challenge (henceforth: the Challenge),
hich was concerned with the task of correcting transiting exoplanet

ight curves for the presence of stellar spots . The primary goal of the
hallenge was thus to investigate if ML approaches are in principle

uited to correcting star-spot crossings in spectrophotometric light
urves across a large range of stellar and planetary parameters as
ell as observational signal-to-noise regimes. 
To date, the use of ML approaches in exoplanets is still nascent

ut a burgeoning interest has seen the successful application of ML
and deep learning, in particular – to a variety of exoplanetary

roblems. These include (but are not limited to) the detection of
xoplanet transits in survey data (e.g. Pearson, Palafox & Griffith
018 ; Shallue & Vanderburg 2018 ; Osborn et al. 2020 ), the predictive
odelling of planetary parameters (Lam & Kipping 2018 ; Alibert
 Venturini 2019 ), instrument de-trending (e.g. Gibson et al. 2012 ;
aldmann 2012 ; Morello et al. 2014 ; Morvan et al. 2020 ), and the
odelling and retrie v al of atmospheric spectra (e.g. Waldmann 2016 ;
 ́arquez-Neila et al. 2018 ; Zingales & Waldmann 2018 ; Cobb et al.

019 ; Nixon & Madhusudhan 2020 ; Himes et al. 2022 ). 
As with many problems in the field of exoplanetary science, the

ssue of star-spot crossings is characterized by a combination of
hallenges: (i) a large amount of data to process, 1 (ii) low signal-to-
oise ratio, (iii) an underlying pattern which is non-linear and whose
arametric form is a priori unkno wn, (i v) the available information
omes in multiple forms (time dependent and independent), and
nally (v) a high degree of de generac y. These issues are commonly
ddressed by ML approaches. 

This takes us to the second objective of the Challenge: promoting
he interaction between the astrophysics and the ML communities. To
his end, the Challenge targeted both audiences by being officially
rganized in the context of the ECML-PKDD 2019 conference 2 

nd also having a strong presence in the joint EPSC-DPS 2019 3 

onference via a dedicated session. The Challenge ran from 2019
pril to August. In total, 123 teams participated and it attracted the

nterest of researchers from both communities – as evidenced from
ASTAI 2, 695–709 (2023) 

 As Ariel is an upcoming space mission, the data in our case are obtained via 
imulations. 
 ECML-PKDD, the European Conference on Machine Learning and Princi- 
les and Practice of Knowledge Disco v ery in Databases, is one of the leading 
cademic conferences on ML and knowledge disco v ery, held in Europe every 
ear. 
 The European Planetary Science Congress (EPSC) and the American 
stronomical Society’s Division of Planetary Science (DPS) held a Joint 
eeting at 2019. 
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he top five ranked teams and the solutions they submitted. As such,
e consider the secondary objective of the Challenge has been met

uccessfully. Building up on this success, a 2nd Ariel Data Challenge
as organized in the context of ECML-PKDD 2021 and a 3rd one is

urrently under preparation. 
But what of the main goal of the Challenge, i.e. automating

he extraction of useful parameters from transiting exoplanet light
urves in the presence of stellar spots? A large number of solutions
utperformed our baselines and approached average precisions of
0 ppm in photometric flux for correctly predicting the relative transit
epth per each wavelength from the noisy light curves. This was the
ase, despite exploring a generally high stellar spot co v erage scenario
high activity stars), as discussed in Section 3.2 . Again, building
p on this success, the 2nd Ariel ML Challenge (2021) produced
olutions that surpassed this performance (see Fig. 3 ), on a data set
enerated under a more realistic noise model co v ering full instrument
ystematics simulated under the ARIELRAD (Mugnai et al. 2020 ) and
XOSIM (Sarkar et al. 2021 ) packages. 
The solutions of the top five ranking teams that participated in

he Challenge are presented in detail in this paper. Most solutions
mount to constructing highly non-linear (w.r.t. the raw data) models
ith minimal pre-processing using deep neural networks (DNNs)

nd/or ensemble learning methods. 4 As we will see ho we ver, there
xist comparably good – in terms of the precision of the obtained
redictions – approaches that involve obtaining meaningful (i.e.
nformed by physics) statistics from the light curves and then training

odels that are linear w.r.t. them. 
Just like the Challenge itself, this paper also intends to serve a

ual purpose. Its primary goal is to describe the research problem
f obtaining good predictions of the relative transit depth per
ach wavelength from simulated Ariel -like light curves distorted by
hoton noise and stellar spot noise, along with the solutions provided
y the Challenge’s winners and their implications. More specifically,
he objective is to cover in detail a broad and diverse set of methods
o attack the problem. Its secondary aim is to promote interaction
etween exoplanetary scientists and ML researchers. As such it is
ritten in a language accessible to both audiences and – we hope –

t contains useful information for exoplanetary scientists wishing to
rganize their own ML challenge or to refine their knowledge of ML
ethods and use them in their own work. 

.  E X O P L A N E T  B  AC K G R  O U N D  

ue to the interdisciplinary nature of this article, we here provide
 very brief high-level introduction to transmission spectroscopy
f exoplanets. Readers familiar with the field can safely skip this
ection, for a more in-depth re vie w to exoplanetary spectroscopy we
efer the reader to the rele v ant literature (e.g. Sharp & Burrows 2007 ;
inetti et al. 2012 ; Madhusudhan 2019 ). 
When a planet orbits its host star in our line of sight, we will

bserve a regular dimming of the stellar flux when the planet passes
etween us and the host star. This is referred to as a transit event.
imilarly, when the planet is eclipsed by the host star, we will observe
 small dip due to the loss of the planet’s thermal or reflected light.
n Fig. 1 a, we show a schematic view of a transit and the resulting
ip in the stellar flux time series, also known as a ‘light curve’. The
epth of this light curve, D , is typically of the order of 1 per cent for
 Jupiter-sized planet and a Sun-like star. To first order, this dip can
 Ensemble methods are ML algorithms that construct powerful predictive 
odels by combining multiple weaker predictors (Polikar 2006 ). 
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Figure 1. Left panel: Schematic of an exoplanet transit. The planet passes in-front of the star, obscuring some of the star’s light. This leads to a characteristic 
dip in stellar flux observed as a function of orbital phase. Middle panel: Schematic view of transmission spectroscopy whereby some of the stellar light ‘shines 
through’ the gaseous envelope of a planet. Right panel: A simulated transmission spectrum of the Ariel mission. Blue points with errorbars correspond to the 
observed data points and green continuous curve corresponds to a theoretical atmospheric model. Figures courtesy of C. Changeat and adapted from Changeat 
et al. ( 2020 ). 

Figure 2. Examples of simulations including both stellar spots and faculae for 2 of the 55 wavelength channels, 0 . 7 and 5 . 6 μm. (a) and (b) Stellar surface 
simulations of a spotty star. Grey line shows the planet transit trajectory. The stellar surface limb brightness varies with wavelength. (c) and (d) Normalized 
observed flux as the planet transits across the star without stellar photon noise. Blue shows the perfect transit across a spotless star; red shows the transit across 
a spotty star. (e) and (f) Same as (c) and (d) but with stellar photon noise added. 
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R

Figure 3. Progress made towards the Ariel mission’s desired precision in terms of transit depth (10 ppm) by the 1st and 2nd Ariel ML Challenges. The winning 
solution of the 2021 Challenge (red) has a 61 per cent lower weighted MAE compared with the winning solution of the 2019 Challenge (teal). The solutions 
of both Challenges achieve a weighted MAE of the order of 10 −5 –10 −4 , despite exploring a high stellar spot co v erage scenario (high activity stars). Note that 
results across the two Challenges are not directly comparable; in the 2019 Challenge (the focus of this work) instrument systematics were ignored, whereas in 
the 2021 Challenge, full instrument systematics were taken into account during the data set simulation, resulting in a more challenging modelling problem. 
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e described by the ratio of the planet to stellar radius, D = R p / R ∗
also referred to as ‘relative radius’). For an in depth explanation of
he transit geometry, see Seager & Mall ́en-Ornelas ( 2003 ). 

When a planet harbours an atmosphere, some of the stellar light
ill ‘shine through’ the planet’s gaseous envelope (Fig. 1 b). De-
ending on the atmospheric composition some light will be absorbed
nd/or scattered at specific wavelengths of light by the atmospheric
ases, clouds, and aerosols. This leads to a wavelength-dependent
loss’ of stellar flux observed, which is equi v alent to a perceived
ncrease in planetary radius from an observational viewpoint. An
ccuracy of ca. 1 in 10 4 in flux measurements is typically required
or a Jupiter-sized planet to observe this effect. Fig. 1 c is a simulation
f the resulting transmission spectrum of a hot Jupiter planet as
bserved by the Ariel space mission. The transmission spectrum
ncludes absorption signatures of H 2 O, CH 4 , and CO as well as
ayleigh scattering and collision-induced absorption by hydrogen
nd helium (Changeat et al. 2020 , fig. 1 ). 

.  T H E  C H A L L E N G E  

.1 Data generation 

or the purposes of the Challenge, we used the Ariel target-list
roduced by Edwards et al. ( 2019 ) to generate simulated light curves
or all the 2097 planets in the list. For every planet, we produced
5 light curves, one for each wavelength channel corresponding to
riel Tier 2 resolution (between 0.5 and 8.0 μm). In addition, all the

ight curv es co v ered observations of 5 h, centred around the transit,
ith a time-step of 1 min. In reality, wavelength binning and time
ASTAI 2, 695–709 (2023) 
esolution will differ across targets of Tiers 1, 2, and 3 of Ariel
dwards et al. ( 2019 ). But here we opted to treat all targets as Tier 2

o make the data set accessible to all the participants without the need
f renormalization (which would require knowledge on the transit
odelling). 
The simulated light curves were computed as follows: 

(i) As a first step we calculated the limb-darkening coefficients
using the quadratic law) for every host star in the target list and
or every wavelength channel. We used the EXOTETHYS package
Morello et al. 2020 ) and the stellar parameters for temperature and
ravity provided in the target list, assuming zero metallicity for all
he stars (the effect of metallicity is not strong). Also, we did not use
he Ariel throughput as in this study we were only interested in the
arrow wavelength channels, and any intra-channel variations due to
he Ariel throughput are minimal. 

(ii) We then calculated the planet-to-star radius ratio, R p / R ∗, for
very planet in the target list and for ev ery wav elength channel.
his calculation was made using the TauRex atmospheric retrie v al

ramework for exoplanets (Waldmann et al. 2015 ) and the planet
arameters for temperature, mass, and radius (all provided in the
arget list), assuming the presence of water vapour and methane in
he atmosphere with abundances that varied uniformly at random
rom planet to planet between 0.001 per cent and 0.1 per cent. The
alues for the abundances were an arbitrary choice, as the scope of
sing a spectrum was only to include some variability, of any kind,
n the R p / R ∗ parameter from one wavelength channel to another. 

(iii) The next step was to define the spot model parameters for
very host star in the target list. These parameters were: 

art/rzad050_f3.eps
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(a) Spot co v erage: This parameter corresponds to the per- 
centage of the stellar surface that is co v ered by spots. We set
this parameter to 10 per cent for every host star in the target
list. In reality this parameter decreases with stellar temperature 
and initially we incorporated this in the model. Ho we ver, it
became clear that in the more realistic case, the number of spots
that influence the light curves is very small, leading to almost 
noise-free data. For this reason, we chose to use the fixed value
of 10 per cent in order to have a stronger spot effect on our
data. This choice resulted in a simulated data set with many 
more spot-crossing events than in a real data set, suitable for
the purposes of the challenge. We further justify this choice and 
discuss its implications in Section 3.2 . 

(b) Spot temperature: This parameter corresponds to the 
ef fecti ve temperature of the spots, which is naturally lower 
that the ef fecti ve temperature of the star. We calculated this
parameter for every host star in the target list as a function of
its temperature ( T ∗, provided in the target list), as described in
Sarkar ( 2017 ), adjusted from Andersen & Korhonen ( 2015 ): 

T spot = T ∗ − (0 . 0001 343 × T 2 ∗ − 0 . 6849 × T ∗ + 1180 . 0) . (1) 

(c) Spot contrast: This corresponds to the contrast between 
the brightness of the stellar surface and the brightness of the 
spots. We calculated this parameter for every host star in the 
target list and for every wavelength channel by integrating the 
respective PHOENIX stellar models (Husser et al. 2013 ) within 
each wavelength channel and dividing them. 

(iv) Following the definition of the spot model parameters we 
reated a set of spots for every host star in the target list. The spots
ere generated one by one, until the 10 per cent surface co v erage
as reached, and it was given three parameters: 

(a) Latitude – uniformly at random generated number be- 
tween −85 and 85 degrees, 5 

(b) Longitude – uniformly at random generated number 
between 0 and 360 degrees, and 

(c) Angular diameter – randomly generated using a lognor- 
mal distribution, as described in Sarkar ( 2017 ), based on Bogdan 
et al. ( 1988 ): 

d N 

d A 

= M A exp 

[
− ( ln A − ln 〈 A 〉 ) 2 

2 ln σA 

]
, (2) 

where N is the number of spots, A is the area of the spots, M A is
the maximum of the distribution (adjusted to result in 10 per cent
of total co v erage), 〈 A 〉 = 0.62 × 10 −6 A 1/2 � is the mean of the
distribution, and σ A = 3.8 × 10 −6 A 1/2 � is the standard deviation 
of the distribution. 

(v) With the set of spots generated for each star in the target list,
e used the KSINT package (Montalto et al. 2014 ) to generate the

pot-distorted light curves for every planet in the target list and for
v ery wav elength channel. The input parameters for each light curv e
ere: the set of spots, (number, position, and dimensions of all the

pots), the spot contrast parameter, the limb-darkening coefficients, 
 We did not constrain the latitude further, in order to produce all possible 
cenarios: cases with spot-crossing events, cases with unocculted spots only, 
nd cases with both occulted and unocculted spots. This variety was created 
y the combined effect of the uniform latitude distribution, the distribution 
f sizes, and the limit on the total area co v ered by the spots. A more 
estricted latitude would cause spot-crossing events in most cases; therefore, 
he solutions would tend to ignore the effects of unocculted spots. 

d
c

 

t  

f  

6

he planet-to-star radius ratio, the stellar density (calculated from the 
tellar mass and radius provided in the target list), and the planet
rbital parameters (period and inclination, provided in the target list) 
nd a viewing angle to make sure that the transit happens at the
iddle of the observation. 
(vi) The final step was to add Gaussian noise to the light curve.

o additional instrument systematics was assumed, as we aimed for 
he challenge to focus on correcting for the noise resulted from the
tellar spots. The standard deviation of the Gaussian noise added 
as calculated from the o v erall noise on the transit depth estimation
rovided in the target list. This noise value depends on the stellar
agnitude, the stellar temperature, the wavelength channel, and the 

haracteristics of the Ariel instrument. It is beyond the scope of this
ork to describe exactly how this level of noise is estimated. We

efer the interested reader to Edwards et al. ( 2019 ) for a detailed
escription. 

This process resulted in generating data for 2097 simulated 
bservations, consisting of 55 light curves each (one per wavelength). 
e repeated the process 10 times with different instances of the

pot set (step iv). This resulted in 20970 simulated observations 
onsisting of 55 light curves each, distorted by stellar spots. Finally,
or each instance of the spot set, 10 different instances of additive
aussian photon noise were introduced (step v). This resulted in 
09 700 simulated observations consisting of 55 light curves each, 
istorted by both stellar spot and photon noise. These 209 700
imulated observations formed the final data set of the Challenge. 
he different instances of the spot set were included to mimic multi-
poch observations, were the spot pattern is expected to change, 
hile the different instances of additive Gaussian photon noise were 

ncluded to mimic continuous observation were the spot pattern is 
ot expected to change. Note that the two sources of noise (spots
nd Gaussian) are treated as independent. Fig. 2 shows examples of
ight curves generated through this process. Most of the generated 
ight curves only contained a single transit e vent; ho we ver, a small
umber of them included planets with small enough orbital periods 
o allow for multiple transits. 6 

Naturally, these details were unknown to the participants and nei- 
her were they used in the baseline solution. The aim of the Challenge
as to infer the relative radii, either by explicitly modelling and

ubtracting, or by learning to ignore the photon and/or the stellar
oise (or both). 

.2 On the choice of the 10 per cent spot co v erage 

t should be noted here that population studies of exoplanetary atmo-
pheres tend to focus on lo w-acti vity stars (for which a 10 per cent
pot co v erage is high). This is because no robust methodologies for
emoving noise from stellar spots exist at the moment. Ho we ver, here
e chose to simulate a 10 per cent spot co v erage as an example of a

hard case” to be addressed by the methodologies presented. 
As we shall see, the results produced by these methods are

ncouraging in terms of being able to deal with relatively active
tars. Ho we ver, we should also note that the true stellar activity
istributions, intensities, and morphologies are likely to be more 
omplex than those simulated in this work. 

Although the Challenge was organized in the context of Ariel ,
he methods presented here can be useful tools to analyse data from
uture missions as well, one of the outcomes of this work is that there
RASTAI 2, 695–709 (2023) 

 In case the light curve contained multiple transits, one of them was centred. 
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s no longer need to preclude younger or more active stars from future
tudies. This, in turn, can allow for population studies of exoplanets
ased on a larger and more representative sample. 
Finally, we also need to note that even with a 10 per cent spot

o v erage on the star (uniformly distributed); a very large fraction of
he simulated transits did not suffer from spot-crossing events. 

.3 Data set description and problem statement 

ach data point (also known as an observation or an example in
L terminology) consists of a set of 55 noisy light curves (one per
avelength, corresponding to Ariel Tier 2 target resolution). Each

ight curve is a time series of 300 time-steps corresponding to 5 h
f observation by Ariel . We shall denote with x ij ( t ) the relative flux
t time-step t ∈ [1, 2, . . . , 300] of the light curve at wavelength j ∈
1, 2, . . . , 55] of the i th example. By x ij = [ x ij (1) , x ij (2) , . . . , x ij (300) ] �

e denote the entire light curve at wavelength j of the i th example.
inally, with X i = [ x i 1 , x i 2 , . . . , x i 55 ] we denote all 55 light curves of

he i th example. 
Along with the light curves, six additional stellar and planetary

arameters (all knowable in advance) were provided: the orbital
eriod, stellar temperature, stellar surface gravity, stellar radius,
tellar mass, and stellar K magnitude. We shall denote these as z i 1 ,
 i 2 , . . . , z i 6 , respectively, for the i th example. Finally, with z i = [ z i 1 ,
 i 2 , . . . , z i 6 ] we shall refer to all the additional parameters of the i th
 xample collectiv ely. 7 

The noisy light curves and the six additional stellar and planetary
arameters all constitute the quantities known in advance that we can
se to alleviate the problem of stellar spots. In ML terminology they
re the features (independent variables) in our prediction task. 

The goal is to construct a model that uses these to predict a set of 55
eal values, the relative radii [ R p / R ∗] ij (one per wavelength j , for any
iven data point i ). In ML terminology this is a multitarget regression
ask . The relative radii to be predicted are the targets (dependent
ariables) of the multitarget regression problem. For convenience,
e shall henceforth denote the relative radius at wavelength j of the

 th example, [ R p / R ∗] ij , with y ij . Finally, with y i = [ y i 1 , y i 2 , . . . , y i 55 ]
e shall refer to all the relative radii of the i th example collectively.
ote the planet to host star relative radius R p / R ∗ is directly connected

o the transit depth of the light curve, as the latter is equal to 
(R p 

R ∗

)2 
. 

The value of the 55 targets is known only for the training examples
the statistical sample ). The goal of the learning task is – ideally – to
onstruct a model f ( X , z ) = 

ˆ y such that E [ L ( y , ̂  y )] is minimized,
here L ( y , ̂  y ) denotes some measure of difference between the
redictions ˆ y and their corresponding true values y and E denote
 xpectation o v er the joint distribution of X , z , and y , i.e. – in statistical
erminology – the underlying population from which the sample is
rawn. 
Once models are trained, they are e v aluated on a separate test set .

he predictive performance of a model on a previously unseen test
et (drawn from the same distribution as the training set), serves
s a proxy for its performance in the population, the latter being
ntractable. The features of the test set examples { ( X i , z i ) | i ∈ Test }
ere provided to the participants and they had to upload their model’s
redictions { ̂ y i | i ∈ T est } on them. The ground truth { y i | i ∈ Test } for
he test set examples was unknown to the participants in the duration
f the Challenge. It was only used to produce a ranking score for
heir submitted solution, which we describe in the next section. 
ASTAI 2, 695–709 (2023) 

 The values of the extra parameters provided were the same as those used to 
roduce the simulations and no associated uncertainties were used. 

8

s
a

.4 Evaluation 

ll data points generated for a uniformly random set of 1677 out of
he 2097 of the total planets (i.e. about 80 per cent of the generated
ata points) were used as training data. All data points generated for
he remaining 420 planets were used to form the test set (i.e. were
nly used for e v aluation). That is, the training and test sets not only
ontained no data point in common, but they also contained no data
oint from the same planet in common. 
After producing a model (i.e. a solution to the problem), the

articipants could upload the predictions of the model on the
hallenge’s website. Subsequently, this would assign a score on

he model based on the quality of the predictions. The participants
ere ranked on a leaderboard on the basis of their best solution

nd the progress of each participant’s solutions in time was tracked
o inform them of the impact of each change they made on the
esulting model’s predictive performance. The leaderboard ranking
etermined the winners of the Challenge that would receive prizes
top two participants) and the top five participants whose solutions
e will present in Section 4 . 
The score assigned to each solution was a weighted average of the

bsolute error per target (i.e. on the relative radii) across all test set
xamples i and all wavelengths j : 

core = 10 4 −
∑ 

i ∈ T es t 
∑ 55 

j= 1 w ij 2 y ij | ̂  y ij − y ij | ∑ 

i ∈ T es t 
∑ 55 

j= 1 w ij 

10 6 , (3) 

here y ij is the true relative radius and ˆ y ij the predicted relative radius
f the j th wavelength of the i th test set example and the corresponding
eight w ij is given by: 

 ij = 

1 

σij 
2 δF ij 

2 , (4) 

ith σ ij 
2 being the variance of the relative stellar flux caused by

he observing instrument at the j th wavelength of the i th example
nd δF ij 

2 the variation of the relative stellar flux caused by stellar
pots in the j th wavelength of the i th example. The value of σ ij is
n estimation based on an Ariel -like instrument, given its current
esign, while δF ij is calculated based on stellar flux F 

star 
ij and the spot

ux F 

spot 
ij in the j th wavelength of the i th example: 

F ij = 0 . 1 

(
1 − F 

spot 
ij 

F 

star 
ij 

)
. (5) 

s we see, both sources of noise (photon and stellar spot) are
avelength-dependent and target-dependent (they depend on the star,

herefore are different for each data point). 
The higher the score, the better the solution’s ranking. The
aximum achie v able score is 10 000 (if ˆ y ij = y ij , ∀ i, j ). The score is

ot lower-bounded (i.e. can be ne gativ e), but ev en naiv e ‘reasonable’
odels (e.g. predicting the average target value for all test data points)
ould not produce scores below 4000. 
The weights w ij of each target were unknown to the participants. 8 A

ensible strategy would thus be to try to predict all of them reasonably
ell, in other words, to train a model to minimize an unweighted loss
 ( y i , ̂  y i ) like the mean squared error (MSE), L ( y i , ̂  y i ) = ( ̂ y i − y i ) 

2 ,
he mean absolute error (MAE), L ( y i , ̂  y i ) = | ̂ y i − y i | , or their rela-

ive error counterparts: L ( y i , ̂  y i ) = 

(
ˆ y i −y i 

ˆ y i 

)2 
or L ( y i , ̂  y i ) = 

| ̂ y i −y i | 
ˆ y i 

,

 F or transparenc y of the e v aluation process, the w ij coef ficients of the test 
et examples, along with the ground truth (target values y ij ) became available 
fter the end of the Challenge. 
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9 By the term ‘architecture’ we collectively refer to the number, type, and 
connectivity of the neurons comprising a neural network. 
10 FC DNNs are the earliest and most popular type of DNN architecture. They 
are also known as multilayer perceptrons or ‘dense’ neural networks. 

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/695/7336982 by guest on 07 M

ay 2025
espectively. Indeed, this is the approach taken by the top five 
articipants and in training the baseline model. 

.4.1 Comparison with current practice 

o assess the usefulness of the proposed ML-based solutions, 
n this paper we have included a comparison with the standard 
non-ML-based) approach for obtaining estimates of R p / R s in the 
iterature. In particular, we obtain least-squares fits of transit models 
sing the PyLightCurve package (Tsiaras et al. 2016 ) on the 
ntire test set, treating the stellar and transit parameters (orbital 
nclination, period, semi-major axis, stellar surface temperature, and 
ravity) as known, with the aim of estimating R p / R s . Limb-darkening
oefficients are computed using the EXOTETHYS package (Morello 
t al. 2020 ) from the stellar gravity and temperature while assuming
ero metallicity. This way, we are using all information available 
o the competition’s participants – and only that – on the test set
xamples. Of course, such a model would be optimal in the absence
f spots, but in this case the estimates of R p / R s will be biased because
f the presence of spots. 
As we will see in Table 1 the transit model fitting solution using
yLightCurve , achieves a score of 9467 under the competition’s 
core metric of equation ( 3 ), which corresponds to an MAE on the
stimated ( R p / R s ) of 0.00 664 ± 0.00 006 on the test set. Factoring for
he weights of equation ( 4 ), the average weighted MAE is 0.000 533.
ote that all top five solutions described in Section 4 attain a score
igher than 9467 (i.e. better), the baseline solution of the competition 
iven in Section 3.7 , however, does not. Interestingly, all of the
olutions that outperform our baseline also outperform the transit 
odel least-squares fit solution. 

.5 Rules, logistics, and organization 

o allow for the broadest possible participation, the set of rules of
he Challenge was the minimal possible. There was no restriction on 
he models, algorithms, or data pre-processing techniques, neither 
n the programming languages, environments, or tools used for 
heir implementation. The participants were also free to use data 
ugmentation techniques, pre-trained models or any prior domain 
nowledge not included in the provided data set. Finally, they were 
ree to choose their own way of splitting the training data between
raining and validation sets. 

The participants were limited to one submission every 24 h. This
as a measure taken to limit traffic on our website and – most

rucially – to prevent the extent to which the solutions would be 
 v erfitting to the test set. Indeed, although the test set contains
reviously unseen examples by the model and the participants 
ould not have access to the ground truth itself, the presence of a
eaderboard is ef fecti vely causing some information leaka g e from
he test set . Simply put, just adapting the strategies to the ranking
core signal, participants could increase their scores by ef fecti vely 
 v erfitting on the particular test set. Limiting the number of daily
ubmissions alleviated this effect. In retrospect, an even stronger 
trate gy to prev ent this would hav e been to only use part of the test
et to produce the leaderboard ranking score during the Challenge 
nd only use the full test set to produce the final ranking after
he Challenge closes. In future ML challenges we will adopt this
 v aluation scheme. For now we should keep in mind that small
ifferences in the ranking scores of solutions presented in Section 4 
re not necessarily indicative of true generalization (i.e. ability to 
redict well on new examples). 
The participants were allowed to form teams, provided they 
articipated in only one entry. The remaining rules handled how 

rizes would be split among teams, how ties would be handled, and
nsuring that any winning entry would have to beat the baseline
odel. 

.6 Description of solutions 

o facilitate comparisons among the solutions discussed in the paper 
nd to demonstrate the typical steps of training and e v aluating models
sing ML methodology, we split the description of the solutions 
nto three parts: (i) pre-processing, (ii) model/architecture, and (iii) 
raining/optimization. 

The ‘pre-processing’ part will describe any transformation of the 
aw data (either in terms of features or of observations) before giving
t as input to a learning algorithm. The ‘model’ part is concerned with
he general class of models (i.e. their parametric form ) which the
earning algorithm is exploring (e.g. DNNs of a given ar chitectur e , 9 

andom forests of 10 trees of maximal depth 5, and linear models of
he form y = ax 1 + bx 2 + c ). Finally, the ‘training’ part is concerned
ith the specifics of the optimization of the parameters of the model

i.e. the weights of the neural network, the deri v ation of the decision
rees, or the inference of the linear coefficients a , b , and c in the
xamples mentioned ahead). It covers the hyperparameters used in 
he learning/optimization algorithm, along with the loss function it 

inimizes and the final e v aluation method. 
Wherever necessary, we will clarify the purposes behind mod- 

lling choices or training methodologies in all solutions described. 
o we ver, a detailed treatment of models like DNNs is beyond the

cope of this paper. We direct the interested reader to Goodfellow,
engio & Courville ( 2016 ) and Chollet ( 2017 ). 

.7 Baseline solution 

s a baseline ML solution, we trained a fully connected (FC) DNN 

10 

n a sample of 5000 training examples selected uniformly at random.
he neural network uses all 55 noisy light curves, X i to predict the
5 relative radii directly. It does not make use of any of the additional
tellar and planetary parameters z i . 

.7.1 Pre-processing 

he noisy light curves have undergone the following pre-processing 
teps: 

(i) Each light curve was smoothed using a moving median of 
indow 3 (i.e. each value replaced by the median of itself and its

wo adjacent values). This was done to remo v e flux values that are
bvious outliers. 
(ii) In any light curve, any value (relative flux) that was above 1

as clipped to 1. This was done because the maximal relative flux
uring transit is 1. 
(iii) All values were normalized for the transit depths to lie roughly

ithin the range [0,1]. Doing so allows for faster and more stable
raining of models like DNNs. The normalization was carried out per
avelength and was performed as follows: 
RASTAI 2, 695–709 (2023) 
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Table 1. Final leaderboard showing rank, score under equation ( 3 ), and mean weighted absolute error in terms of relative radius achieved by each of the top 
five entries and the baseline on the test data for the 1st Ariel ML Challenge (2019). We have included the results of the standard practice of fitting least-squares 
transit models on the test set light curves using PYLIGHTCURVE , assuming the stellar and planetary parameters as known. Results of the 2nd Ariel ML Challenge 
(2021) are also shown for reference. 

Top five solutions of 1st Ariel ML Competition (2019) 
Team Rank Score Weighted MAE Difference w.r.t. 1st place (per cent) 

SpaceMeerkat 1 9813 0.000 187 
Major Tom 2 9812 0.000 188 + 1 
BV Labs 3 9808 0.000 192 + 3 
IWF-KNOW 4 9805 0.000 195 + 4 
TU Dortmund University 5 9795 0.000 205 + 10 

PYLIGHTCURVE Least Squares 14 9467 0.000 533 + 185 

2019 Baseline 15 8726 0.001 274 + 581 

Top five solutions of 2nd Ariel ML Competition (2021) – for reference 

ML Analytics 1 9931 0.000 069 
TU Dortmund University 2 9920 0.000 080 + 16 
Deep Blue AI 3 9911 0.000 089 + 29 
Aalen University 4 9901 0.000 099 + 43 
Major Tom 5 9899 0.000 101 + 46 

2021 Baseline 27 9617 0.000 383 + 455 
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First, we computed the average transit depths per wavelength from
he target values ȳ j on a sample of 10 000 random training examples.
 or ev ery wav elength j , we then applied the transformation: 

 

( t) 
ij ← ( x ( t) ij − (1 − 2 ̄y 2 j )) / 2 ̄y 

2 
j . 

his was done to have the maximal relative flux values at exactly 1
nd the transit depths around 0, leveraging the fact that the transit
epths of the light curves are the squares of the relative radii (targets).

.7.2 Model/ar chitectur e 

e used a FC DNN with five two-dimensional (2D) hidden layers,
ll of which consisted of 1024 units × 55 channels, the j th channel
eceiving as input the light curve x ij for each example. After these,
e added a flattening layer followed by a linear layer of 55 outputs,

he j th output corresponding to the predicted relative radius ˆ y ij of
ach example. All other acti v ation functions were rectified linear
nits (ReLUs). 

.7.3 Training/optimization 

o batch normalization (BN), regularization, or dropout was applied
n the training of the baseline model. The 5000 observations used
ere split into 4020 training and 980 validation examples (i.e.

pproximately 80 per cent training and 20 per cent validation split)
n such a way that the two sets contained no planets in common.
he model was trained by minimizing the average MSE across all
avelengths using the Adam optimizer (Kingma & Ba 2014 ) with a

earning rate of 10 −4 decaying with a rate of 0.01 and a batch size
f 128. All remaining hyperparameters were set to default Keras
Chollet et al. 2015 ) values. The model was trained for a maximum
umber of five epochs without early stopping. 

.  TO P  FIVE  S O L U T I O N S  

y the end of the Challenge, 13 out of the 123 participating teams had
eaten the score attained by the baseline solution we just presented.
ASTAI 2, 695–709 (2023) 
n this section, we will present the top five ranked solutions. Their
elative ranking in the final leaderboard and scores they achieved
nder equation ( 3 ), along with the weighted MAE in terms of relative
adius are shown in Table 1 . The table includes the results of the non-

L-based standard practice of fitting least-squares transit models
n the test set light curves using PylightCurve , assuming the
tellar and planetary parameters as known. As we see, although this
ethod outperforms the competition’s baseline, it is outperformed

y all solutions that score abo v e the baseline, including – of course
the top five solutions presented here. The results suggest that ML

pproaches can indeed outperform the current standard practice in
he field, if implemented correctly. 

For reference, Table 1 and Fig. 3 , which show the progress
ade towards the Ariel mission’s desired precision in reco v ering

he relative radius from light curves contaminated with stellar spots,
lso include the results of the 2nd Ariel ML Challenge. Note that
esults across the two Challenges are not directly comparable, as
he data were generated under different assumptions: in the 2019
hallenge (the focus of this work) instrument systematics were

gnored, whereas in the 2021 Challenge, full instrument systematics
ere taken into account during the data set simulation (Mugnai et al.
020 ; Sarkar et al. 2021 ), resulting in a more challenging modelling
roblem. As we see the solutions achieve a weighted MAE of the
rder of 10 −5 –10 −4 , despite exploring a high stellar spot coverage
cenario (high activity stars), as discussed in Section 3.2 . The analysis
f top solutions of the 2021 Challenge will be the focus of future
ork. 

.1 SpaceMeerkat’s solution 

paceMeerkat is comprised of James M. Dawson, an Astrophysics
hD student at Cardiff University. SpaceMeerkat ’s solution is a 1D
onvolutional neural network (CNN), designed to retain architectural
implicity, while exploiting the power of GPU-accelerated ML. The
argest gain in the model’s predicti ve po wer came from the e xtensiv e
esting of different prepossessing operations. 
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Table 2. The CNN architecture used in the solution by the SpaceMeerkat 
team (ranked 1st). The table follows the standard PYTORCH format. The 1st 
column lists the name of each layer/operation, the 2nd column its type, and the 
3rd the dimensions of its output tensors (hence inputs to the next layer). These 
follow the convention (batch size, number of channels, height, and width). 
The filter column shows the dimensions (height and width) of kernels used 
to perform the convolution and pooling operations. Layer ‘Lc6’ is notable 
as this is where the additional planetary parameters z are introduced into the 
network. 

Name Layer/operation Dimensions Filter 

Input None (256,1,1,3300) None 
Conv1 1D convolution (256,32,1,3300) (1,3) 
ReLU ReLU None None 
AP1 1D average pool (256,32,1,1650) (1,2) 
Conv2 1D convolution (256,64,1,1650) (1,3) 
ReLU ReLU None None 
AP1 1D average pool (256,64,1,825) (1,2) 
Conv3 1D convolution (256,128,1,825) (1,3) 
ReLU ReLU None None 
AP1 1D average pool (256,128,1,275) (1,2) 
Lc1 Linear (256,1,1, 35200) None 
ReLU ReLU None None 
Lc2 Linear (256,1,1, 2048) None 
ReLU ReLU None None 
Lc3 Linear (256,1,1, 1024) None 
ReLU ReLU None None 
Lc4 Linear (256,1,1, 512) None 
ReLU ReLU None None 
Lc5 Linear (256,1,1, 256) None 
ReLU ReLU None None 
Lc6 Linear (256,1,1, 60) None 
Output None (256,1,1,55) None 
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.1.1 Pre-processing 

he data was split into 80 per cent training and 20 per cent test sets. In
rder to remo v e outlier flux values in the raw light curves, an initial
moothing was conducted on each time series x ij . The mean flux
alue in each non-o v erlapping bin of width 5 was calculated in-place
long each time series leaving each observation X i as a smoothed 
ultichannel array of dimensions 60 × 55. A normalization operation 
as performed on the training set prior to its use for training ML
odels. For each of the 55 wavelengths, the medians across all data

oints of the lowest 1 per cent of flux values in each light curve for
 giv en wav elength were calculated. These 55 percentile medians 
henceforth ‘median offsets’) are therefore equal to 

j = med { P 1 per cent ( x 
( t ′ ) 
ij ) } , (6) 

here P 1 per cent ( x 
( t ′ ) 
ij ) denotes the 1st percentile of the set of all flux

alues x ( t 
′ ) 

ij , t ′ ∈ { 1, 2, . . . , 60 } for a given data point i and wavelength
 , and med { · } denotes median across all data points i . The light
urves were then divided by 1 minus the median offsets and the
esulting flux values were thus 

 

( t ′ ) 
ij ← x 

( t ′ ) 
ij / (1 − κj ) . 

his normalization allowed the data to lie roughly within the range 
0,1] but with leniency for allowing the existence of extremely 
hallow or deep transits. Any remaining flux values abo v e the
ormalization range were clipped to 1. This was done to encourage 
he model to focus on the lower flux valued regions where most of
he transit-depth information lies. The pre-processing of light curves 
akes use of Astropy , 11 a community-developed Python package 

or Astronomy (Astropy Collaboration 2013 , 2018 ). 

.1.2 Model/ar chitectur e 

he model used in this solution is a CNN (LeCun et al. 1995 ). 12 The
ata are presented to the CNN as a 1D vector and 1D convolutions
nd pooling operations are applied in order to maintain a principled 
implicity to the final solution. The architecture of the CNN is shown
n Table 2 . The model was built using PyTorch 0.4.1 (Paszke
t al. 2019 ), an open source ML framework for Python users. The
utput of layer ‘Lc5’ in Table 2 is concatenated with the additional
tellar and planetary parameters: the orbital period, stellar surface 
ravity, stellar radius, stellar mass, and stellar K magnitude, i.e. [ z i 1 ,
 i 3 , . . . , z i 6 ] for each example, to form the 1D linear input for layer
Lc6’. The additional parameters did not undergo any normalization 
nd were presented to the network in their raw form. 

.1.3 Training/optimization 

he CNN was trained for 75 epochs (i.e. was presented with the
ntire training set 75 times), on a single NVIDIA TITAN Xp GPU.
he model was trained using batches of 256 examples. Rather than 
resenting the CNN with examples of dimensions 60 × 55 (as 
1 http://www .astropy .org 
2 CNNs are designed to excel in tasks in which translational invariance 
s important, i.e. we are looking for particular patterns anywhere in the 
nput data. As such, they are especially popular in image-based tasks. 
o we v er, the y are v ery successful ev en outside this setting, as the y ef fecti vely 

educe the number of trainable parameters of a neural network (compared 
ith a feedforward DNN of the same depth). This means they are more 

omputationally efficient to train and more resistant to o v erfitting. 

u  

i  

w

1

A
1

S

enerated by the pre-processing step), each example was flattened 
nto a single vector of length 3300. Initial investigation showed 
hat 1D convolutions o v er the flattened inputs produced significantly
etter results than 2D convolutions o v er the 2D pre-processed inputs.
he model was trained by minimizing the MSE loss (see Section 3.4 )
sing the standard Adam optimizer and an initial learning rate of 1 ×
0 −3 decaying by 10 per cent the existing rate, every epoch. No early
topping was used, as we observed no increase of the validation error
uring training to indicate the presence of o v erfitting. No additional
orm of regularization (e.g. BN, dropout, or explicit regularization) 
as used in the training procedure. All remaining hyperparameters 
ere set to default PyTorch values. The code for this solution is
ublicly available on GitHub. 13 

.2 Major Tom’s solution 

ajor Tom took second place on the ARIEL ML Challenge 
coreboard. The team composed of ML researchers from the Data 
cience Research and Analytics group at the University of Tuebingen 
Germany). The goal of the team’s solution is to provide an easy to
se ML tool, with minimal data pre-processing effort and a fast
nference step. The result is a fully integrated deep learning solution
hose final code is publicly available online. 14 
RASTAI 2, 695–709 (2023) 

3 Solution by SpaceMeerkat (ranked 1st): https:// github.com/ SpaceMeerkat/ 
RIEL- ML- Challenge . 

4 Solution by Major Tom (ranked 2nd): https:// github.com/ unnir/ Ariel- 
pace- Mission- Machine- Learning- Challenge . 

http://www.astropy.org
https://github.com/SpaceMeerkat/ARIEL-ML-Challenge
https://github.com/unnir/Ariel-Space-Mission-Machine-Learning-Challenge
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R

Figure 4. The deep learning model architecture proposed by the Major Tom team (ranked 2nd). The model has two separate inputs: one for the measurements 
X i , the second for the additional stellar and planetary parameters z i . The two branches are subsequently concatenated and higher level non-linear features 
combining information from both are extracted. 
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.2.1 Pre-processing 

he main moti v ation behind this solution was to create a robust
tatistical model that can handle outliers and noisy data. Therefore,
e deliberately do not apply any heavy pre-processing to the data
eyond the rescaling of the features and the targets. Since all
easurements in time series x ij are mostly distributed around 1 (see

.g. Fig. 5 ), we used the following rescaling of the data, in order to
mphasize the differences between measurements: 

 

( t) 
ij ← ( x ( t) ij − 1) × 1000 . 

e apply a similar transformation technique to the target variable y :

 j ← y j × 1000 . 

.2.2 Model/ar chitectur e 

e used a multiple-input and multiple-output DNN model with
C, BN (Ioffe & Szegedy 2015 ), and dropout (Srivastava et al.
014 ) layers. 15 The final architecture is presented in Fig. 4 . It
onsists of two separate branches. The first branch uses as input the
ight curves X i , and the second, the additional stellar and planetary
arameters z i . After several non-linear transformations, the outputs
f the two branches are concatenated into one and higher level
on-linear features combining information from both are extracted.
he output layer has 55 neurons, the j th neuron mapping to the

rescaled) predicted relative radius y ij of a given example. We utilized
xponential linear unit acti v ations in all but the last two layers, where
eLUs and linear acti v ation functions are used, respectively. 

.2.3 Training/inference 

e train the DNN using the NAdam optimization algorithm (Dozat
016 ) and a cyclic learning rate as described in Smith ( 2017 ). The
umber of epochs was set to 1000, and the batch size to 3048.
e selected the MSE as the loss function. We train the proposed
odel using 10-fold cross-validation with early stopping based on

he validation loss with the patience equals to 20. The neural network
as implemented using the KERAS / TENSORFLOW deep learning

ramework (Abadi et al. ( 2015 )). The entire training step took ≈30 h
sing a single NVIDIA P100 GPU. 
For the inference step, we used an ensemble consisting of all 10
odels produced in the cross-validation steps; the final prediction is

he average of all estimates from the 10 models. 
ASTAI 2, 695–709 (2023) 

5 Both BN and dropout are commonly used techniques to prevent overfitting 
n neural networks. 

4

O  

o  
.3 BVLabs’ solution 

he team BVLabs took third place in the challenge. It is comprised
f researchers and data scientists from the Jo ̌zef Stefan Institute and
ias Variance Labs. The team’s solution relied on denoising the input
ata, the use of tree ensembles and FC neural networks. 

.3.1 Pre-processing 

or each star–planet pair, we have 10 stellar spot noise instances
nd for each stellar spot noise instance we have 10 Gaussian noise
nstances. The data for each star–planet pair can therefore be repre-
ented as a tensor with dimensions (10, 10, 55, 300). For a fixed stellar
pot noise instance, we computed the element-wise mean flux matrix
 v er the 10 Gaussian noise instances which decreases the noise in
he data. This can be seen as aggregating multiple measurements of
he same target to decrease the variance of the observation. We are
eft with tensors with dimensions (10, 55, 300). Next, we compute
lement-wise medians o v er the 10 stellar spot noise instances, leaving
s with tensors with dimensions (55, 300). An example of the result
f this denoising process is presented in Fig. 5 a. 
The maximum flux (without noise) is al w ays 1, whereas the
inimal flux gives information about the planet radius. To further

ompensate for the noise, we do not use the minimal flux directly.
nstead, we calculate two values: the minimum of the average of
hree consecutive flux values, and the median of the 10 lowest flux
alues. An example of the extracted values is shown in Fig. 5 b. 

We also estimated the amount of energy that stars emit at operating
avelengths of the ARIEL spacecraft. Tinetti et al. ( 2016b ) list the
ve operating ranges of ARIEL. We divided each range into 11
ins of equal length, to get the estimates of the 55 wavelengths. To
alculate the energy at a given wavelength, we used Planck’s law 

( λ, T ) ∝ 

1 

λ5 

1 

exp 
(

hc 
λk B T 

)
− 1 

, 

here λ is the wavelength, h is the Planck’s constant, k B is the
oltzmann’s constant, and c is the speed of light. The star temperature
 was one of the six stellar and planetary parameters (see Section 3.1 ).
n total, we used 171 (3 · 55 + 6) features: three features for each
f the 55 channels (the two extracted from the flux values and the
nergy emitted) and the six stellar and planetary parameters. 

.3.2 Model and training 

ur best performing model was a heterogeneous ensemble consisting
f three models. The first model was a random forest of 500 trees

art/rzad050_f4.eps
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Figure 5. Pre-processing of the light curves by the BV Labs Team (ranked 3rd). Image (a) shows the light curve before (blue) and after (red) noise instance 
aggregation. Image (b) shows the features extracted from the denoised data. Both images show the data for star–planet pair 113, channel 25. 
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Breiman 2001 ), as implemented in scikit learn (Pedregosa 
t al. 2011 ). The second model was an extreme gradient boosting
Friedman 2000 ) ensemble of 150 trees, as implemented in the 
gboost library (Chen & Guestrin 2016 ). For both methods the 
arameters were optimized with cross-validation, and a separate 
odel was learned for each channel. The third model was a 
ultitarget (one model for all 55 channels) FC neural network with 

ne hidden layer of 100 neurons. We used BN, dropout (with a rate
f 0.2), and ReLU acti v ations. The netw ork w as optimized with the
dam optimizer for 1000 epochs, with a constant learning rate 10 −3 .
s the loss function, average MSE across all targets was used. The
etw ork w as implemented in PyTorch . 
The weights of these three models in the final heterogeneous 

nsemble were optimized manually, with the best results obtained 
ith a weight 0.15 assigned to the random forest, 0.25 to XGBoost,

nd 0.6 to the neural network. The code is available online. 16 

.4 IWF-KNOW’s solution 

WF-KNOW took the fourth place on the ARIEL ML Challenge 
coreboard, and comprised of researchers and data scientists from 

he Space Research Institute (Austria), Know-Center (Austria), and 
he University of Passau (Germany). In contrast to the other top 
corers who relied on deep learning approaches, their solution is 
ased on a set of linear regressors, each of which is fast to train and
asy to interpret (see Fig. 6 ). The corresponding scripts can be found
n Zenodo. 17 

.4.1 Pre-processing 

e re-inde x ed the e xamples X i , each of size 300 × 55, in a new
atrix X p , k , l , where p ∈ { 1, 2, . . . , 2097 } inde x es the planet, k ∈
 1, 2, . . . , 10 } the stellar spot instance, and l ∈ { 1, 2, . . . , 10 }
he photon noise instance. To reduce the photon noise, we averaged 
he examples X p , k , l over the photon noise instances l belonging to 
he same planet p and stellar spot noise instance k , yielding the
oise-reduced example matrix ˜ X p,k = 

1 
10 

∑ 10 
l= 1 X p,k,l . ˜ X p,k was of 

ize 300 × 55 and comprised of the light curves for each wavelength.
6 Solution by BV Labs (ranked 3rd): https:// github.com/ bvl-ariel/ bvl-ariel . 
7 Solution by KNOW-IWF (ranked 4rd) available under the DOI 10.5281/zen- 
do.3981141: https:// doi.org/ 10.5281/ zenodo.3981141 . 

1

b
f

ubsequently, we calculated the differences between the maxima and 
inima of each light curve in ˜ X p,k . The maxima were assumed to

e 1 as the light curves were already normalized, and the minima
ere estimated as the 1st, 5th, and 10th percentiles. This yielded

stimates � F p , k , j , r of the dip of the relative light curve caused by
 transit of planet p for stellar spot noise instance k , wavelength j ,
nd r ∈ { 1 per cent , 5 per cent , 10 per cent } corresponding to the 1st,
th, and 10th percentiles. As the true dip � F p , j of the relative light
urve is approximately equal to the quadratic relative planet radius 
R p,j 

R ∗,j 

)2 
, we took the square root of � F p , k , j , r to obtain estimates of

he relative planet radii: 

R p,j 

R ∗,j 

≈ √ 

�F p,k,j,r . 

We then built a feature vector f p comprised of the estimated relative
lanet radii belonging to planet p : 

 p = 

[ √ 

�F p, 1 , 1 , 1 per cent , . . . , 
√ 

�F p,k,j,r , . . . , 
√ 

�F p, 10 , 55 , 10 per cent

he feature vectors f p were augmented by the stellar and planetary
arameters pro vided. F or that, we av eraged the six stellar and
lanetary parameters z i 1 , z i 2 , . . . , z i 6 o v er all photon noise and stellar
pot noise instances belonging to the same planet yielding z p = [ z p , 1 ,
 p , 2 , . . . , z p , 6 ]. The averaged stellar and planetary parameters z p 
ere then appended to the feature vectors f p yielding the augmented

eature vectors f ∗p . The length of f ∗p was 1656, which resulted from
5 wavelengths, 3 percentile-based dip estimations, 10 spot noise 
nstances, and 6 stellar and planetary features (55 × 3 × 10 + 6).
trictly speaking, the averaging was not necessary as the stellar and
lanetary parameters were the same for all instances of a planet (i.e.
o noise was added to the stellar and planetary parameters). Finally,
he extended feature vectors f ∗p were z -score normalized, 18 separately 
or the training and test set, thus a v oiding information leakage from
he test set into the training set. 

We also re-inde x ed the scalar targets y i , j in the training set as
 p , k , l , j . Subsequently, we aggregated targets by averaging over all 
tellar spot noise instances k and photon noise instances l belonging
o the same planet p , yielding the targets y p , j . Ho we v er, av eraging
RASTAI 2, 695–709 (2023) 

8 This type of normalization, also known as ‘standardization’ is performed 
y subtracting for each feature of a given example the mean value of that 
eature across all examples and dividing by its standard deviation. 
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Figure 6. Regression pipeline of IWF-KNOW (ranked 4th). The light curves on the left are two examples in ˜ X p,k . The minima of the light curves were estimated 
using the 1st, 5th, and 10th percentiles. Subsequently, the minima were used to calculate the dips of the light curves � F p , k , j , r . The square root of all light 
curve dips � F p , k , j , r belonging to the same planet p (i.e. including all wavelengths j and all stellar spot instances k ), and additionally the stellar and planetary 
parameters z p , 1 , . . . , z p , 6 , were then gathered in the feature vector f ∗p . The feature vector was z -score normalized (not shown in the graphic). Eventually, linear 
regressions were used to calculate the relative planet radius for each wavelength j . 
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19 Solution by TU Dortmund University (ranked 5th): https://bitbucket.org/ 
zagazao/ecml-disco v ery-challenge . 
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as again not strictly necessary as all photon noise and stellar
pot noise instances of a planet had the same relative radius in the
rovided data set. 

.4.2 Model and training 

e set up a multiple linear regression model per wavelength j ,
esulting in 55 regression models: 

 p,j = β0 ,j + f ∗T 
p βj + εj 

ith βj being the parameter vector of the model for wavelength j ,
0, j the intercept term, and εj the error term. 
The parameters β0, j and βj of the regression model were deter-
ined using least-squares estimation, which requires the estimation

f the covariance matrix of f ∗p . Because of the relatively large
ize of f ∗p , we estimated the covariance matrix with the shrinkage
ethod from Ledoit & Wolf ( 2004 ), which computes the shrinkage

oefficient explicitly. The parameters were found using all examples
rom the training set. Following this, we used the regression models
o predict all relative radii of the planets p in the test set with
avelength j : 

ˆ  p,j = β0 ,j + f ∗T 
p βj . 

he predicted relative radii ˆ y p,j were re-indexed to the original
ndices ˆ y i,j by copying ˆ y p,j to all corresponding stellar spot noise
nstances and photon noise instances. 

The only hyperparameters in our model were the percentiles used
or estimating the minima of the light-curve dips. We found these
arameters by trial and error and refrained from fine tuning them
urther. 

.5 TU Dortmund Uni v ersity 

he team from TU Dortmund University, consisting of researchers
orking on applying ML algorithms in astroparticle physics, landed
ASTAI 2, 695–709 (2023) 
he 5th place on the leaderboard, going under the alias ‘Basel321’
uring the Challenge. Their implementation is publicly available. 19 

t embraces three central ideas: (i) the pre-processing simplifies the
nput time series, yet retains much of their information in auxiliary
eatures; (ii) the baseline architecture is largely retained, but consists
f two input branches: one using as input these auxiliary features and
he other using as inputs the stellar and planetary parameters; and
iii) a bagging ensemble is created, in which each member is trained
n data that have undergone slightly altered pre-processing. 

.5.1 Pre-processing 

ig. 7 shows how the input data are simplified by the use of z -scaled
iecewise aggregate approximations (PAA, Keogh & Pazzani 2000 ),
f which the lost information is retained in the auxiliary features μ,
, and ε̄. These features describe each time series on a global level,
hile the PAA output captures the local shape. Namely, the PAA
utput is simply the average flux value in each of n paa equal-sized
egments. The z -scaled PAA representation facilitates learning due
o the decreased number of dimensions and due to the uniform scale
n each dimension. These properties are particularly rele v ant in dense
eural networks like the baseline solution, which can suffer from a
arge number of model parameters if the input dimension is large. 

.5.2 Model ar chitectur e and training 

n FC DNN is trained on the extracted features and the planetary and
tellar parameters. The architecture used, shown in Fig. 8 , is similar
o the baseline, but it includes one branch for the auxiliary features
nd one for the planetary and stellar parameters. Fig. 8 also lists the
ssociated hyperparameters. 
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Figure 7. The TU Dortmund University team (ranked 5th) simplifies the raw data with PAAs of z -scaled time series. The information lost during these 
transformations is retained in auxiliary features. Namely, the z -scaling produces time series with zero mean and unit variance, but the original means μ ∈ R and 
variances σ ∈ R of each channel and observation are kept. The PAA consists of only one average value in each equi-sized segment, but the overall reconstruction 
errors ̄ε ∈ R are maintained. 

Figure 8. The first three layers of model used by the TU Dortmund University team (ranked 5th) derive abstract features from each time series that is represented 
by a PAA. The auxiliary features μ, σ , and ̄ε and the stellar parameters are also fed into the network. The last four layers combine these different kinds of inputs. 
A randomized parameter search has been employed to tune the number of layers and their size. 
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here. We would therefore expect a degradation in terms of the performance of 
the algorithms to some degree, unless retrained on data accounting for these 
uncertainties. 
21 The term ‘non-parametric’ applies to models that are not restricted to 
a predetermined number of parameters. They can therefore adjust their 
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Multiple instances of the abo v e architecture, were then combined 
n a bagging ensemble. To increase the diversity, each ensemble 
ember shifted its input by a different number n ∈ [0, n paa ) of time-

teps. This alteration is performed already before the pre-processing, 
o that each ensemble member uses different PAA segments. The 
nal prediction was the median among all ensemble members’ 
redictions. 

.5.3 Observations 

egarding the feature representation extracted in the pre-processing 
tep, we observed the following: (i) a linear regression on the z -
caled PAA representation is already able to outperform the baseline 
olution; (ii) it is critical to maintain the information lost during this
ype of pre-processing – this is achieved by the auxiliary features; 
nd (iii) the use of shifting segments has remedied the fact that one
et of PAA segments may not be optimal for all observations. 

.  W H AT  T H E  W I N N I N G  M O D E L S  TEACH  U S  

e should stress again that the final score differences among the top
ve ranked solutions, as shown on Table 1 , are statistically negligible
nd should thus be regarded as equi v alent in terms of predictive power
n our simulated data. Having clarified this, these solutions provide 
s with some interesting insights with regards to the problem. 
First of all, we observe that all five solutions make use of the

dditional stellar and planetary parameters (orbital period, stellar 
emperature, stellar surface gravity, stellar radius, stellar mass, 
nd stellar K magnitude). This shows that these features indeed 
ontain rele v ant information for unco v ering the transit depths in
ight curves contaminated by the presence of stellar spots. Moreo v er,
his information is not redundant given the noisy light curves. 20 
0 It should be noted here, that the participants were given the ‘exact’ stellar 
nd planetary parameters used to simulate the data. In reality, these are known 
ith an associated degree of uncertainty which has not been taken into account 

c
t
l
i
t

Another interesting observation is that most solutions involve the 
se of highly non-linear nonparametric or o v erparametrized 21 models 
.r.t. the original features, like DNNs and/or ensembles of learners. 
ore specifically, four out of five teams use deep learning approaches 

 SpaceMeerkat , Major Tom , BV Labs , and TU Dortmund University )
nd three out of five ( Major Tom , BV Labs , and TU Dortmund
niversity teams) use ensemble learning methods. The Major Tom 

eam does not apply any pre-processing of the data provided beyond
eature normalization, leaving all feature extraction to be implicitly 
erformed by the DNN, using appropriate regularization techniques 
BN and dropout) to prevent overfitting. 

In contrast to this, the IWF-KNOW team relied on the extraction of
on-linear features from the original inputs informed by domain 
nowledge. They then trained simple linear models in this new 

eature space. 
The abo v e are indicativ e of the non-linear nature of the problem.

hey also showcase the flexibility of ML and computational statistics 
ethods in building models that capture this non-linearity. One can 
 xtract informativ e features giv en domain knowledge to capture it
nd then use simple and explainable models like linear regression 
rained on them. Alternatively, one can simply use powerful o v er-
arametrized models, like DNNs and ensemble methods to implicitly 
earn transformations of the original feature space that are useful for
he purposes of predicting the transit depth. 

Extracting a small number of meaningful features informed by 
omain knowledge ( IWF-KNOW and BVLabs ) or appropriately 
RASTAI 2, 695–709 (2023) 

omplexity to the data at hand. Ensemble models can fall in this class. The 
erm ‘o v erparametrized’ refers to parametric models having a number of 
earnable parameters that exceeds the number of data points. DNNs can fall 
n this class. Through appropriate use of regularization methods it is possible 
o a v oid o v erfitting ev en when fitting models of such high comple xity. 
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ummarizing the light-curve information using signal processing
echniques ( SpaceMeerkat and TU Dortmund University ) allows for
impler models to be trained in the lower dimensional extracted
eature space. This allows for faster training and can also ultimately
educe o v erfitting. 

A more detailed look into how the five solutions control for
 v erfitting also reveals they follow quite different approaches.
paceMeerkat uses a CNN rather than an FC DNN to reduce the
umber of ef fecti ve learnable parameters. Major Tom uses an FC
NN but controls for its complexity via BN, dropout, and the
se of an ensemble of trained DNNs, rather than a single model.
V Labs also make e xtensiv e use of ensembling and their neural
etwork learner also uses BN and dropout. The fact that they operate
n a much lower dimensional feature space (only 171 features
er data point) also aids in reducing o v erfitting. IWF-KNOW use
inear regression models, which are characterized with high bias (i.e.

ore prone to underfitting than o v erfitting). The y also operate on a
ower dimensional space (1656 features per data point) and apply
hrinkage. Last but not least, TU Dortmund University makes use of
n ensemble which is interestingly built on data having undergone
lightly different pre-processing. Training on perturbed inputs results
n making them more robust to o v erfitting. 

Two of the top five teams ( BV Labs and IWF-KNOW ) made use
f the fact that the training data contained multiple data points
orresponding to the same planet under (10 different photon noise
nd 10 different stellar spot noise instances). They treated the two
oise sources as independent and averaged these out or took the
edian to obtain less noisy light curves. This was a sensible thing to

o and such a scenario would indeed occur if multiple observations
f the same target were to be obtained. 
Finally, ignoring outlier flux values via smoothing/down-sampling

he light curves ( SpaceMeerkat ), clipping values abo v e 1 ( Space-
eerkat and BVLabs ), or by extracting summary statistics from the

ight curve and using them as features ( SpaceMeerkat , BVLabs , IWF-
NOW , and TU Dortmund University ) pro v ed a useful strategy in
uilding more robust models. 

.  C O N C L U S I O N S  

orrecting transit light curves for the effects of stellar spots is a
hallenging problem, progress in which can have a high impact on
xoplanetary science and exoplanet atmosphere characterization in
articular. 
The primary goal of the Ariel mission’s 1st ML Challenge was

o investigate the existence of fully automated solutions to this task
hat predict the transit depth with a precision of the order of 10 −5 –
0 −4 with the use of ML and computational statistics methodologies.
he secondary goal was to bridge the ML and exoplanetary science
ommunities. As we saw, both of these goals were met with success.

The aim of this work is to serve as a starting point for further
nteraction between the two communities. We described the data
eneration, the problem outline, and the organizational aspects of the
hallenge. We intend this to serve as a reference for the organization
f future challenges in data analysis for exoplanetary science. In the
nterests of communicating the modelling outcomes of the Challenge,
e also presented, analysed, and compared the top five ranked

olutions submitted by the participants. 
As evidenced by the top five entries, the Challenge indeed attracted

he interest of both exoplanetary scientists and ML experts. The par-
icipants co v er an impressiv e breadth of academic backgrounds and
he submitted solutions an equally impressive range of approaches,
rom linear regression to CNNs. 
ASTAI 2, 695–709 (2023) 
The solutions obtained demonstrate that it is indeed feasible to
ully automate the process of efficiently correcting light curves
or the effect of stellar spots to the desired precision. One key
nsight obtained is that additional stellar and planetary parameters
orbital period, stellar temperature, stellar surface gravity, stellar
adius, stellar mass, and stellar K magnitude) can greatly impro v e
he deri v ation of correct transit depths in the face of stellar spots.

oreo v er, although the scenarios examined where characterized
y high spot co v erage (10 per cent), the results suggest that it is
ossible to successfully correct even such ‘hard cases’. This, in turn,
uggests that younger or more active stars need not be excluded
rom atmospheric population studies due to data analysis limitations.
lanets orbiting such stars can thus be targeted by future space
issions. 
Good solutions can be obtained by a wide range of modelling
ethodologies. They include simple, easily interpretable models,

ike linear regression, built on features derived from clever feature
ngineering, informed by exoplanet science theory. Other solutions
mount to training complex ML models using deep learning or
nsemble learning, which automate the extraction of useful features
rom minimally pre-processed – even raw – data. In the latter case,
specially for DNN models it is crucial to take measures to prevent
 v erfitting. These can include dimensionality reduction, ensembling,
se of convolutional filters, BN, dropout, training using perturbed
ata, and combinations thereof. 
The next steps of this work include refinement of the proposed

olutions to handle more realistic simulated data, possibly involving
oth stellar spots and faculae (areas of the host star characterized by
ncreased temperature). Upon successful performance on these, the
rovided solutions can then be used in the analysis pipeline of Ariel
ata or adapted to other instruments. 

UPPORTING  I N F O R M AT I O N  
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