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Abstract

Diverse decoding of large language models is crucial for applications requiring
multiple semantically distinct responses, yet existing methods primarily achieve
lexical rather than semantic diversity. This limitation significantly constrains Best-
of-N strategies, group-based reinforcement learning, and data synthesis. While
temperature sampling and diverse beam search modify token distributions or apply
n-gram penalties, they fail to ensure meaningful semantic differentiation. We
introduce Semantic-guided Diverse Decoding (SemDiD), operating directly in
embedding space that balances quality with diversity through three complementary
mechanisms: orthogonal directional guidance, dynamic inter-group repulsion, and
position-debiased probability assessment. SemDiD harmonizes these competing
objectives using adaptive gain functions and constraint optimization, ensuring
both quality thresholds and maximal semantic differentiation. Experiments show
SemDiD consistently outperforms existing methods, improving Best-of-N coverage
by 1.4-5.2% across diverse tasks and accelerating RLHF training convergence by
15% while increasing accuracy by up to 2.1%.

1 Introduction

Diverse decoding of large language models (LLMs) aims to produce multiple semantically diverse
responses for the same query. High-quality, creative, and non-repetitive multiple responses play a
crucial role in numerous fields. In best-of-N strategies, multiple-answer candidates coupled with a
verification mechanism (like self-consistency) enable smaller models to surpass larger ones under
equivalent computational budgets [1, 2, 3]. In group-based reinforcement learning from human
feedback (RLHF) algorithms like Iterative-RLHF [4, 5], RLOO [6], and GRPO [7], diverse decoding
facilitates self-improvement through reward-based evaluation of answer groups. Additionally, in
seed-based data synthesis, diverse decoding serves as a fundamental component for generating varied
training data, thereby enhancing the robustness and generalization capabilities [8, 9, 10, 11].

Current methods like temperature sampling [12], nucleus sampling [13], diverse beam search [14, 15],
and code-book [16] create lexical variations, but they often produce semantically similar responses.
To ensure semantic diversity among multiple-answer candidates, an ideal approach is to generate nu-
merous candidates, embedding and clustering them semantically, and then selecting high-probability
representatives from different clusters. Unfortunately, this is computationally prohibitive in practice,
and calls for resource-efficient methods to achieve semantic diversity during the decoding process.
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We propose Semantic-guided Diverse Decoding (SemDiD), a decoding algorithm that generates
multiple (k) semantically diverse and high-quality answers through three key mechanisms: directional
guidance, inter-group repulsion, and probability preference. Directional guidance steers each decod-
ing trajectory toward distinct semantic regions, inter-group repulsion maintains semantic distances
between groups, and probability preference prioritizes tokens with higher likelihood to ensure quality.
SemDiD runs k groups of beam searches simultaneously, with the first group employing greedy
decoding to establish a quality baseline. Despite the conceptual simplicity, effective implementation
presents several challenges:

Diminishing Returns in Probability-Based Quality Assessment: While probability offers a compu-
tationally efficient quality metric, it has significant limitations. Extremely low probabilities correlate
with poor outputs, but quality improvements plateau as probabilities increase beyond moderate
levels. Rather than aggressively maximizing probability, SemDiD treats probability as a lower bound
using a harmonic gain function that adaptively prioritizes quality or diversity based on their relative
performance. This ensures both metrics remain above acceptable thresholds while optimizing for
overall effectiveness.

Position and Length Bias in Probability Estimation: As sequences progress, tokens appearing
later typically receive higher probabilities due to increasing contextual certainty, resulting in distorted
quality assessment. To address this, SemDiD employs position-based regularization, applying
diminishing weights to tokens in later sequence positions while imposing a threshold to limit the
influence of excessively high-confidence tokens.

Balancing Competing Forces: To simultaneously maintain quality and maximize diversity, SemDiD
integrates harmonic mean theory with ϵ-constraint optimization to guarantee that each group’s quality
score remains above the greedy baseline threshold while pursuing semantic diversity. Within the
diversity dimension, SemDiD implements stage-aware transition between directional guidance and
inter-group repulsion. During early exploration stages, partial answer embeddings are closely in
semantic space, so directional guidance predominates to establish initial diversity. As decoding
progresses, weighting gradually shifts toward inter-group repulsion, recognizing that predetermined
directional guidance may become suboptimal and potentially limit model precision.

We evaluate SemDiD on multiple benchmarks to test its effectiveness. For Best-of-N, our ap-
proach enhances performance across various tasks, with improvements ranging from 1.4% on
ARC-Challenge to 5.2% on MMLU-Pro+ with 25 samples. In the RLHF framework, SemDiD
enables more efficient exploration of the solution space through the Iterative-RLHF, GRPO, and
RLOO algorithms, reaching target performance levels more quickly during training and achiev-
ing 1.8-2.1% higher accuracy compared to the best baseline methods. The code is available at
https://github.com/shiweijiezero/SemDiD.

2 Related Work

Decoding algorithms determine how tokens are selected during language model generation. Diverse
decoding methods extend this concept by producing multiple distinct outputs for a single prompt, and
can be categorized into parallel sampling approaches and diverse beam search variants.

Parallel samplings generate tokens independently across different decoding paths. Methods such
as temperature sampling, top-k sampling [17], nucleus sampling [13], and typical decoding [18]
modify the conditional token distribution to increase randomness, but provide no guarantees against
duplicate outputs. Arithmetic sampling [16] uses an implicit arithmetic code-book to ensure character
diversity. To prevent sampling tokens with excessively low probabilities that might compromise
quality, truncation sampling [19] and epsilon sampling [20] introduce cutoff mechanisms based on
probability thresholds and distribution shape.

Diverse beam search variants [15, 14] explicitly model interactions between candidate sequences to
prevent redundancy, introducing diversity penalties between beam groups like Hamming, Cumulative,
and n-gram penalties. Determinantal beam search [21] formulates decoding as a series of subdetermi-
nant maximization problems based on determinantal point processes (DPPs), inherently encoding
intra-set interactions to promote n-gram coverage. Stochastic beam search with Gumbel-Top-k trick
[22] and Conditional Poisson [23] enable both exploration and principled sampling without replace-
ment from sequence models. While these interaction-based methods improve lexical diversity, they
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Figure 1: Comparison between ideal semantic decoding and SemDiD. While generating numerous
samples followed by embedding and clustering would optimally identify diverse representatives,
this is computationally intractable in practice. Our proposed SemDiD achieves similar diversity
more efficiently by directly guiding decoding in semantic space through orthogonal directions and
inter-group repulsion, while maintaining quality with debiased probability assessment.

primarily operate at the token or n-gram level rather than in semantic space. Our proposed SemDiD
advances beyond these approaches by explicitly guiding the decoding process in embedding-based
semantic space. Furthermore, to ensure the ease of deployment, our design principle aims to be
usable out-of-the-box without any training.

Additionally, recent works have explored semantic diversity in language generation from domain
views. [24] use gradient-based attribution scores to identify semantically critical tokens for uncertainty
estimation, employing importance sampling with NLI-guided token substitution. [25] propose
controlled embedding perturbation at the first token position combined with Bayesian optimization
for reasoning in latent space. While these works share our motivation for semantic diversity, SemDiD
differs in several key aspects: (1) we operate during beam search decoding rather than post-hoc
token substitution or first-token perturbation, (2) our approach balances quality and diversity through
harmonic optimization rather than focusing solely on uncertainty or correctness, and (3) we target
Best-of-N and RLHF applications rather than uncertainty estimation or reasoning tasks.

3 Semantic-guided Diverse Decoding

Let q denote a query input and M a pretrained language model with a conditional distribution pM (y|q)
over possible responses y ∈ Y . Our Semantic-guided Diverse Decoding (SemDiD) aims to generate
k responses {y1, y2, . . . , yk} that exhibit both high quality and semantic diversity.

SemDiD Architecture. As shown in Figure 1, SemDiD extends the group beam search framework
using k groups and selecting one representative output from each group. Candidates are evaluated
on both quality using debiased sequence probability as a lower bound and diversity by assessing
embedding space representations through exploration direction and inter-group distance. The first
group uses greedy decoding to establish a quality baseline and reference direction.

3.1 Efficient Quality Assessment with Debiased Probability

Quality evaluation is crucial during generation. Although dialogue-based LLMs could be used,
applying such evaluations to each candidate branch during generation would incur substantial
computational costs. An efficient alternative is using the language model’s own token likelihood
scores, which reflect its confidence level. When a model exhibits uncertainty, it tends to produce
lower quality outputs [26].

Probability as a Quality Lower Bound. Unfortunately, our experiments 3 reveal that blindly
pursuing high probability does not necessarily yield higher quality, as shown in Figure 2. Log

3Detailed experimental setup is available in Appendix A and B
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by distance to previous punctu-
ation.

probability thresholds up to -2.5 demonstrate rapid improvements in evaluation accuracy, but this
accuracy generally plateaus thereafter. When the log probability threshold exceeds -1, the accuracy
of quality assessment significantly decreases, indicating that many correct responses are mistakenly
classified as incorrect. This suggests probability-based thresholding is better suited as lower bounds
to avoid extremely low-probability sequences and ensure basic quality, rather than as maximization
targets for optimal performance.

Position and Length Biases in Token Probabilities. Figures 3 and 4 reveal systematic variations
in token probabilities that compromise quality assessment. Tokens appearing later in sequences
receive artificially inflated probabilities due to richer contextual information. Similarly, probabilities
increase as sentences progress after punctuation marks. These position-dependent biases create unfair
advantages for longer responses and certain sentence structures. Without correction, probability-based
quality assessment becomes unreliable for comparing candidate sequences of different lengths.

We propose a position-debiased probability that applies diminishing weights to token probabilities
based on their positions in sequence and sentence:

pdebiased(ti|t<i) = p(ti|t<i) · exp(−βseq · i) · exp(−βsent · di) (1)

where i is the absolute position of token ti in the sequence, di is the distance (in tokens) from token ti
to the most recent sentence-ending punctuation, and βseq and βsent are hyperparameters controlling
the respective decay rates. Additionally, we apply a saturation threshold τ to prevent excessively
high-confidence tokens from dominating quality assessment:

Squality(y) = min(pdebiased(ti|t<i), τ) (2)

3.2 Semantic Diversity Assessment
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While probability-based quality assessment provides an efficient mechanism for filtering low-quality
candidates, optimizing solely for probability often yields semantically redundant solutions. As

4



illustrated in Figure 5, correct answers (circles) are scattered across distinct semantic clusters rather
than concentrated in a single region. This distribution pattern suggests multiple valid reasoning paths
exist in the embedding space.

Furthermore, Figure 6 demonstrates that semantically-driven selection strategies consistently outper-
form both probability-based ranking and character-level approaches in Best-of-N evaluations. When
selecting top-k diverse candidates from 100 samples per problem, semantic clustering achieves up to
95% coverage at k=25, compared to 92% for regular probability-based selection. Surprisingly, we
found that embedding model size has minimal impact on performance effectiveness, allowing us to
employ smaller, computationally efficient models without sacrificing diversity quality or incurring
excessive computational overhead. We employ a small sentence embedding model E that maps
partial or complete sequences to a semantic vector space. Afterward, two key mechanisms drive our
semantic diversity:

Directional Guidance for Initial Exploration: In the early stages of decoding, embeddings of
partial sequences tend to cluster closely in semantic space. This proximity occurs because initial
tokens have limited context to differentiate their semantic trajectories substantially. Without explicit
guidance, these trajectories would likely converge toward similar semantic regions despite different
token selections, resulting in lexical variations with minimal semantic diversity.

To efficiently explore different semantic regions, each group g (except the first greedy group) is
assigned a distinct directional vector d⃗g in embedding space. These directional vectors serve as
semantic "targets" that guide the decoding process toward different regions of the embedding space.
The first group follows the highest probability path using greedy decoding, establishing a reference
direction:

d⃗1 =
E(y1t )− E(q)
||E(y1t )− E(q)||

(3)

where E(y1t ) is the embedding of the partial sequence generated by the first group at time step
t, E(q) is the embedding of the query. For the remaining groups, we apply the Gram-Schmidt
orthogonalization process to generate a set of orthogonal directions:

v⃗g = r⃗g −
g−1∑
i=1

r⃗g · d⃗i
||d⃗i||2

d⃗i d⃗g =
v⃗g
||v⃗g||

(4)

where r⃗g is a randomly initialized vector, v⃗g is the intermediate vector orthogonalized against all
previous directions, and d⃗g is the normalized directional vector for group g. The orthogonality ensures
each group explores fundamentally different semantic trajectories through the directional score:

Sdir(y
g
t ) = cos

(
E(ygt )− E(q), d⃗g

)
(5)

Inter-Group Repulsion for Dynamic Divergence: While directional guidance establishes initial
trajectory divergence, predetermined directions may become suboptimal as generation progresses.
Forcing candidates to follow fixed directions regardless of the language model’s natural tendencies
can lead to suboptimal outputs in terms of quality and coherence. To this end, we introduce an inter-
group repulsion that dynamically maintains semantic distance between groups without constraining
them to rigid paths:

Srep(y
g
t ) = −max

g′ ̸=g
⟨E(ygt ), E(y

g′

t )⟩ (6)

where ⟨·, ·⟩ denotes the dot product operation. This score becomes more negative as a candidate
approaches other groups’ semantic regions in the embedding space, thereby encouraging continued
divergence throughout the generation process.

The final diversity score for a candidate sequence ygt is computed as a weighted combination of
directional guidance and inter-group repulsion:

Sdiv(y
g
t ) = (1− αt) · Sdir(y

g
t ) + αt · Srep(y

g
t ) (7)

where αt is a time-dependent weighting factor calculated as:
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αt = min

(
1,

t

Ttrans

)
(8)

Here, t represents the current decoding step, and Ttrans is a hyperparameter controlling the transition
point. During early steps (t < Ttrans), the weight gradually shifts from directional guidance
toward repulsion, with repulsion completely dominating after step Ttrans. This dynamic weighting
recognizes that directional guidance is more valuable during early exploration stages, while repulsion
becomes increasingly important as sequences develop their semantic identity.

3.3 Balancing Quality and Diversity

Having assessed quality and diversity, it is critical to optimize these competing objectives.

3.3.1 ϵ-Constraint Quality Guarantee

To ensure the lower bound of quality, we adopt the ϵ-constraint method from multi-objective opti-
mization:

max
y∈Y

Sdiv(y) subject to Squality(y) ≥ ϵ (9)

where ϵ represents our quality threshold based on the greedy decoding baseline:

ϵ = min
i∈[1,t]

Squality(y
1
i ) · γ (10)

Here, y1i is the partial sequence generated by the first (greedy) group at time step i, and γ ∈ (0, 1]
serves as a relaxation parameter balancing quality requirements with optimization flexibility.

Theorem 1 (Quality Guarantee) With quality threshold mechanism, the quality difference between
any group g and the first greedy group is bounded by:

E[Squality(y
1)− Squality(y

g)] ≤ δ(1− γ) (11)

where δ represents the maximum quality dispersion in the response space.

Proof: The first group follows greedy decoding, selecting maximum probability tokens at each step.
Through ϵ-constraint, any candidate sequence y with Squality(y) < ϵ is eliminated regardless of
diversity score. Since ϵ = mini∈[1,t] Squality(y

1
i ) · γ, and each group must maintain quality scores at

least γ fraction of the greedy baseline at every step, the cumulative quality difference cannot exceed
(1− γ) multiplied by the maximum possible quality dispersion δ.

3.3.2 Harmonic Gain-Based Balancing

While the ϵ-constraint method provides quality guarantees, its binary acceptance/rejection mechanism
can be too rigid in practice. In practical applications, we neither want candidates with high probability
but low diversity, nor those with low probability but high diversity. To allow more nuanced trade-offs,
we employ a harmonic gain function that prioritizes improving the weakest aspect of each candidate:

Scombined(y
g
t ) =

{
−∞, if Squality(y

g
t ) < ϵ

λ·Squality(y
g
t )·Sdiv(y

g
t )

Squality(y
g
t )+Sdiv(y

g
t )

, otherwise
(12)

where Squality(y
g
t ) = max(0, Squality(y

g
t )− ϵ) represents the quality surplus above the threshold

and λ is a hyperparameter that controls the strength of harmonic mean.

Proposition 2 The harmonic gain function exhibits diminishing returns for improvements in either
quality or diversity when the other metric is significantly lower.

Proof: The partial derivatives of the harmonic gain with respect to quality and diversity are:

∂Scombined

∂Squality
=

λ · S2
div

(Squality + Sdiv)2
∂Scombined

∂Sdiv
=

λ · (Squality)
2

(Squality + Sdiv)2
(13)
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As Squality ≫ Sdiv, we have ∂Scombined

∂Squality
≈ 0 and ∂Scombined

∂Sdiv
≈ λ·Squality

Squality
= λ, indicating that

improvements in quality yield minimal gains while diversity improvements are highly rewarded.
Conversely, when Sdiv ≫ Squality, improvements in diversity yield minimal gains while quality
improvements are highly rewarded. This adaptive balancing ensures that neither metric is neglected
during optimization.

Theorem 3 (Diversity Guarantee) The expected minimum pairwise semantic distance between any
two responses generated by SemDiD satisfies:

E[min
i̸=j

dsem(yi, yj)] ≥ σ ·
√

1− cos(π/k)

2
(14)

where σ is the semantic space variance and k is the number of groups.

Proof: The directional guidance vectors {d⃗1, d⃗2, . . . , d⃗k} are constructed to be orthogonal in the
semantic embedding space. The minimum angle between any two vectors is at least π/k radians.
Since the cosine distance between two unit vectors with angle θ is 1−cos(θ)

2 , and the expected
magnitude of semantic differences in the embedded space is proportional to σ, the minimum expected

pairwise distance is bounded by σ ·
√

1−cos(π/k)
2 .

All scoring components undergo group-based normalization to ensure comparability across different
assessments. Detailed algorithm procedures are provided in Appendix C.

4 Experiments

We evaluate SemDiD on two categories of tasks: (1) Best-of-N evaluation across a variety of bench-
marks to assess diversity and quality of generated responses, and (2) the impact on reinforcement
learning from human feedback (RLHF) algorithms to measure training efficiency and performance
improvements. We evaluate SemDiD against baselines including Temperature Sampling [12], Arith-
metic Sampling [16], Diverse Beam Search [14], and Determinantal Beam Search [21] on diverse
generation tasks.

4.1 Best-of-N Evaluation

4.1.1 Experimental Setup

Datasets. We evaluate the effectiveness of SemDiD in Best-of-N settings across diverse tasks:
Reasoning tasks include ARC-Challenge [27], Big Bench Hard (BBH) [28], GSM8K [29], and
Minerva Math [30]. Question answering tasks include CoQA [31], PubMedQA [32], and MMLU-
Pro+ [33]. Machine translation tasks include WMT16 [34] (English-German, German-English)

Evaluation Metrics. For each query, we generate N responses using different decoding strategies.
We measure performance using two key metrics. Coverage represents the percentage of test examples
with at least one correct answer among the N generated responses. Accuracy indicates the percentage
of test examples where the selected answer (via majority voting or LLM judge) is correct.

4.1.2 Best-of-N Results

Figure 7 demonstrates that SemDiD consistently outperforms other decoding methods across diverse
benchmarks. On reasoning tasks, SemDiD shows superior coverage even with fewer samples,
achieving 82.4% on ARC-Challenge, 85.6% on BBH, 98.1% on GSM8K, and 86.1% on Minerva
Math with just 25 samples. For question answering tasks, SemDiD maintains its advantage with
46.7% on CoQA, 82.6% on PubMedQA, and 82.63% on MMLU-Pro+ at 25 samples. The translation
tasks show similar trends with SemDiD reaching 37.2% and 44.7% coverage on WMT16 English-
German and German-English respectively at 50 samples. Group Beam Search generally performs
well as the second-best method in many tasks, particularly in translation tasks where it closely
trails SemDiD, indicating that structured diversity approaches outperform independent sampling
methods. Temperature sampling shows inconsistent performance across tasks, with T=1.5 performing
relatively well on BBH (77.46% at 25 samples) but underperforming on Minerva Math (71.2% at 25
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Figure 7: Coverage comparison for Best-of-N using Qwen-2.5-3B.

samples). Notably, all diverse decoding strategies substantially outperform greedy decoding (shown
by the horizontal dashed line), with coverage gaps of up to 40 percentage points on certain tasks,
underscoring the critical importance of diverse sampling for complex reasoning and generation tasks.

4.2 Impact on RLHF Training

4.2.1 Experimental Setup

We evaluate SemDiD’s impact on reinforcement learning from human feedback (RLHF) by:

Iterative-RLHF [5]: Progressively enhances policy models through bootstrapped reward signals in an
online learning fashion, utilizing generated responses as training examples.

DeepSeek-GRPO [7]: A group-based RLHF algorithm that improves mathematical reasoning by
selecting optimal solutions from answer groups.

RLOO [6]: A simplified REINFORCE-style optimization that outperforms both PPO and "RL-free"
methods with lower computational costs while preserving alignment performance.
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Figure 8: Performance comparison across RLHF algorithms with varying rollout numbers using
Qwen-2.5-7B.

For our experiments, we employ Qwen-2.5-7B and Pythia-1B as base models, training them on the
mathematical dataset GSM8K4 and the summarization dataset TLDR5. We evaluate performance
using accuracy for GSM8K and win rate for TLDR, where the win rate is assessed by GPT-o1-mini
against the untrained baseline. For training feedback, we utilize a rule-based reward6 for GSM8K
and a reward model7 for TLDR.

4.2.2 RLHF Results

Figure 8 reveals that SemDiD consistently enhances RLHF training across all evaluated algorithms
and tasks. For TLDR summarization, SemDiD achieves the highest win rates of 72.1%, 73.4%, and
71.2% with Iterative-RLHF, GRPO, and RLOO respectively at 60 rollouts. On GSM8K, SemDiD
reaches impressive accuracy scores of 85.5% with Iterative-RLHF, 88.2% with GRPO, and 82.4%
with RLOO. The performance gap between SemDiD and other methods widens as rollout numbers
increase, with minimal differences at 5 rollouts but substantial advantages at 50 rollouts, suggesting
that semantic diversity becomes increasingly valuable with extended exploration. Importantly,
SemDiD’s ability to generate semantically diverse sequences results in more varied reward signals
(neither all 0s nor all 1s), creating larger advantage estimates that prevent policy collapse and drive
more effective learning. Group-based diversity strategies (Diverse Beam Search and Determinantal
Beam Search) consistently outperform independent sampling methods (Temperature Sampling and
Arithmetic Sampling), indicating that explicit inter-sequence interactions are crucial for effective
exploration in RLHF, with GRPO combined with SemDiD yielding the strongest overall performance.

5 Conclusion

We introduced Semantic-guided Diverse Decoding (SemDiD), addressing the critical limitation of
semantic diversity in LLM outputs. By operating directly in embedding space through orthogonal

4https://huggingface.co/datasets/openai/gsm8k
5https://huggingface.co/datasets/trl-lib/tldr
6https://github.com/huggingface/Math-Verify
7https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-rm
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directional guidance, dynamic inter-group repulsion, and debiased probability assessment, SemDiD
significantly outperforms existing methods. Our approach balances quality and diversity using an
ϵ-constraint mechanism and harmonic gain function that adaptively prioritizes the weaker aspect of
each candidate. With stage-aware transitions between exploration mechanisms, SemDiD maintains
semantic differentiation throughout the generation process. Our extensive evaluations across Best-of-
N and RLHF frameworks demonstrate SemDiD’s effectiveness in improving response diversity and
quality simultaneously without additional training.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Abstract and introduction clearly state the main contributions: (1) identifying
limitations of existing decoding methods, (2) introducing SemDiD with its three components,
and (3) demonstrating performance improvements that match the experimental results in
Sections 4.1 and 4.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 3.1 (probability-based quality assessment),
with detailed analysis in Appendix C.3 noting the 25-35% additional time overhead.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Complete proofs are provided for all theoretical claims, including Quality
Guarantee Theorem, Diversity Guarantee Theorem, and harmonic gain function properties,
with additional analysis in Section 3.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix specify all datasets, evaluation metrics, model archi-
tectures, and hyperparameters. Algorithm 1 provides detailed pseudocode for implementing
SemDiD.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available at the repository URL. All experiments use publicly available
benchmarks with citations, and implementation details are thoroughly documented in the
Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sections 4.1.1 and 4.2.1 detail the experimental setup, with hyperparameters
listed in Table 2. RLHF experiments specify base models, datasets, and reward mechanisms
used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Results are reported across 9 benchmarks for Best-of-N evaluations, and RLHF
experiments show performance across multiple algorithms and tasks, providing robust
evidence of consistent improvements. We also provide the reward growth log for RLHF in
Figure 14.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational requirements are detailed in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research uses publicly available benchmarks and models, doesn’t involve
human subjects, doesn’t encourage harmful applications, and properly cites all prior work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper doesn’t include a dedicated discussion of societal impacts, focusing
primarily on technical contributions without addressing potential benefits or risks to society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper introduces a decoding algorithm rather than high-risk models or
datasets, so safeguards beyond those in the base models aren’t necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, models and embedding models are properly cited with references.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release code with well-documented instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research doesn’t involve human subjects or crowdsourcing; all evaluations
use automated metrics on benchmark datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: No human subjects were involved in this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:[NA]
Justification: We just use LLMs to refine the grammar.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Analysis of Probability-Based Quality Assessment

A.1 Experimental Setup

To investigate the relationship between token probabilities and answer quality, we conducted a series
of experiments using mathematical reasoning and common-sense question answering tasks. We
sampled from three datasets: GSM8K [29], ARC-Challenge [27], and BBH [28], selecting 500
problems from each. For each problem, we generated 100 candidate answers using nucleus sampling
with p = 0.95 and temperature T = 1.0 by Qwen-2.5-3B. Each generated answer was evaluated
using two methods:

LLM-as-Judge: A large language model evaluated each answer for correctness (binary classification).

Probability Thresholding: Answers were classified as correct/incorrect based on various log
probability thresholds.

For LLM-as-Judge, we used a stronger model than the one generating the answers to ensure reliable
evaluation, including Qwen-2.5-3B, 7B, and 70B.

A.2 Probability-Quality Relationship

Our analysis revealed a non-linear relationship between sequence probability and answer quality. As
shown in Figure 2, there exists a critical threshold region where quality assessment accuracy changes
dramatically.

For log probability thresholds below −2.5, accuracy of quality assessment increases rapidly with
higher threshold values. This suggests that extremely low-probability sequences strongly correlate
with incorrect answers. However, accuracy plateaus in the region between −2.5 and −1.0, indicating
diminishing returns for higher probability thresholds. When log probability thresholds exceed −1.0,
we observed a significant decrease in assessment accuracy. This unexpected decline occurs because
many correct answers were misclassified as incorrect at these higher thresholds. The finding suggests
that probability is better suited as a lower bound to filter out low-quality outputs rather than as a
maximization target.

Additionally, we observed that model size significantly impacts the effectiveness of the LLM-as-judge
approach. The 70B model achieved an accuracy of 0.8185. While smaller 7B and 3B models reached
only 0.7685 and 0.7417 respectively, comparable to probability thresholding. However, larger models
inevitably introduce substantial inference costs, making them impractical for real-time evaluation
during the decoding process.

A.3 Position and Length Bias Analysis

Further analysis revealed systematic biases in token probabilities that compromise fair quality
assessment:

A.3.1 Position Bias

We computed average log probabilities for tokens at different positions across all generated sequences.
As shown in Figure 3, a clear upward trend emerges: tokens appearing later in sequences receive
consistently higher probability scores. This effect is particularly pronounced after position 20, where
average log probabilities increase by approximately 0.15 per 10 tokens.

This position bias creates an unfair advantage for longer responses in probability-based quality
assessment, as their aggregate scores benefit from the artificially inflated probabilities of later tokens.

Initial Token Bias. We also observed significantly higher confidence (i.e., higher probability) for
initial tokens across generated responses. This phenomenon occurs because language models are
trained on common opening phrases such as "To solve this problem...", "According to the given
information...", or "Let’s approach this step by step...".
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A.3.2 Sentence Progress Bias

Similar patterns appear within sentence structures. We analyzed the relationship between a token’s
distance from the most recent sentence-ending punctuation and its assigned probability. Figure 4
illustrates that tokens appearing further into a sentence receive progressively higher probabilities,
with an average increase of 0.08 per 5 tokens after punctuation. This sentence-level bias favors certain
syntactic structures and further distorts quality assessment when using raw probability scores.

A.4 Debiasing Methodology Evaluation

To address these biases, we implemented the position-debiased probability described in Section 3.1.
We conducted an ablation study to evaluate the effectiveness of our debiasing approach on SemDiD,
which used the Qwen-2.5-3B model with 10 samples per question. The combined approach with
saturation threshold achieved the highest accuracy, validating our debiasing methodology.

Table 1: Performance comparison of different debiasing approaches under 10 samples per question.

Method Avg. Coverage Avg. Accuracy by LLM-as-Judge
Raw Probability 67.85% 61.02%
Position Debiasing Only 68.41% 61.90%
Sentence Debiasing Only 67.95% 61.23%
Combined Debiasing 68.64 % 62.36%
+ Saturation Threshold 68.76 % 62.47%

B Analysis of Semantic Diversity Assessment

B.1 Experimental Setup

To investigate the value of semantic diversity in response generation, we conducted experiments
comparing different selection strategies for Best-of-N evaluation. Using GSM8K and BBH reasoning
problems as our testbed, we generated 100 candidate responses for each problem using nucleus
sampling with p = 0.95 and temperature T = 1.0 with Qwen-2.5-3B. We then applied various
selection strategies to identify the most representative diverse subsets.

B.2 Selection Strategies

We compared three distinct selection methods:

Highest Probability: The standard approach of selecting answers based solely on their log probability
scores, taking the top-k candidates with highest probabilities.

N-gram Clustering: Candidates were clustered based on character-level n-gram similarity. For each
cluster, we selected the representative with the highest probability score. This approach ensures
lexical diversity but may not capture deeper semantic differences.

Semantic Clustering: We embedded all 100 candidates using 0.5B and 1.5B parameter sentence
embedding models, performed K-means clustering in this semantic space, and selected the highest-
probability candidate from each cluster.

B.3 Semantic Space Visualization

Figure 5 provides a t-SNE visualization of the semantic embedding space for a specific GSM8K
problem, where correct answers (circles) and incorrect answers (crosses) are scattered across distinct
semantic clusters. The problem analyzed is:
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GSM8K Problem Example

A rectangular band formation is a formation with m band members in each of r rows, where
m and r are integers. A particular band has less than 100 band members. The director
arranges them in a rectangular formation and finds that he has two members left over. If he
increases the number of members in each row by 1 and reduces the number of rows by 2,
there exactly enough places in the new formation for each band member. What is the largest
number of members the band could have?

For this problem, 100 responses were generated, of which 22 were correct answers. These responses
were clustered into 10 semantic groups. Notably, 9 of the 10 clusters contained at least one correct
answer, and in 5 clusters, the highest-probability response was correct. Several key observations
emerge:

Multiple Valid Solution Paths: Correct answers appear in multiple distinct clusters rather than
concentrated in a single region, confirming that multiple valid reasoning paths exist for solving
mathematical problems.

Probability-Correctness Correlation: Circle sizes represent probability magnitudes, showing that
while higher probability generally correlates with correctness within clusters, this relationship is not
uniform across the entire semantic space.

Cluster Purity: Some semantic clusters contain predominantly correct answers (e.g., purple, blue,
and orange clusters), while others show a mix of correct and incorrect solutions (e.g., red and yellow
clusters). This suggests that certain reasoning approaches are inherently more reliable than others.

Distribution Patterns: Incorrect answers also form clusters, indicating systematic error patterns that
could potentially be useful for model improvement and error analysis.
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Figure 9: t-SNE visualization of semantic embedding space for GSM8K problems, where correct
answers (circles) and incorrect answers (crosses) are scattered across distinct semantic clusters. Circle
sizes represent probability magnitudes.

More examples are provided in Figure 9. This visualization highlights the importance of exploring
different semantic regions during decoding rather than simply maximizing token probabilities, as
valuable correct answers may exist across diverse semantic clusters rather than being concentrated in
a single high-probability region.

B.4 Results and Analysis

As shown in Figure 6, semantic clustering consistently outperforms both probability-based ranking
and character-level approaches across all sample sizes. When selecting top-k diverse candidates from
100 samples per problem, semantic clustering with even the smaller 0.5B model achieves up to 95%
coverage at k=25, compared to 92% for regular probability-based selection. The performance gap is
particularly pronounced at lower sample counts (k=3,5,7), where resource efficiency is most critical.
At k=3, semantic clustering provides a 3-4% absolute improvement in coverage compared to highest
probability selection.

Embedding Model Size Impact: Surprisingly, we found minimal difference between the 0.5B
and 1.5B embedding models in terms of clustering effectiveness. The 0.5B model achieved 91.7%
coverage at k=10, only 0.1% below the 1.5B model’s 91.8%. This finding suggests that even
lightweight embedding models can effectively capture the semantic distinctions necessary for diversity
assessment, allowing for computational efficiency without sacrificing diversity quality.
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Implications for Diverse Decoding. Our analysis demonstrates that semantic diversity provides
significant advantages over lexical diversity or probability-based selection in Best-of-N scenarios.
The findings support the design decisions in SemDiD, particularly the use of directional guidance to
explore distinct semantic regions rather than relying solely on token-level diversity, the importance
of balancing quality (via probability) with semantic diversity, and the viability of using lightweight
embedding models for semantic assessment during the decoding process. Furthermore, these re-
sults validate the efficacy of semantic clustering as a post-hoc selection strategy when multiple
candidate responses are available. For practical applications where generating a large number of
candidates is feasible, semantic clustering provides an effective mechanism for identifying a diverse
and representative subset.

C Algorithm and Optimization Details

C.1 SemDiD Algorithm

Algorithm 1 provides a detailed overview of the Semantic-guided Diverse Decoding (SemDiD)
procedure. The algorithm simultaneously manages k groups of beam searches, with the first group
following greedy decoding to establish a quality baseline.

C.2 Efficient Implementation

A naive implementation of the SemDiD algorithm would incur substantial computational overhead
due to duplicated embedding calculations. To address this, we implemented several optimization
techniques:

C.2.1 Dynamic Multi-step Lookahead

Unlike traditional Diverse Beam Search methods that rely on lightweight heuristic rules for token
selection, operating in the semantic space requires embedding computations that could become
prohibitively expensive. Traditional approaches evaluate all tokens in the vocabulary (typically
around 100K tokens) against beam scoring functions, which is computationally feasible for simple
n-gram penalties.

With SemDiD, evaluating the semantic impact of each vocabulary token through embedding calcula-
tions is impractical. Moreover, the semantic change from a single token is often too subtle for reliable
diversity assessment. To address this, we implement dynamic multi-step lookahead that explores Et

sequences per beam, each extending forward by Lt steps. It allows us to evaluate more substantial
semantic deviations rather than token-level variations.

The exploration width Et is dynamically adjusted based on sentence position [35, 36]:

Et =

{
Ebase · µp, if position t follows punctuation
Ebase · µn, otherwise

(15)

where µp and µn are hyperparameters, set to 1.5 and 0.7 respectively in our implementation. Setting
smaller values helps reduce the computational cost of SemDiD. Alternatively, a linear function of
sentence position can also be used to adjust these parameters dynamically.

We set a maximum lookahead depth of Lmax, but terminate the exploration early if a punctuation
mark is encountered:

ExploreDepth(y) = min(Lmax, StepsUntilNextPunctuation(y)) (16)

This adaptive approach ensures that we explore complete semantic units (sentences or clauses)
without wasting computational resources on unnecessarily deep lookahead. Our analysis shows
that approximately 26% of decoding steps qualify for increased exploration width. While we
considered using entropy-based dynamic adjustments, token-level entropy exhibits high variance and
can introduce noise, so we opted for the simpler punctuation-based approach.
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Algorithm 1 Semantic-guided Diverse Decoding (SemDiD)
Require: Query q, language model M , embedding model E , number of groups k, beam size b,

quality relaxation γ, transition step Ttrans, harmonic strength λ
Ensure: k semantically diverse responses {y1, y2, . . . , yk}

1: Initialize Y 1
0 ← {q} ▷ Greedy group has single beam

2: Initialize Y g
0 ← {q} for groups g ∈ [2, k] ▷ Diverse groups start with query

3: Initialize r⃗g ← RandomUnitVector() for all groups g ∈ [1, k] ▷ Random vectors
4: Initialize group directions d⃗g ← null for all groups g ∈ [1, k]
5: for t = 1, 2, . . . , Tmax do
6: αt ← min(1, t

Ttrans
) ▷ Update transition weight

7: for g = 1, 2, . . . , k do ▷ Process each group in parallel
8: Cg

t ← ∅ ▷ Candidates for group g at step t
9: if t mod Tupdate = 1 then ▷ Update directions periodically

10: if g = 1 then
11: Let y1 be the sequence in group 1
12: d⃗1 ← E(y1)−E(q)

||E(y1)−E(q)|| ▷ First group direction
13: else
14: v⃗g ← r⃗g −

∑g−1
i=1

r⃗g·d⃗i

||d⃗i||2
d⃗i ▷ Gram-Schmidt

15: d⃗g ← v⃗g
||v⃗g|| ▷ Normalize direction

16: end if
17: end if
18: if g = 1 then ▷ Greedy group with single beam
19: Let y be the sequence in Y 1

t−1
20: y′ ← GreedyLookahead(y, Lt) ▷ Greedy lookahead
21: Squality(y

′)← DebiasedProb(pM (y′|y), |y′| − |y|, dpunct)
22: Y 1

t ← {y′} ▷ Maintain single beam
23: Update ϵ← min(ϵ, Squality(y

′) · γ) ▷ Update threshold
24: else ▷ Diverse groups with multiple beams
25: for y ∈ Y g

t−1 do ▷ For each beam in the group
26: Et ← DetermineExplorationWidth(y) ▷ Dynamic exploration width
27: for e = 1, 2, . . . , Et do ▷ Generate Et lookahead sequences
28: y′ ← GenerateLookahead(y, Lt) ▷ Generate one path
29: Squality(y

′)← DebiasedProb(pM (y′|y), |y′| − |y|, dpunct)
30: Sdir(y

′)← cos
(
E(y′)− E(q), d⃗g

)
▷ Directional score

31: Srep(y
′)← −maxg′ ̸=g⟨E(y′), E(Best(Y g′

t−1))⟩ ▷ Repulsion
32: Cg

t ← Cg
t ∪ {(y′, Squality(y

′), Sdir(y
′), Srep(y

′))}
33: end for
34: end for
35: Use percentile-based normalization for Squality → S̃quality, Sdir → S̃dir, Srep → S̃rep
36: for each candidate (y′, ∗, ∗, ∗) in Cg

t do
37: S̃div(y

′)← (1− αt) · S̃dir(y
′) + αt · S̃rep(y

′)
38: if Squality(y

′) < ϵ then
39: Scombined(y

′)← −∞ ▷ Below quality threshold
40: else
41: S′

quality(y
′)← max(0, S̃quality(y

′)− ϵ) ▷ Quality surplus

42: Scombined(y
′)← λ·S′

quality(y
′)·S̃div(y

′)

S′
quality(y

′)+S̃div(y′)
▷ Harmonic

43: end if
44: end for
45: Y g

t ← SelectTopK(Cg
t , b) ▷ Keep top-b candidates per group

46: end if
47: end for
48: if all groups have complete responses or reached max length then
49: break
50: end if
51: end for
52: return {Y 1

T ,Best(Y 2
T ), . . . ,Best(Y k

T )} ▷ Return best from each diverse group
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Each group functions as an independent beam search representing a distinct search direction. The
groups explore asynchronously to reduce computational bottlenecks. After every Tupdate steps of
greedy decoding, we update the reference direction and guidance vectors for each group.

C.2.2 KV-Cache Utilization for Embedding Efficiency

To further reduce computational overhead, we leverage the key-value (KV) cache mechanism
when computing embeddings. We recommend using autoregressive embedding models such as
Salesforce/SFR-Embedding-2_R [37] or NovaSearch/stella_en_1.5B_v5 [38] (we chose in this pa-
per), as they allow for efficient reuse of computation in sequential token processing. These models
can share the same KV cache architecture used in language model decoding.

Alternatively, small BERT-style models like the 30M all-MiniLM-L6-v2 8 can be used without
introducing excessive computational costs. Our experiments indicate that embedding model size has
minimal impact on diversity quality, making lightweight models a practical choice for production
deployments.

C.3 Computational Complexity Analysis

Theorem 4 (Computational Complexity) The time complexity of SemDiD is:

O(k · b · T · Et · (Lt · CLM + CE)) (17)

where k is the number of groups, b is the beam size, T is the total decoding steps, Et is the exploration
width per beam, Lt is the lookahead depth, CLM is the cost of a language model forward pass, and
CE is the cost of an embedding model forward pass.

Proof: SemDiD maintains k parallel groups executing beam search until sequence completion,
requiring T total decoding steps. The first group performs greedy decoding with a single beam
(b = 1), while groups 2 through k maintain b beams each.

At each decoding step t, the greedy group generates one lookahead sequence extending Lt tokens
from its current state. This requires Lt sequential forward passes through the language model,
resulting in Lt · CLM computational cost per step.

For diverse groups (2 through k), each beam explores Et different continuation paths at every step.
Each continuation generates a lookahead sequence of length Lt, requiring Lt language model forward
passes. After generating each complete lookahead sequence, the algorithm computes its embedding
for semantic diversity assessment. Therefore, each beam in diverse groups incurs Et ·(Lt ·CLM+CE)
cost per step.

The total computational cost across all T steps is:

Cost = T · [Greedy Group + Diverse Groups] (18)
= T · [Lt · CLM + (k − 1) · b · Et · (Lt · CLM + CE)] (19)

Since the greedy group can be viewed as having Et = 1 and b = 1, and noting that it doesn’t require
embedding computation, this simplifies to the stated complexity O(k · b · T ·Et · (Lt ·CLM +CE)).

KV-cache optimization significantly reduces the effective cost of forward passes by reusing previously
computed key-value states. Early termination at punctuation marks bounds the actual lookahead
depth below Lmax, while dynamic adjustment of Et based on sentence position further optimizes
resource utilization.

Traditional Diverse Beam Search operates with complexity O(k · b · T · (Lt · CLM + V · Cscore)),
where V is the vocabulary size and Cscore is the cost of evaluating diversity penalties. At each
step, DBS performs a forward pass through the language model to obtain token probabilities, then
evaluates diversity penalties across all V vocabulary tokens. While Cscore ≪ CLM , scoring 100K
tokens creates small overhead. The key distinction is that DBS applies shallow, token-level diversity
penalties, whereas SemDiD invests computation in deeper semantic exploration through multi-token
lookahead.

8https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Temperature sampling achieves O(k ·T ·Lt ·CLM ) complexity per sequence, appearing more efficient.
However, achieving comparable semantic diversity requires generating more independent samples
where ktemp ≫ ksemDiD · b, resulting in total complexity that may exceed SemDiD’s cost.

In practice, despite introducing threefold computational requirements, the actual end-to-end latency
of SemDiD increases by only 25-35% compared to group beam search (huggingface official imple-
mentation) with typical parameters (k = 25, b = 3, Et ≈ 3, Lt ≈ 10), making it a practical solution
for real-world applications. This modest increase in time cost delivers substantial improvements in
semantic diversity and downstream performance, creating a favorable trade-off between resource
consumption and quality gains for applications where diverse, high-quality outputs are critical. Under
conditions of unlimited computational resources or for high-value applications such as RLHF train-
ing, the significant performance improvements that SemDiD delivers greatly outweigh its marginal
computational costs.

D Hyperparameter Settings and Analysis

D.1 Default Hyperparameter Settings

Table 2 presents the default hyperparameters used in our experiments. These values were determined
through extensive grid search optimization on a held-out validation set. All experiments were
conducted on a cluster of 8 NVIDIA H800 GPUs. The Best-of-N evaluations across all benchmarks
required approximately 70 hours, while each RLHF training took approximately 40 hours for Qwen-
2.5-3B.

Table 2: Default hyperparameter settings for SemDiD

Parameter Description Default Value
N Number of groups k or k/2
b Beam size per group 5 / 3
Ebase Base exploration width 4 / 3
Lmax Maximum lookahead depth 20 / 10 / 5
Ttrans Transition step for αt 10
γ Quality relaxation parameter 0.25
λ Harmonic gain strength 2.0
βseq Sequence position decay rate 0.001
βsent Sentence position decay rate 0.005
τ Probability saturation threshold -0.8
Temperature Sampling temperature 1.0
Top-p Top-p (nucleus sampling) threshold 0.95

The number of groups N is adaptively set to either the target number of samples k or k/2, depending
on the desired trade-off between computational cost and diversity quality. When N = k, each group
returns one candidate, maximizing inter-group diversity. When N = k/2, each group returns two
candidates, reducing computational overhead while maintaining reasonable diversity.

D.2 Exploration Width and Beam Size Analysis

We conducted experiments to analyze the relationship between exploration width (Et) and beam
size (b) on the GSM8K dataset. Figure 10 shows the coverage achieved with different parameter
combinations.

Results show that increasing the exploration width from 1 to 4 yields significant improvements in
coverage. For instance, with b = 3, coverage improves from 87.3% to 93.8%, representing a 6.5
percentage point gain. However, further increases to Et = 8 and Et = 16 provide diminishing returns,
with coverage plateauing at around 94.7%. This saturation effect can be attributed to the limited
semantic variance available in most problems, where exploring beyond a certain width captures only
redundant variations.

Similarly, beam size shows a positive correlation with coverage up to b = 3, after which the
gains become marginal. For example, at Et = 4, increasing beam size from b = 1 to b = 3
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Figure 10: Impact of exploration width and beam size on coverage. Results are averaged over 500
GSM8K problems with 10 groups.

improves coverage from 89.8% to 93.8%, but further increasing to b = 10 only yields an additional
0.5 percentage points. The computational cost, however, increases linearly with both Et and b,
suggesting that Et = 4 and b = 3 offer the optimal trade-off between performance and efficiency.

D.3 Group Structure Analysis

We investigated an alternative group configuration where each group returns multiple candidates
rather than a single representative. Table 3 presents the coverage results when varying the number of
outputs per group while maintaining a constant total of 10 outputs.

Table 3: Coverage comparison with different group structures on GSM8K. Total outputs fixed at 10.

Outputs per Group Number of Groups Coverage (%)
1 10 94.8
2 5 94.5
3 3 (with 1 group returning 4) 92.2
5 2 87.9

10 1 84.3

The results demonstrate that the single-output-per-group configuration achieves optimal coverage.
When groups return multiple candidates, coverage remains relatively stable for 2-3 outputs per group
but degrades significantly beyond that. This pattern suggests that inter-group diversity mechanisms
are more effective than intra-group selection for maintaining semantic separation.

The decline in coverage with fewer groups can be explained by the reduced effectiveness of orthogonal
direction guidance. With fewer groups, the semantic space cannot be partitioned as efficiently, leading
to increased overlap between exploration regions. Additionally, the inter-group repulsion mechanism
becomes less effective with fewer groups, as there are fewer distinct trajectories to maintain separation
between.

The choice of using multiple groups with single outputs as the default configuration, while allowing
flexibility to use N = k/2 when computational resources are constrained. The modest decrease in
coverage (0.3%) when using two outputs per group makes this an attractive option for resource-limited
settings.

D.4 Lookahead Depth Analysis

Unlike character-level diversity methods that can evaluate each vocabulary token individually with
minimal computational cost, semantic diversity assessment requires embedding model forward passes,
making token-by-token evaluation prohibitively expensive. Additionally, single-token semantic
changes are often too subtle for reliable diversity measurement. Therefore, SemDID introduces the
lookahead depth parameter Lmax to control how many tokens ahead we explore when evaluating
semantic diversity, allowing assessment of more substantial semantic deviations while managing
computational overhead.
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We conducted experiments using Qwen-2.5-3B across different Lmax values to demonstrate its
sensitivity and identify optimal settings. Table 4 shows the performance and computational overhead
analysis across different lookahead depths.

Table 4: Performance and computational overhead analysis across Lmax values using Qwen-2.5-3B.

Lmax GSM8K Coverage (N=25) ARC Coverage (N=25) Computational Overhead
5 95.3% 80.1% +15%

10 98.1% 82.4% +25%
15 98.2% 82.6% +35%
20 98.6% 82.7% +45%

Performance saturates around Lmax = 10, with diminishing returns for deeper lookahead while
computational overhead continues to increase substantially. This suggests that 10 tokens provide
sufficient context for reliable semantic diversity assessment without excessive computational cost.

D.5 Quality-Diversity Balancing Analysis

The quality relaxation parameter γ and harmonic strength λ control the trade-off between maintaining
quality thresholds and pursuing semantic diversity. We conducted systematic sensitivity analysis by
varying each parameter independently to understand their effects on both coverage and accuracy.

Effect of γ (with λ = 2.0 fixed): The quality relaxation parameter γ determines how much the quality
threshold can be relaxed to promote diversity. Lower values maintain stricter quality requirements,
while higher values allow more quality sacrifice for diversity gains.

Table 5: Sensitivity analysis of quality relaxation parameter γ with λ = 2.0 fixed.

Task γ = 0.15 γ = 0.20 γ = 0.25 γ = 0.30 γ = 0.35
GSM8K Coverage (N=25) 96.6% 97.1% 98.1% 97.8% 97.4%
GSM8K Accuracy (N=25) 75.9% 76.6% 77.5% 77.2% 77.2%
WMT16 Coverage (N=25) 36.7% 36.8% 37.2% 36.9% 36.7%
WMT16 Accuracy (N=25) 20.2% 20.4% 20.7% 20.5% 20.3%

Effect of λ (with γ = 0.25 fixed): The harmonic strength parameter λ controls the intensity of the
harmonic gain mechanism that balances quality and diversity objectives. Higher values strengthen
the diversity promotion effect, while lower values prioritize quality preservation.

Table 6: Sensitivity analysis of harmonic strength parameter λ with γ = 0.25 fixed.

Task λ = 1.0 λ = 1.5 λ = 2.0 λ = 2.5 λ = 3.0
GSM8K Coverage (N=25) 96.8% 97.4% 98.1% 97.9% 97.6%
GSM8K Accuracy (N=25) 77.3% 77.1% 77.5% 77.3% 76.9%
WMT16 Coverage (N=25) 36.8% 36.5% 37.2% 36.9% 36.7%
WMT16 Accuracy (N=25) 20.3% 20.6% 20.7% 20.7% 20.6%

The results demonstrate that our default settings (γ = 0.25, λ = 2.0) consistently achieve near-
optimal performance across different tasks, with performance remaining stable within reasonable
parameter ranges. The sensitivity analysis shows that SemDiD is robust to parameter variations, with
performance degrading gracefully rather than sharply when moving away from optimal values.

D.6 Transition Weight Analysis

The parameter Ttrans controls the transition point from directional guidance to inter-group repulsion.
We conducted experiments varying Ttrans across multiple datasets:

The results show clear optimal performance at Ttrans = 10. When transition occurs too early
(Ttrans = 5), groups haven’t established sufficient semantic differentiation before repulsion dom-
inates, leading to suboptimal exploration. When transition is delayed (Ttrans ≥ 20), groups may
converge to similar semantic regions before inter-group repulsion becomes effective.
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Table 7: Transition weight parameter Ttrans analysis across datasets, where Cov. denotes coverage
and Acc. denotes accuracy.

Ttrans GSM8K Cov. GSM8K Acc. ARC Cov. ARC Acc. MMLU-Pro+ Cov.
5 97.2% 76.8% 81.2% 79.1% 81.4%
10 (default) 98.1% 77.5% 82.4% 82.0% 82.6%
15 97.9% 77.2% 82.1% 81.7% 82.3%
20 97.5% 76.9% 81.7% 81.2% 81.8%
25 97.2% 76.8% 81.8% 80.9% 81.6%

Intuitive Explanation: Ttrans = 10 corresponds to the typical number of tokens needed to establish
meaningful semantic context. Most mathematical reasoning problems require 8-12 tokens to establish
the early thought process for problem-solving before semantic trajectories become distinguishable.

D.7 Guidance for Hyperparameter Settings

Due to SemDiD’s involvement of numerous hyperparameters, we provide the following guidelines
for setting them based on the comprehensive analysis presented above.

Firstly, temperature, Top-p, N (number of groups), and b (beam size) are inherited from standard
Group Beam Search parameters, not SemDID additions. The SemDID-specific parameters serve dis-
tinct purposes across three categories: semantic diversity assessment (Et, Lmax), quality assessment
(βseq , βsent, τ ), and quality-diversity balancing (Ttrans, γ, λ).

Automatically Derivable Parameters: Several key parameters can be systematically determined
rather than manually tuned. The position bias parameters βseq and βsent can be automatically fitted
using scipy.curve_fit from probability-position curves shown in Figures 3 and 4, as these
patterns remain consistent across tasks. The saturation threshold τ is derived from probability-quality
analysis as Figure 2 and set to -0.8 for most tasks based on the empirical study. As demonstrated in
Section D.6, the transition point Ttrans = 10 corresponds to the typical number of tokens needed to
establish meaningful semantic context before inter-group repulsion becomes effective.

Resource-Dependent Parameters: The exploration parameters Et, b, and N balance exploration
breadth versus computational cost. Our analysis in Sections D.2 and D.3 shows diminishing returns
beyond Et = 4 and b = 3, establishing clear "sweet spots" without extensive tuning requirements.
The lookahead depth analysis in Section D.4 demonstrates that Lmax = 10 provides optimal
performance-cost balance.

Quality-Diversity Balance: The quality-diversity balancing analysis in Section D.5 reveals that
our default settings (γ = 0.25, λ = 2.0) achieve robust performance across tasks, with graceful
degradation when parameters deviate from optimal values. The transition weight analysis in Section
D.6 confirms that Ttrans = 10 provides optimal timing for the shift from directional guidance to
inter-group repulsion.

For practitioners seeking to deploy SemDiD, we recommend starting with our provided default
parameters for initial implementation, adjusting Et, b, and N based on available computational
budget, and fine-tuning γ, λ, and Ttrans only for highly specialized applications where task-specific
optimization is critical.

E Accuracy Evaluation in Best-of-N

To provide a comprehensive evaluation of our SemDiD approach, we conducted experiments measur-
ing the accuracy of the selected answers under Best-of-N settings. Unlike coverage, which measures
whether at least one correct answer exists among the N candidates, accuracy evaluates whether we
can effectively identify the best answer from the generated candidates. For this purpose, we employed
LLM-Blender PairRM 9 as our evaluation model.

For each query, we generated N responses using Qwen-2.5-3B. We then used the LLM-Blender
PairRM model to evaluate and select the most likely correct answer from among the candidates. This

9https://huggingface.co/llm-blender/PairRM
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Figure 11: Accuracy comparison for Best-of-N using Qwen-2.5-3B with LLM-Blender PairRM as
the evaluation model.

process simulates a real-world scenario where a verification mechanism must determine the optimal
answer from a set of alternatives.

Figure 11 presents accuracy results across all benchmarks. The results demonstrate that SemDiD
consistently outperforms baseline methods across all tasks, though by modest margins. This indi-
cates that while various decoding strategies can increase the likelihood of generating at least one
correct answer (coverage), the ability to identify the best answer (accuracy) remains challenging.
Interestingly, we observe that performance differences between methods become more pronounced
as the number of samples increases, suggesting that semantic diversity becomes increasingly valuable
with larger candidate pools. Mathematical reasoning tasks (GSM8K and Minerva Math) show the
greatest improvements with SemDiD, likely because these tasks benefit most from exploring diverse
solution paths. Translation tasks exhibit the smallest performance gaps, potentially due to their more
constrained solution spaces compared to open-ended reasoning tasks.

F Cross-Model Generalization Analysis

In addition to our primary experiments with Qwen-2.5-3B for Best-of-N and Qwen-2.5-7B for
RLHF, we extended our analysis to different model architectures and sizes to assess how SemDiD’s
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Figure 12: Coverage comparison for Best-of-N using Llama-3.1-8B.

effectiveness generalizes across different language models. Specifically, we evaluated SemDiD using
Llama-3.1-8B for Best-of-N tasks and Pythia-1B for RLHF training.

F.1 Llama-3.1-8B in Best-of-N

For the Best-of-N experiments with Llama-3.1-8B, we followed the same experimental setup as with
Qwen-2.5-3B, evaluating performance across all nine benchmarks. As shown in Figure 12, SemDiD
consistently outperforms baseline methods across all tasks with Llama-3.1-8B, demonstrating even
more pronounced improvements compared to Qwen-2.5-3B. The performance gains are particularly
striking on reasoning tasks, with SemDiD achieving 99.1% coverage on GSM8K and 97.4% coverage
on BBH at just 25 samples - improvements of 0.5-1.8% over other methods. For language under-
standing tasks, SemDiD shows exceptional performance on MMLU-Pro+ with 89.4% coverage at 25
samples versus 86.9% for Temperature sampling (T=0.5). On translation tasks, while Diverse Beam
Search remains competitive, SemDiD maintains a clear advantage with 43.1% and 51.3% coverage
on WMT16 English-German and German-English respectively at 25 samples. These results suggest
that SemDiD’s semantic diversity mechanisms are particularly effective when combined with larger,
more capable models, further validating the architecture-agnostic nature of our approach.
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Figure 13: Performance comparison across RLHF algorithms with varying rollout numbers using
Pythia-1B.

F.2 Pythia-1B in RLHF

To investigate SemDiD’s effectiveness with smaller models in RLHF settings, we conducted experi-
ments using Pythia-1B on the same GSM8K and TLDR datasets. As illustrated in Figure 13, despite
the significant reduction in model size, SemDiD continues to outperform baseline methods across all
RLHF algorithms, though with lower absolute performance values compared to Qwen-2.5-7B.

For TLDR summarization with Pythia-1B, SemDiD achieves win rates of 61.5%, 62.1%, and 60.0%
with Iterative-RLHF, GRPO, and RLOO respectively at 60 rollouts, which are approximately 10.6%,
11.3%, and 11.2% lower than those achieved with Qwen-2.5-7B. Similarly, on GSM8K, SemDiD
with Pythia-1B reaches accuracy scores of 71.7% with Iterative-RLHF, 72.9% with GRPO, and 68.6%
with RLOO, representing gaps of 13.8%, 15.3%, and 13.8% compared to Qwen-2.5-7B.

Interestingly, the performance gap between SemDiD and baseline methods is proportionally larger
with Pythia-1B than with Qwen-2.5-7B. This suggests that semantic diversity becomes even more
critical for smaller models with limited representational capacity, as it enables more efficient explo-
ration of the solution space during RLHF training. The results demonstrate that SemDiD’s approach
to diverse decoding is particularly valuable in resource-constrained scenarios where maximizing the
utility of smaller models is essential.

G RLHF Reward Growth Analysis

Figure 14 illustrates the reward growth curves during RLHF training across different decoding
methods, model sizes, and RLHF algorithms. Our experiments evaluate performance on both the
TLDR summarization dataset and the GSM8K mathematical reasoning dataset using Qwen-2.5-7B
and the smaller Pythia-1B models. The results consistently demonstrate that SemDiD accelerates
reward convergence compared to other decoding strategies. For Qwen-2.5-7B on TLDR, SemDiD
(blue line) achieves faster initial reward growth within the first 750 training steps across all RLHF
algorithms, reaching plateau performance approximately 15-20% earlier than Temperature sampling
(red line). This acceleration is more pronounced with Pythia-1B, where SemDiD maintains a
consistent reward advantage throughout training, particularly evident in the RLOO implementation.
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Figure 14: Reward growth comparison of different decoding methods on RLHF algorithms.

On the more complex GSM8K dataset, SemDiD’s advantage becomes even more significant, with
reward curves showing both steeper initial growth and higher final convergence values. This improved
learning efficiency can be attributed to SemDiD’s ability to generate semantically diverse response
groups that provide more informative training signals, allowing the model to explore a broader
solution space and identify optimal policies more efficiently during RLHF training.
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H Ablation Studies

To understand the contribution of each component in SemDiD, we conducted systematic ablation
experiments across both Best-of-N coverage (averaged across all tasks) and RLHF settings (using
GRPO on GSM8K). Table 8 presents the results when removing individual components from the full
SemDiD framework. For Best-of-N evaluations, we used Qwen-2.5-3B with 25 samples per query,
while RLHF experiments employed Qwen-2.5-7B with 25 rollouts during training.

Table 8: Ablation study of SemDiD components.

Method Avg. Coverage with 25 samples (%) GRPO-GSM8K Accuracy (%)
Full SemDiD 74.2 81.6
- Directional Guidance 72.1 (-2.1) 79.9 (-1.7)
- Inter-Group Repulsion 71.5 (-2.7) 79.6 (-2.0)
- Debiased Probability 73.3 (-0.9) 80.5 (-1.1)
- Harmonic Gain 71.2 (-3.0) 79.3 (-2.3)
Only Probability (Greedy) 57.2 (-17.0) 71.8 (-9.8)

Our ablation results demonstrate the essential contribution of each SemDiD component, with har-
monic gain showing the largest impact by reducing coverage 3.0% when removed, highlighting
its effectiveness in balancing quality-diversity trade-offs. Inter-group repulsion exerts significant
influence, decreasing coverage 2.7% and RLHF accuracy 2.0% when ablated, confirming the im-
portance of maintaining semantic distances between candidates. Directional guidance particularly
benefits RLHF scenarios with an accuracy reduction of 1.7% when removed, demonstrating its value
in enabling diverse exploration for policy improvement. Debiased probability, though having the
smallest individual impact with coverage decreasing 0.9% upon removal, ensures fair quality assess-
ment across varied sequence structures. Most notably, greedy decoding alone produces dramatically
worse results with coverage dropping 17.0% and accuracy declining 9.8%, highlighting probability
maximization’s inability to explore diverse semantic regions. These findings validate SemDiD’s
integrated approach to semantic diversity, substantially outperforming simple token-level diversity
methods.

I Comparison to Contrastive Decoding and Scalability Analysis

We conducted additional experiments comparing SemDiD against contrastive decoding methods and
embedding-based post-hoc clustering across multiple model sizes.

I.1 Contrastive Decoding and Clustering Baselines

We evaluated SemDiD against DoLa (Decoding by Contrasting Layers) [39] and embedding-based
post-hoc clustering using Qwen-2.5-3B across all benchmarks. The clustering approach generates 100
independent samples, clusters them semantically, and selects representatives from different clusters.

Table 9: Comprehensive baseline comparison with computational overhead analysis using Qwen-2.5-
3B

Method (N=25) ARC BBH GSM8K Minerva CoQA PubMed MMLU+ WMT16 Compute Latency
SemDiD (Ours) 82.4% 85.6% 98.1% 86.1% 46.7% 82.6% 82.6% 40.95% +200% +27%
DoLa Contrastive 80.3% 81.7% 95.2% 82.8% 43.2% 78.4% 77.9% 37.85% -66% -66%
Clustering (100→25) 80.8% 83.9% 96.4% 84.3% 45.7% 80.0% 80.7% 39.35% +33% +32%
Temperature (T=1.0) 78.9% 82.1% 94.8% 81.7% 44.1% 77.8% 76.3% 36.2% -66% -66%
Diverse Beam Search 79.8% 83.2% 95.5% 83.1% 45.3% 79.2% 78.9% 38.1% +0% +0%

DoLa consistently underperforms SemDiD because it lacks explicit diversity mechanisms and often
converges toward similar high-confidence solutions. This limitation is particularly evident on tasks
requiring diverse reasoning strategies, where DoLa’s conservative token-by-token contrasting favors
safe, conventional solutions rather than exploring semantic diversity.

The clustering approach shows competitive performance but becomes increasingly inefficient as N
increases. While it sometimes matches SemDiD’s performance at smaller sample sizes, it requires
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generating 100 independent sequences without coordination, making KV-cache reuse impossible and
substantially increasing computational overhead.

I.2 Large Model Scalability Analysis

We evaluated SemDiD’s effectiveness and computational efficiency on Qwen-2.5-70B to assess
scalability to larger models:

Table 10: Performance and computational analysis on Qwen-2.5-70B

Method (N=25) ARC BBH GSM8K Minerva CoQA PubMed MMLU+ WMT16 Compute Latency
SemDiD (Ours) 84.7% 89.2% 99.8% 93.4% 52.1% 89.3% 91.2% 47.05% +180% +18%
DoLa Contrastive 82.1% 86.4% 98.9% 90.7% 48.6% 86.2% 87.9% 43.6% -66% -66%
Clustering (100→25) 83.9% 88.1% 99.0% 91.8% 51.4% 88.6% 89.8% 46.05% +33% +32%
Temperature (T=1.0) 82.8% 86.9% 99.1% 90.2% 49.3% 86.8% 88.1% 44.45% -66% -66%
Diverse Beam Search 83.1% 87.2% 98.6% 91.1% 50.7% 87.5% 88.9% 45.4% +0% +0%

The 70B model results reveal several important patterns:

Improved Performance Scaling: SemDiD shows consistent improvements across all tasks, with
particularly strong gains on complex reasoning tasks like BBH (+2.0%), Minerva Math (+2.3%), and
MMLU-Pro+ (+2.3%) compared to the best baselines.

Reduced Computational Overhead: SemDiD’s latency increase drops to only +18% with 70B
models, significantly lower than the +27% observed with 3B models. This occurs because embedding
computation becomes negligible compared to large model forward passes, while KV-cache reuse
within groups remains highly effective.

Cache Efficiency: SemDiD’s coordinated beam exploration allows extensive KV cache reuse within
groups since beams share common prefixes. This reduces the effective inference cost per token by
80-90% compared to independent sampling, making SemDiD computationally competitive despite
theoretical overhead.

These results demonstrate that SemDiD’s advantages become more pronounced with larger, more
capable models, while computational overhead decreases relative to model size, making it particularly
suitable for deployment with state-of-the-art large language models.

I.3 Equivalent Computational Budget Analysis

We conducted experiments using equivalent latency budgets rather than equivalent sample counts.
For parallel decoding methods, we generated larger candidate pools and selected N outputs using
embedding-based clustering. For beam search methods, we increased beam size from the default
value of 3.

Under equivalent computational budgets, SemDiD maintains superior performance across all bench-
marks.

Diminishing Returns for Independent Sampling: Generating larger candidate pools for parallel
methods (88 samples to select 25) leads to rapidly increasing costs with minimal diversity gains due
to inability to reuse KV-cache across independent sequences.

Limited Beam Size Benefits: Simply increasing beam size in diverse beam search methods yields
negligible improvements while substantially increasing computational overhead, as evidenced by the
modest gains from beam=3 to beam=4.

Efficient KV-Cache Utilization: SemDiD’s coordinated beam exploration within groups allows
extensive KV-cache reuse since beams share common prefixes, resulting in 80-90% reduction in
effective inference cost per token despite theoretical overhead.

Systematic Semantic Exploration: SemDiD benefits from directional guidance and inter-group re-
pulsion that systematically explore semantic space, efficiently utilizing every computational allocation
to maximize coverage rather than generating redundant variations.

35



Table 11: Performance comparison under equivalent computational budgets using Qwen-2.5-70B

Method ARC BBH GSM8K Minerva CoQA PubMed MMLU+ WMT16 Compute Latency
N=10

SemDiD (Ours) 83.4% 86.1% 96.8% 82.3% 47.2% 82.1% 76.8% 40.25% +180% +18%
Temp=1.0 (35→10) 82.4% 85.0% 94.9% 80.6% 46.1% 81.0% 73.9% 38.5% +18% +18%
Arith. Sampling (35→10) 82.6% 84.7% 95.6% 81.5% 46.2% 81.1% 75.0% 39.1% +18% +18%
Diverse Beam (beam=4) 82.4% 84.9% 95.3% 80.5% 46.7% 81.4% 74.3% 39.0% +33% +33%
Determinantal Beam (beam=4) 82.7% 84.1% 94.9% 80.4% 45.8% 81.1% 74.7% 38.8% +33% +33%

N=25
SemDiD (Ours) 84.7% 89.2% 99.8% 93.4% 52.1% 89.3% 91.2% 47.05% +180% +18%
Temp=1.0 (88→25) 83.6% 87.5% 99.1% 91.2% 49.9% 87.4% 88.8% 45.15% +18% +18%
Arith. Sampling (88→25) 83.9% 87.8% 99.4% 91.9% 51.2% 88.0% 89.4% 45.85% +18% +18%
Diverse Beam (beam=4) 83.2% 87.2% 98.9% 91.0% 50.8% 87.5% 88.9% 45.3% +33% +33%
Determinantal Beam (beam=4) 83.0% 86.8% 98.4% 90.5% 50.2% 87.3% 88.4% 45.15% +33% +33%

N=50
SemDiD (Ours) 85.3% 90.1% 99.9% 95.2% 53.8% 91.7% 94.3% 48.95% +180% +18%
Temp=1.0 (177→50) 84.6% 88.4% 99.2% 94.3% 51.7% 89.9% 92.8% 47.7% +18% +18%
Arith. Sampling (177→50) 84.4% 89.3% 99.6% 94.1% 51.9% 91.0% 92.3% 47.65% +18% +18%
Diverse Beam (beam=4) 84.3% 88.2% 99.2% 93.2% 51.7% 89.1% 91.4% 47.45% +33% +33%
Determinantal Beam (beam=4) 83.8% 88.6% 99.0% 92.8% 51.5% 88.6% 91.0% 46.85% +33% +33%

J Comparative Analysis of SemDiD Response Patterns

We provide a detailed analysis of the response patterns generated by SemDiD compared to baseline
methods. We examine the semantic trajectories, visualization of sample distributions, and relationship
between n-gram diversity and semantic diversity.

J.1 Semantic Trajectory Perspective

Reflecting on mean-pooled embedding models during autoregressive generation, each candidate
answer can be conceptualized as a trajectory in semantic space. The trajectory begins at the question
representation and evolves with each generated token, creating a path through the embedding space.
From this perspective, diverse decoding can be reformulated as generating multiple high-probability
trajectories that maintain significant distances from one another.

The directional guidance in SemDiD establishes initial trajectory divergence, while inter-group
repulsion maintains semantic distance as generation progresses. This dual mechanism ensures both
exploration of different semantic regions and continued divergence throughout the generation process.

J.2 Comparison of N-gram and Semantic Diversity

To quantify responses on lexical diversity and semantic diversity, we conducted a systematic compari-
son across different decoding methods. We measured both n-gram-based distances and embedding-
based semantic distances between responses generated for the same input queries.

For each problem in evaluation set, we generated 10 responses using each decoding method. We then
computed pairwise distances between these responses using two primary metrics:

• N-gram Overlap: We calculated the Jaccard similarity of character-level n-grams (n=4)
between each pair of responses, then converted to distance (1 - similarity).

• Semantic Distance: We measured the cosine distance between sentence embeddings of
each response pair.

Table 12 presents the average pairwise distances across all problems in our evaluation set. The results
reveal several noteworthy patterns in the diversity characteristics of different decoding methods.
SemDiD achieves the highest semantic distance at 0.371 while maintaining moderate n-gram diversity
of 0.829, demonstrating its effectiveness at generating outputs representing distinct reasoning paths
rather than merely different phrasings. Arithmetic Sampling shows the highest n-gram diversity at
0.882 but falls significantly behind in semantic distance at 0.299, indicating that lexical variation
doesn’t necessarily translate to meaningful semantic diversity. Temperature sampling demonstrates
a clear correlation between temperature values and both diversity metrics, with T=0.5 showing
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Table 12: Average pairwise distances between responses using different diversity metrics

Method 4-gram Distance Semantic Distance
Temperature (T=0.5) 0.627 0.183
Temperature (T=1.0) 0.764 0.241
Temperature (T=1.5) 0.832 0.295
Determinantal Beam Search 0.857 0.336
Arithmetic Sampling 0.882 0.299
SemDiD (Ours) 0.829 0.371

the lowest diversity scores at 0.627 and 0.183 for n-gram and semantic distances respectively.
Determinantal Beam Search maintains strong performance across both metrics with scores of 0.857
and 0.336, confirming that structured diversity approaches generally outperform independent sampling
methods when considering both lexical and semantic aspects.

These results underscore the importance of explicitly modeling semantic diversity during the decoding
process, rather than relying on n-gram diversity as a proxy. They also explain why SemDiD demon-
strates superior performance in Best-of-N scenarios, where having truly diverse solution candidates
improves the likelihood of including at least one correct answer.

J.3 Visualization of Sampling Distributions and Case Analysis

To better understand the distributional characteristics of different decoding methods, we sampled
responses for three representative problems from GSM8K with varying difficulty levels and visualized
their distribution in semantic space using t-SNE dimensionality reduction. Figure 15 presents these
visualizations.

Correct: 100/100 (100.0%) Correct Answer Correct: 57/100 (57.0%) Correct Answer
Incorrect Answer

Correct: 98/100 (98.0%) Correct Answer
Incorrect Answer

Correct: 97/100 (97.0%) Correct Answer
Incorrect Answer

Correct: 24/100 (24.0%) Correct Answer
Incorrect Answer

Correct: 100/100 (100.0%) Correct Answer

Correct: 30/100 (30.0%) Correct Answer
Incorrect Answer

Correct: 18/100 (18.0%) Correct Answer
Incorrect Answer

Correct: 35/100 (35.0%) Correct Answer
Incorrect Answer

Figure 15: t-SNE visualization of semantic embedding spaces for GSM8K problems using three
different decoding methods: temperature sampling (left column, T=1.0), determinantal beam search
(middle column), and SemDiD (right column). Each row represents a different problem. Correct
answers (circles) and incorrect answers (crosses) are distributed across the semantic space. The
patterns reveal how different decoding strategies affect the diversity and accuracy of generated
solutions.

The visualizations reveal distinct patterns in how different decoding strategies explore the solution
space:

• Temperature Sampling (T=1.0): Generates solutions that are randomly scattered across the
semantic space. While this approach produces some diversity, it lacks structured exploration,
often leading to redundant solutions or missing promising areas entirely.
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• Determinantal Beam Search: Shows more structured patterns but tends to cluster solutions
in limited regions, creating densely populated "islands" of similar reasoning approaches
with large unexplored gaps between them.

• SemDiD: Demonstrates comprehensive coverage of the semantic space with solutions
more uniformly distributed. The visualization shows how SemDiD systematically explores
different reasoning paths while maintaining high correctness rates.

The case studies below analyze three problems of increasing difficulty, examining how different
decoding methods approach each problem and illustrating the effectiveness of semantically-guided
diverse decoding.

These case studies demonstrate how different decoding strategies affect both the diversity and accuracy
of generated solutions. SemDiD consistently produces more semantically diverse solutions than
both temperature sampling and determinantal beam search while maintaining comparable or superior
accuracy. The character-level diversity focus of traditional methods often leads to syntactically
diverse but semantically redundant or flawed solutions, particularly evident in the more complex
problems (rows 2 and 3). By contrast, SemDiD’s semantic-guided approach ensures meaningful
exploration of different reasoning paths, increasing the likelihood of discovering correct solutions
across varying problem complexities.

Case 1: Simple Arithmetic (Row 1)

Problem: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?
Correct Answer: Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 × 2 = $18 every day
at the farmer’s market.
Analysis: This simple arithmetic problem has a straightforward solution path. All decoding
methods achieved perfect or near-perfect accuracy (100%, 97%, and 100% for temperature
sampling, determinantal beam search, and SemDiD respectively). However, the visualization
reveals that temperature sampling and determinantal beam search produce solutions clustered
in similar semantic regions, while SemDiD’s solutions are more evenly distributed across
the embedding space. This distribution suggests that even for simple problems, SemDiD
generates more diverse solution approaches while maintaining accuracy.
Temperature Sampling (T=1) Results:
Sample 1: (Correct)

First, we need to calculate how many eggs Janet has left to sell after eating
and using some for baking.
She starts with 16 eggs per day. She eats 3 eggs for breakfast, so that leaves
her with: 16− 3 = 13 eggs
Then she uses 4 eggs to bake muffins: 13− 4 = 9 eggs
Janet sells the remaining eggs at the farmers’ market. Each egg sells for $2,
so the amount she makes per day is: 9× 2 = 18 dollars
Therefore, Janet makes 18 dollars every day at the farmers’ market.

Sample 2: (Correct)
First, we need to determine how many eggs are sold at the farmers’ market
every day.
1. Janet starts with 16 eggs laid per day. 2. She eats 3 eggs for breakfast. 3.
She uses 4 eggs to bake muffins.
To find out how many eggs are left for sale: 16 eggs - 3 (eaten) - 4 (baked)
= 9 eggs
Janet sells the remaining 9 eggs at the farmers’ market, and she earns $2
per egg.
Therefore, her daily earnings from selling the eggs are: 9 eggs × 2 dol-
lars/egg = 18 dollars
So, Janet makes 18 dollars every day at the farmers’ market.
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Sample 3: (Correct)

First, let’s determine how many eggs Janet has left to sell after eating and
baking.
Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and bakes 4
eggs into muffins.
So, the number of eggs left for sale is: 16− 3− 4 = 9

Janet sells each fresh duck egg for $2 at the farmers’ market. Therefore,
the amount she makes each day is: 9 eggs × $2 per egg = $18
Hence, Janet makes $18 every day at the farmers’ market.

Sample 4: (Correct)

First, let’s determine how many eggs are left after Janet’s consumption and
baking:
- Total eggs laid per day: 16 eggs - Eggs eaten for breakfast: 3 eggs - Eggs
baked into muffins: 4 eggs
Eggs left after these activities: 16− 3− 4 = 9 eggs
Janet sells the remaining eggs at the farmers’ market for $2 per egg. There-
fore, her daily earnings from selling the eggs are: 9 eggs × $2 per egg =
$18
So, Janet makes $18 every day at the farmers’ market.

Sample 5: (Correct)

First, let’s determine the total number of eggs Janet’s ducks lay per day:
Total eggs laid per day = 16

Next, we need to find out how many eggs Janet uses:
- She eats 3 eggs for breakfast. - She uses 4 eggs to bake muffins.
So, the total number of eggs used per day is:
Eggs used per day = 3 + 4 = 7

Now, we subtract the number of eggs used from the total number of eggs
laid to find out how many eggs she sells:
Eggs sold per day = 16− 7 = 9

Finally, since she sells each egg for $2 at the farmers’ market, we calculate
her daily earnings by multiplying the number of eggs sold by the price per
egg:
Daily earnings = 9× 2 = 18

So, Janet makes $18 every day at the farmers’ market.
Determinantal Beam Search Results:
Sample 1: (Correct)

First, we need to determine how many eggs Janet has left after eating and
using some for baking.
Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and uses 4
eggs to make muffins. So, the number of eggs she has left each day is:
16− 3− 4 = 9

Janet sells the remaining eggs at the farmers’ market for $2 per egg. There-
fore, the amount she makes each day is:
9 eggs × 2 dollars/egg = 18 dollars
So, Janet makes 18 dollars every day at the farmers’ market.

Sample 2: (Correct)

First, we need to determine how many eggs Janet has left after eating and
using some for baking.
Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and uses 4
eggs to make muffins. So, the number of eggs she has left each day is:
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16− 3− 4 = 9

Janet sells the remaining eggs at the farmers’ market for $2 per egg. There-
fore, the amount she makes each day is:
9 eggs × 2 dollars/egg = 18 dollars
Thus, Janet makes 18 dollars every day at the farmers’ market.

Sample 3: (Correct)

First, we need to determine how many eggs Janet has left after eating and
using some for baking.
Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and uses 4
eggs to make muffins. So, the number of eggs she has left each day is:
16− 3− 4 = 9

Janet sells the remaining eggs at the farmers’ market for $2 per egg. There-
fore, the amount she makes each day is:
9 eggs × 2 dollars/egg = 18 dollars
So, Janet makes $18 every day at the farmers’ market.

Sample 4: (Correct)

Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and uses 4
eggs to make muffins. So, she uses a total of 3 + 4 = 7 eggs.
This leaves her with 16 - 7 = 9 eggs that she can sell at the farmers’ market.
Since she sells each fresh duck egg for $2, she makes 9 * $2 = 18 dollars
every day at the farmers’ market.
Therefore, Janet makes $18 every day at the farmers’ market.

Sample 5: (Correct)

Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and uses
4 eggs to make muffins. So, the number of eggs she sells at the farmers’
market is:
16 (total eggs) - 3 (eaten for breakfast) - 4 (used for muffins) = 16 - 3 - 4 =
9 eggs.
Since she sells each fresh egg for $2, her daily earnings at the farmers’
market are:
9 eggs * $2 per egg = $18.
So, Janet makes $18 every day at the farmers’ market.

SemDiD Results:
Sample 1: (Correct)

First, let’s determine how many eggs Janet keeps out of those laid:
Janet starts with 16 eggs per day.
She eats 3 eggs for herself: 16 eggs - 3 eggs = 13 eggs
Then, she makes muffins with an additional 4 eggs: 13 eggs - 4 eggs = 9
eggs
These 9 eggs remain as leftovers which she can sell at the farmer’s market.
Now we know she sells 9 eggs per day at $2 per egg: 9 eggs × $2/egg =
$18
Therefore, Janet makes $18 every day at the farmers’ market.

Sample 2: (Correct)

To determine how much money Janet makes at the farmers’ market every
day, we need to follow these steps:
1. Calculate the total number of eggs laid per day. 2. Subtract the number
of eggs eaten by Janet for breakfast. 3. Subtract the number of eggs used
to bake muffins. 4. Multiply the resulting number of eggs sold by the price
per egg.
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Let’s break it down step-by-step:
1. Total number of eggs laid per day: 16 eggs
2. Eggs eaten by Janet for breakfast: 3 eggs
3. Eggs baked into muffins: 4 eggs
Now, calculate the remaining eggs available for sale: 16 (total) - 3 (eaten) -
4 (baked) = 9 eggs
Janet sells these remaining eggs at $2 per egg: 9 eggs × $2/egg = $18
Therefore, Janet makes $18 dollars every day at the farmers’ market.

Sample 3: (Correct)

First, let’s calculate the total number of eggs laid by the ducks per day:
Total Eggs Laid = 16

Janet consumes 3 eggs for breakfast:
Eggs Used For Breakfast = 3

She bakes muffins with an additional 4 eggs:
Eggs Used For Muffins = 4

Next, we subtract the total number of eggs used (for breakfast and baking)
from the total number of eggs laid to find out how many eggs remain:
Remaining Eggs = Total Eggs Laid − (Eggs Used For Breakfast +
Eggs Used For Muffins) Remaining Eggs = 16 − (3 + 4)
Remaining Eggs = 16− 7 Remaining Eggs = 9

Now, Janet sells the remaining eggs at $2 per egg:
Daily Revenue = Number of Remaining Eggs × Price Per Egg
Daily Revenue = 9× 2 Daily Revenue = 18

Therefore, Janet makes $18 every day at the farmers’ market.
Sample 4: (Correct)

First, we need to determine the total number of eggs laid per day:
Janet’s ducks lay 16 eggs per day.
Next, subtract the number of eggs eaten for breakfast: 16− 3 = 13

Then, subtract the number of eggs used to bake muffins: 13− 4 = 9

Therefore, Janet has 9 fresh eggs available for sale each day.
She sells each fresh egg for $2: 9× 2 = 18

So, Janet makes $18 every day at the farmers’ market.
Sample 5: (Correct)

To determine how much Janet makes every day selling the remaining eggs:
First, calculate the total number of eggs laid per day: Total eggs per day =
16

Next, subtract the eggs eaten for breakfast: Eggs used for breakfast = 3
Remaining eggs after breakfast = 16− 3 = 13

Then, subtract the eggs baked into muffins: Eggs baked into muffins = 4
Remaining eggs sold = 13− 4 = 9

Finally, calculate the revenue generated from selling the remaining eggs:
Price per egg = $2 Revenue = 9× 2 = $18

Therefore, Janet makes $18 every day at the farmers’ market.
One key observation from these samples is that the determinantal beam search solutions
show remarkably similar wording across samples, particularly in the first three examples,
indicating limited lexical diversity despite the method’s design. In contrast, SemDiD’s
samples show more varied solution approaches, organization structures, and explanation
styles while maintaining correct answers.
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Case 2: Intermediate Problem (Row 2)

Problem: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts
in total does it take?
Correct Answer: It takes 2/2=1 bolt of white fiber. So the total amount of fabric is 2+1=3
bolts of fabric.
Analysis: This moderately complex problem involves a fraction calculation followed by
addition. The visualization shows that SemDiD (98% correct) significantly outperforms
determinantal beam search (57% correct) and even improves upon temperature sampling (97%
correct). The middle column visualization displays how determinantal beam search generates
many incorrect answers (red crosses) in particular regions, suggesting that its character-
level diversity focus leads to syntactically diverse but semantically unsound reasoning paths.
SemDiD’s solutions cover the semantic space more thoroughly while maintaining high
accuracy.
Temperature Sampling (T=1) Results:
Sample 1: (Correct)

First, we need to determine the amount of white fiber required for one robe.
Since the robe takes half as much white fiber as blue fiber:
White fiber needed = Blue fiber needed / 2 White fiber needed = 2 bolts / 2
White fiber needed = 1 bolt
Now, we know that one robe requires 2 bolts of blue fiber and 1 bolt of
white fiber.
Therefore, the total number of bolts required for one robe is: Total bolts =
Blue fiber + White fiber Total bolts = 2 bolts + 1 bolt Total bolts = 3 bolts
So, it takes a total of 3 bolts to make one robe.

Sample 2: (Correct)

A robe requires 2 bolts of blue fiber. Since it takes half as much white fiber
as blue fiber, it needs 2 / 2 = 1 bolt of white fiber.
To find the total number of bolts needed for the robe, we add the bolts of
blue fiber and white fiber together:
2 (blue fiber) + 1 (white fiber) = 3 bolts
Therefore, it takes a total of 3 bolts to make the robe.

Sample 3: (Correct)

A robe takes 2 bolts of blue fiber. Since it takes half as much white fiber as
blue fiber, it uses:
2 / 2 = 1 bolt of white fiber.
To find the total number of bolts needed, we add the blue and white fibers
together:
2 (blue) + 1 (white) = 3 bolts in total.
So, it takes a total of 3 bolts.

Sample 4: (Correct)

A robe takes 2 bolts of blue fiber.
It takes half as much white fiber as blue fiber, so for the white fiber, it
would take 2

2 = 1 bolt.
In total, it takes 2 bolts (blue) + 1 bolt (white) = 3 bolts.
Therefore, it takes 3 bolts in total.

Sample 5: (Correct)

First, determine the amount of white fiber needed for one robe. The problem
states that the robe takes half as much white fiber as blue fiber.
Since 2 bolts of blue fiber are used: - The amount of white fiber needed is
2
2 = 1 bolt.
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Now, add the blue and white fiber amounts together to find the total number
of bolts required: - Total bolts = Blue fiber bolts + White fiber bolts = 2 + 1
= 3 bolts.
Therefore, it takes 3 bolts in total to make one robe.

Determinantal Beam Search Results:
Sample 1: (Correct)

A robe takes 2 bolts of blue fiber. Since it takes half as much white fiber as
blue fiber, it takes 2 / 2 = 1 bolt of white fiber.
Therefore, the total number of bolts needed is 2 (blue) + 1 (white) = 3
bolts.
So, it takes a total of 3 bolts.

Sample 2: (Correct)
A robe takes 2 bolts of blue fiber. Since it takes half as much white fiber as
blue fiber, it takes 2 / 2 = 1 bolt of white fiber.
Therefore, the total number of bolts needed is 2 (blue) + 1 (white) = 3
bolts.
So, it takes 3 bolts in total.

Sample 3: (Correct)
A robe takes 2 bolts of blue fiber. Since it takes half as much white fiber as
blue fiber, it takes 2 / 2 = 1 bolt of white fiber.
Therefore, the total number of bolts needed is 2 (blue) + 1 (white) = 3
bolts.
So, it takes a total of 3 bolts to make the robe.

Sample 4: (Incorrect)
To find out the total number of bolts of fiber needed for the robe, let’s break
it down:
- The robe takes 2 bolts of blue fiber. - It takes half as much white fiber as
blue fiber, so it takes 2 / 2 = 1 bolt of white fiber.
Therefore, the total number of bolts of fiber needed is 2 (blue) + 1 [stopped
by model] [truncated]

Sample 5: (Incorrect)
To determine the total number of bolts needed for the robe, we need to
calculate the amount of white fiber required and then add it to the amount
of blue fiber.
- The robe takes 2 bolts of blue fiber. - The robe takes half as much white
fiber as blue fiber, which means it takes 2

2 = 1 bolt of white fiber.
[stopped by model] [truncated]

SemDiD Results:
Sample 1: (Correct)

A robe requires: - 2 bolts of blue fiber, - And half that amount for white
fiber which is 2

2 = 1 bolt.
In total, it needs: 2(blue) + 1(white) = 3
So, it takes 3 bolts in total.

Sample 2: (Correct)
First, we need to determine how much white fiber is needed for one robe.
Given: - The robe requires 2 bolts of blue fiber. - It needs half as much
white fiber as blue fiber.
Hence, for the white fiber required: White fiber = 1

2 × Blue fiber =
1
2 × 2 bolts = 1 bolt
Now add the amount of blue fiber and white fiber used: Total bolts =
Blue fiber + White fiber = 2 bolts + 1 bolt = 3 bolts
So, it takes 3 bolts in total to make one robe.
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Sample 3: (Correct)

First, let’s find out how many bolts of white fiber are needed for one robe.
Since the robe needs half as much white fiber compared to blue fiber: -
Blue fiber required is 2 bolts. - White fiber required is 2

2 = 1 bolt.
Now we add up the bolts of both fibers used for one robe:
- Bolts of blue fiber: 2 - Bolts of white fiber: 1 - Total bolts for one robe: 2
(blue) + 1 (white) = 3 bolts
Therefore, it takes 3 bolts in total to make one robe.

Sample 4: (Correct)

A bolt of blue fiber is needed for the robe.
For the white fiber: Half of 2 (the number of bolts of blue fiber) equals 1
bolt of white fiber.
To find out the total number of bolts used: - Blue fiber: 2 bolts - White
fiber: 1 bolt
Total bolts used = 2 bolts (blue) + 1 bolt (white) = 3 bolts
So, it takes 3 bolts in total to make the robe.

Sample 5: (Correct)

To determine the total number of bolts needed for the robes:
1. The robe requires 2 bolts of blue fiber. 2. For white fiber, it needs half
the amount of blue fiber: White fiber required = 2

2 = 1 bolt
Adding these amounts gives us the total number of bolts needed:
Total bolts = Blue fiber + White fiber = 2 + 1 = 3 bolts
So, it takes 3 bolts in total to make one robe.

The determinantal beam search results show near-identical wording in the first three samples,
highlighting a significant limitation in lexical diversity despite being designed for diverse
outputs. Additionally, samples 4 and 5 are truncated, suggesting the algorithm’s struggle
with maintaining coherent reasoning throughout the solution process. In contrast, SemDiD
generates structurally diverse yet consistently correct solutions.

Case 3: Complex Problem (Row 3)

Problem: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he
make?
Correct Answer: The cost of the house and repairs came out to 80,000+50,000=$130,000.
He increased the value of the house by 80,000*1.5=$120,000. So the new value of the house
is 120,000+80,000=$200,000. So he made a profit of 200,000-130,000=$70,000.
Analysis: This complex problem involves multiple calculation steps and requires careful
interpretation of the 150% increase (applied to the original house value, not the total invest-
ment). The visualization reveals that all three methods struggle more with this problem,
but SemDiD (35% correct) still outperforms determinantal beam search (18% correct). The
visualization shows how incorrect answers (red crosses) form distinct clusters, revealing
systematic misinterpretations of the problem statement—particularly around whether the
150% increase applies to the original house value or the total investment. SemDiD’s more
comprehensive exploration of the semantic space increases the likelihood of finding the
correct interpretation.
Temperature Sampling (T=1) Results:
Sample 1: (Incorrect)

First, we need to calculate the new value of the house after the repair work
and the subsequent increase in its value.
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The initial price of the house is $80,000. Josh adds $50,000 in repairs,
making the total amount invested in the property: $80, 000 + $50, 000 =
$130, 000

Next, the problem states that this investment increased the value of the
house by 150%. To find out the increase in value, we calculate 150% of
$130,000: 150% of $130, 000 = 1.5× $130, 000 = $195, 000

Now, add this increase to the original value of the house: $80, 000 +
$195, 000 = $275, 000

This means the final value of the house is $275,000. Josh initially bought
the house for $80,000.
To determine Josh’s profit, subtract the initial purchase price from the final
sale price: $275, 000− $80, 000 = $195, 000

Therefore, Josh made a profit of $195,000.
Sample 2: (Incorrect)

First, we need to find the new value of the house after Josh’s renovations.
The original value of the house is $80,000. Josh invests an additional
$50,000 in repairs. Thus, the total amount invested is:
$80, 000 + $50, 000 = $130, 000

This investment increases the value of the house by 150%. To find out what
150% of the original value ($80,000) is, we calculate:
150% of $80, 000 = 1.5× $80, 000 = $120, 000

So, the increase in value due to the repairs is $120,000. Adding this to the
original value gives the new total value of the house:
$80, 000 + $120, 000 = $200, 000

Josh initially bought the house for $80,000 and now the house is valued
at $200,000. Therefore, his profit is calculated by subtracting the initial
purchase price from the final selling price:
$200, 000− $80, 000 = $120, 000

Thus, Josh’s profit is $120,000.
Sample 3: (Correct)

First, let’s calculate the new value of the house after the repairs and the
increase in its value:
Initial house value: $80,000 Repairs cost: $50,000
Total cost for Josh: $80, 000 + $50, 000 = $130, 000

Josh increases the value of the house by 150%. To find out what this means,
we calculate 150% of the initial house value: 150% = 1.5 Increase =
1.5× $80, 000 = $120, 000

Now, add this increase to the initial value: New value = $80, 000 +
$120, 000 = $200, 000

Josh sells the house at this new value of $200,000. Now, to find his profit,
we subtract the total cost from the selling price: Profit = $200, 000 −
$130, 000 = $70,000
Therefore, Josh’s profit is $70,000.

Sample 4: (Incorrect)

First, we need to find the new value of the house after the repair costs and
the 150% increase.
Initial house value: $80,000
Josh adds $50,000 worth of repairs, so the total investment before consider-
ing the increase is: 80, 000 + 50, 000 = 130, 000

Next, the value of the house increases by 150%. To find the new value:
150% of 130, 000 = 1.5× 130, 000 = 195, 000
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Now, we calculate the profit by subtracting the original purchase price
($80,000) from the final value ($195,000): 195, 000− 80, 000 = 115, 000

Therefore, Josh’s profit is: 115,000
Sample 5: (Correct)

First, let’s calculate the new value of the house after Josh makes the repairs
and the increase in its value:
Initial house value: $80,000 Repairs cost: $50,000 Total cost after repairs:
$80,000 + $50,000 = $130,000
Increase in value: 150% of the initial house value 150% of $80, 000 =
150
100 × $80, 000 = 1.5× $80, 000 = $120, 000

New value of the house: Initial value + Increase in value $80, 000 +
$120, 000 = $200, 000

Josh sells the house for the new value, which is $200,000. The profit
is calculated as follows: Profit = Selling price − Total cost Profit =
$200, 000− $130, 000 = $70,000
Therefore, Josh made a profit of $70,000.

Determinantal Beam Search Results:
Sample 1: (Incorrect)

First, we need to calculate the new value of the house after the repairs and
the 150% increase in value.
The initial value of the house is $80,000. After putting in $50,000 in repairs,
the total cost becomes: 80, 000 + 50, 000 = 130, 000

Next, the value of the house increases by 150%. To find 150% of $130,000,
we calculate: 150%× 130, 000 = 1.5× 130, 000 = 195, 000

So, the new value of the house after the repairs and the increase is:
130, 000 + 195, 000 = 325, 000

Josh bought the house for $80,000 and it is now worth $325,000. To find the
profit, we subtract the initial cost from the final value: 325, 000−80, 000 =
245, 000

Therefore, Josh made a profit of $245,000.
Sample 2: (Incorrect)

First, we need to calculate the new value of the house after the repairs and
the 150% increase in value.
The initial value of the house is $80,000. After putting in $50,000 in repairs,
the total cost becomes: 80, 000 + 50, 000 = 130, 000

Next, the value of the house increases by 150%. To find 150% of $130,000,
we calculate: 150%× 130, 000 = 1.5× 130, 000 = 195, 000

So, the new value of the house after the repairs and the increase is:
130, 000 + 195, 000 = 325, 000

Josh bought the house for $80,000 and it is now worth $325,000. To find the
profit, we subtract the initial cost from the final value: 325, 000−80, 000 =
245, 000

Therefore, Josh made a profit of: 245000
Sample 3: (Incorrect)

First, we need to calculate the new value of the house after the repairs and
the 150% increase in value.
The initial value of the house is $80,000. After putting in $50,000 in repairs,
the total cost becomes: 80, 000 + 50, 000 = 130, 000

Next, the value of the house increases by 150%. To find 150% of $130,000,
we calculate: 150%× 130, 000 = 1.5× 130, 000 = 195, 000

So, the new value of the house after the repairs and the increase is:
130, 000 + 195, 000 = 325, 000
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Josh bought the house for $80,000 and it is now worth $325,000. To find the
profit, we subtract the initial cost from the final value: 325, 000−80, 000 =
245, 000

Therefore, Josh’s profit is: 245000
Sample 4: (Incorrect)

First, we need to determine the new value of the house after the repairs and
the increase in value.
The initial value of the house is $80,000. Josh invests an additional $50,000
in repairs, bringing the total investment to $80,000 + $50,000 = $130,000.
This investment increases the value of the house by 150%. To find the
increase in value, we calculate 150% of $130,000: 150% of $130, 000 =
1.5× $130, 000 = $195, 000.

Adding this increase to the initial investment gives the new value of the
house: $130, 000 + $195, 000 = $325, 000.

Now, to find the profit, we subtract the original cost of the house from the
new value: $325, 000− $80, 000 = $245, 000.

Therefore, Josh made a profit of $245,000.
Sample 5: (Incorrect)

First, we need to determine the new value of the house after the repairs and
the increase in value.
The initial value of the house is $80,000. Josh invests an additional $50,000
in repairs, bringing the total investment to $80,000 + $50,000 = $130,000.
This investment increases the value of the house by 150%. To find the
increase in value, we calculate 150% of $130,000: 150% of $130, 000 =
1.5× $130, 000 = $195, 000.

Adding this increase to the initial investment gives the new value of the
house: $130, 000 + $195, 000 = $325, 000.

Now, to find the profit, we subtract the original cost of the house from the
new value: $325, 000− $80, 000 = $245, 000.

Therefore, Josh made a profit of $245,000.
SemDiD Results:
Sample 1: (Incorrect)

First, we need to calculate the new value of the house after the repair work.
Josh initially bought the house for $80,000 and added an additional $50,000
worth of repairs: Total Cost = $80,000 + $50,000 = $130,000

Next, this renovation increases the value of the house by 150%.
To find out what 150% increase means in terms of dollar amounts, consider:
A 100% increase would be equal to the original price ($130,000), so a 150%
increase will add another 1.5 times the initial cost: Increase Amount =
1.5× $130,000 = $195,000

Adding this increase back to the initial cost gives us the final value of the
house: Final Value = $130,000 + $195,000 = $325,000

Now, let’s determine the profit Josh makes when he sells the renovated
property at its full market value: Profit = Final Value−Initial Total Cost =
$325,000− $130,000 = $195,000

Therefore, Josh’s profit from the flip is $195,000.
Sample 2: (Correct)

First, we need to calculate the new value of the house after the improve-
ments.
The original value of the house was $80,000. After putting in $50,000
worth of repairs, this increases its value by 150%.
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To find out what 150% increase means in dollar terms: Increase =
80, 000× 1.50 = 120, 000

Therefore, the new value of the house would be: New Value = 80, 000 +
120, 000 = 200, 000

Josh initially invested a total of: 80, 000(original price) +
50, 000(repairs) = 130, 000

Finally, to determine his profit: Profit = New Value − Total Investment
Profit = 200, 000− 130, 000 = 70,000
Hence, Josh’s profit is $70,000.

Sample 3: (Incorrect)

First, we need to calculate the new value of the house after Josh’s improve-
ments.
Josh initially bought the house for $80,000. After putting in $50,000 worth
of repairs, the total investment becomes:
Total Investment = $80,000 + $50,000 = $130,000

Next, the problem states that these renovations increased the value of the
house by 150%.
To find out what 150% increase means in dollar terms: Increase Amount =
$130,000× 150% = $130,000× 1.5 = $190,000

Therefore, the new value of the house is: New Value = $130,000 +
$190,000 = $320,000

Now, to determine Josh’s profit: Profit = Final Value − Initial Cost
Profit = $320,000− $80,000 = $240,000

So, Josh made a profit of $240,000.
Sample 4: (Incorrect)

First, we need to determine the new value of the house after Josh’s renova-
tions.
Josh initially bought the house for $80,000 and added an additional $50,000
worth of repairs: Total Cost = $80, 000 + $50, 000 = $130, 000

This renovation increase the value of the house by 150%: Increase Value =
$130, 000× 150% = $130, 000× 1.5 = $195, 000

Adding this increase to the original purchase price gives us the final value
of the house: Final Value = $130, 000 + $195, 000 = $325, 000

To find out the profit, subtract the initial cost from the final value: Profit =
$325, 000− $130, 000 = $195, 000

Therefore, Josh made a profit of $195,000.
Sample 5: (Correct)

First, we need to determine the new value of the house after Josh’s renova-
tions.
Josh initially bought the house for $80,000. After putting in $50,000 worth
of repairs, the total investment becomes: $80, 000+ $50, 000 = $130, 000

Next, we calculate the increase in the value of the house due to these
improvements. We know this increase is 150% of the initial purchase price
($80,000).
To find 150% of $80,000: 150%×$80, 000 = 1.5×$80, 000 = $120, 000

Adding this increase to the original purchase price gives us the new value
of the house: $80, 000 + $120, 000 = $200, 000

Now, to determine the profit, subtract the total investment from the final
value of the house: $200, 000− $130, 000 = $70,000
Therefore, Josh made a profit of $70,000.
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